## GENERALIZED RECURRENT KAEHLERIAN WEYL SPACES

## GIRISH DOBHAL*1, NITIN UNIYAL*2and VIRENDRA PRASAD*3

> *1 Department of Mathematics, University of Petroleum and Energy Studies, Dehradun.
> *2 Department of Mathematics, University of Petroleum and Energy Studies, Dehradun. *3 H. N. B. G. I.C. ,Dewalgarh, PauriGarhwal.


#### Abstract

In the present paper we have studied generalized recurrent Kaehlerian Weyl spaces. The properties of generalized Weyl Concircular, Conformal and Projective curvature tensor is shown and the relation between them is established.


Key Words: Kaehlerian Weyl space, generalized recurrent Weyl space.

Mathematics Subject Classification: 53C25, 53C15

## 1. Introduction

An-n-dimensional differentiable manifold $W_{n}$ is said to be Weyl space if it has a symmetric connection $\nabla^{*}$ and a symmetric conformal metric tensor $g_{i j}$ preserved by $\nabla^{*}$. Accordingly, in local coordinates there exists a covariant vector field $T_{k}$ (complementary vector field) satisfying the condition [1], [2], and [3]
$\nabla^{*}{ }_{k} g_{i j}-2 T_{k} g_{i j}=0$.
The above equation can be extended to
$\partial_{k} g_{i j}-g_{h j} \Gamma_{j k}^{h}-2 T_{k} g_{i j}=0$,
where $\Gamma_{j k}^{h}$ are the connection coefficients of the symmetric connection $\nabla$ and are defined as
$\Gamma_{j k}^{h}=\left\{\begin{array}{c}h \\ j k\end{array}\right\}-g^{h m}\left(g_{m j} T_{k}+g_{m k} T_{j}-g_{j k} T_{m}\right)$,
$\left\{\begin{array}{l}h \\ j k\end{array}\right\}$ being the coefficient of the metric connection defined by

$$
\left\{\begin{array}{c}
h \\
j k
\end{array}\right\}=\frac{1}{2} g^{h m}\left\{\partial_{j} g_{m k}+\partial_{k} g_{j m}-\partial_{m} g_{j i}\right\}
$$

Moreover, under the renormalization condition
$\tilde{g}_{i j}=\lambda^{2} g_{i j}$,
of the metric tensor $g_{i j}$, the covariant vector field $T_{k}$ is transformed by the law
$\tilde{T}_{k}=T_{k}+\partial_{k} \operatorname{In} \lambda$,
where $\lambda$ is a scalar function defined on $W_{n}$. We denote such a Weyl space by $W_{n}\left(\Gamma_{j k}^{h}, g_{i j}, T_{k}\right)$ or $W_{n}(g, T)$.

An n-dimensional differential manifold having an anti-symmetric connection $\nabla$ and anti-symmetric metric tensor $g_{i j}$ preserved by $\nabla$ is called generalized Weyl space [4]. It is denoted by $G W_{n}(g, T)$.

For such a space, in local co-ordinate system, the compatibility condition is
$\nabla_{k} g_{i j}-2 T_{k} g_{i j}=0$,
where $T_{k}$ are the components of a covariant vector field, called the complementary vector field of the $G W_{n}(g, T)$ space. Using the concept of covariant differentiation ([5],[6]), the compatibility condition of (1.6) can be written as
$\partial_{k} g_{i k}-g_{h j} L_{i k}^{h}-g_{i h} L_{j k}^{h}-2 T_{k} g_{i j}=0$,
where $L_{i k}^{h}$ are the connection coefficient of the anti-symmetric connection $\nabla$ and are obtain from the compatibility condition as
$L_{i j}^{h}=\Gamma_{i j}^{h}+\frac{1}{2}\left[\chi_{i m}^{h} g_{j h}+\chi_{m j}^{h} g_{i h}+\chi_{i j}^{h} g_{h m}\right] g^{m i}$
Now putting
$\chi_{i j}^{h}=\frac{1}{2}\left[\chi_{i m}^{h} g_{j h}+\chi_{m j}^{h} g_{i h}+\chi_{i j}^{h} g_{h m}\right] g^{m i}$,
we obtain
$L_{i j}^{h}=\Gamma_{i j}^{h}+\chi_{i j}^{h}$,
where $\Gamma_{i j}^{h}$ and $\chi_{i j}^{h}$ are respectively the coefficient of a Weyl connection and the torsion tensor of $G W_{n}(g, T)$ space and are expressed as
$\Gamma_{i j}^{h}=\frac{1}{2}\left[L_{i j}^{h}+L_{j i}^{h}\right]=L_{i j}^{h}$,
and
$\chi_{k l}^{h}=\frac{1}{2}\left[L_{k l}^{h}-L_{l k}^{h}\right]=L_{[k l]}^{h}$,
where square bracket stands for anti-symmetry.
The components of mixed curvature tensor and Ricci tensor of $G W_{n}(g, T)$ are respectively
$L_{j k i}^{h}=\partial_{k} L_{j i}^{h}-\partial_{i} L_{j k}^{h}+L_{l k}^{h} L_{j i}^{l}-L_{l i}^{h} L_{j k}^{l} \quad$,
$L_{i j}=L_{i j a}^{a}$.
On the other hand scalar curvature of $G W_{n}(g, T)$ is defined by
$L=g^{i j} L_{i j}$.
It is easy to see that curvature tensor $L_{j k i}^{h}$ of $G W_{n}(g, T)$ can be written as

$$
\begin{equation*}
L_{j k i}^{h}=B_{j k i}^{h}+\chi_{j k l}^{h}, \tag{1.16}
\end{equation*}
$$

where the tensors $B_{j k i}^{h}$ and $\chi_{j k l}^{h}$ are defined respectively as
$B_{j k i}^{h}=\partial_{k} \Gamma_{j i}^{h}-\partial_{i} \Gamma_{j k}^{h}+\Gamma_{l k}^{h} \Gamma_{j i}^{l}-\Gamma_{l k}^{h} \Gamma_{j k}^{l}$,

The curvature tensor of $G W_{n}(g, T)$ satisfies the relation [6].
$L_{j k l}^{h}+L_{j l k}^{h}=0$,
$L_{h l k}^{j}+L_{h k l}^{j}+L_{k l h}^{j}=2\left[\nabla_{k} \chi_{l h}^{j}+\nabla_{h} \chi_{k l}^{j}+2 \chi_{l m}^{j} \chi_{h k}^{m}+2 \chi_{h m}^{j} \chi_{k l}^{m}+2 \chi_{k m}^{j} \chi_{l h}^{m}\right]$,
$\nabla_{m} L_{j k l}^{i}+\nabla_{k} L_{j l m}^{i}+\nabla_{l} L_{j m k}^{i}=2\left[L_{j p l}^{i} \chi_{m k}^{p}+L_{j p k}^{i} \chi_{l m}^{p}+L_{j p m}^{i} \chi_{k l}^{p}\right]$
A Kaehlerian Weyl space denoted by $K W_{n}$ is an n -dimensional ( $\mathrm{n}=2 \mathrm{~m}$ ) space with an almost complex structure $F_{j}^{i}$ satisfying

$$
\begin{align*}
F_{j}^{i} F_{i}^{k}=-\delta_{j}^{k}, g_{i j} F_{h}^{i} F_{k}^{j}=g_{h k}  \tag{1.22}\\
\dot{\nabla}_{k} F_{j}^{i}=0(\text { for all } \mathrm{i}, \mathrm{j} \text {, }) \tag{1.23}
\end{align*}
$$

$F_{i j}=g_{j k} F_{i}^{k}=-F_{j i}$
$F^{i j}=g^{i h} F_{h}^{j}=-F^{j i}$
the tensors $F_{i j}$ and $F^{i j}$ are of weight 2 and -2 respectively [4].
The mixed curvature tensor $R_{i j k}^{h}$ and the covariant curvature tensor $R_{h i j k}$ of $W_{n}(g, T)$ are given respectively

$$
R_{i j k}^{h}=\frac{\partial}{\partial x^{k}} \Gamma_{i j}^{h}-\frac{\partial}{\partial x^{j}} \Gamma_{i k}^{h}+\Gamma_{l k}^{h} \Gamma_{i j}^{l}-\Gamma_{l j}^{h} \Gamma_{i k}^{l}
$$

$\operatorname{and} R_{i j k l}=g_{i h} R_{j k l}^{h}$.
The Ricci tensor and the scalar curvature of $W_{n}(g, T)$ are defined by

$$
R_{i j h}^{h}=R_{i j} \text { and } R=g^{i j} R_{i j}
$$

Also, it can be seen that the anti-symmetric part of the Ricci tensor satisfies

$$
R_{[i j]}=n \nabla_{[i} T_{j]}
$$

Let

$$
G_{i j}=\frac{1}{2} R_{i j k l} F^{k l}, \quad H_{i j}=g_{k i} R_{j}^{k}
$$

where $R_{i j k l}=g_{i h} R_{j k i}^{h}, R_{j}^{i}=R_{j i l}^{h} g^{k l}$. Then the following relations hold

$$
\begin{gathered}
H_{i j}=\frac{n-2}{n} R_{i j}+\frac{2}{n} R_{j i}=R_{i j}+\frac{2}{n}\left\{R_{j i}-R_{i j}\right\} \\
G_{i j}=-H_{h i} F_{i}^{h}=H_{i h} F_{j}^{h} \\
G_{h i} F_{j}^{h}=-G_{j h} F_{i}^{h}=H_{j i} \\
G_{h i} F^{h i}=-M_{h i} g^{h i}=-R
\end{gathered}
$$

$$
\begin{gathered}
R_{i j k l}+R_{j i k l}=4 \nabla_{[k} T_{i]} g_{i j} \\
G_{i j}+G_{j i}=0
\end{gathered}
$$

## 2. Generalized Recurrent Kaehlerian Weyl Space

An $n$-dimensional Weyl space is called generalized recurrent Weyl space if its curvature tensor $R_{h i j k}$ satisfies
$\dot{\nabla}_{m} R_{h i j k}=K_{m} R_{h i j k}+L_{m} g_{h i j k}$
where
$g_{h i j k}=g_{h k} g_{i j}-g_{h j} g_{i k}$.
$K_{m}$ and $L_{m}$ are associate vectors of recurrence.
Multiplying (2.1) by $g^{h k}$ we get
$\dot{\nabla}_{m} R_{i j}=K_{m} R_{i j}+L_{m}(n-1) g_{i j}$
Transvecting (2.3) by $g^{i j}$ we have
$\dot{\nabla}_{m} R=K_{m} R+L_{m} n(n-1) g_{i j}$
Eliminating $L_{m}$ from (2.1) and (2.4) we have

$$
\dot{\nabla}_{m} S_{h i j k}=K_{m} S_{h i j k}
$$

where
$S_{h i j k}=R_{h i j k}-\frac{R}{n(n-1)} g_{h i j k}$
Multiplying (2.5) by $g^{h k}$ we get
$S_{i j}=R_{i j}-\frac{R}{n} g_{i j}$
Such a space is denoted by $W_{n}$.
The Weyl Conformal curvature $C_{h i j k}$, Weyl Concircular cuvature tensor $Z_{h i j k}$ and Weyl Projective cuvature tensor $Z_{h i j k}$ in $W_{n}(g, T)$ is given by
$C_{h i j k}=R_{h i j k}-\frac{1}{n-2}\left\{g_{i j} R_{h k}-g_{i k} R_{h j}+g_{h k} R_{i j}-g_{h j} R_{i k}\right\}+\frac{R}{(n-1)(n-2)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}$
$Z_{h i j k}=R_{h i j k}-\frac{R}{n(n-1)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}$
$W_{h i j k}=R_{h i j k}+\frac{1}{n-1}\left\{R_{i j} g_{h k}-R_{i k} g_{h j}\right\}$
From (2.8) and (2.9) we have
$W_{h i j k}=Z_{h i j k}+\frac{R}{n(n-1)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}+\frac{1}{n-1}\left\{R_{i j} g_{h k}-R_{i k} g_{h j}\right\}$

From (2.7) and (2.8) we have
$C_{h i j k}=Z_{h i j k}-\frac{1}{n-2}\left\{g_{i j} R_{h k}-g_{i k} R_{h j}+g_{h k} R_{i j}-g_{h j} R_{i k}\right\}+\frac{2 R}{n(n-2)}\left\{g_{i j} g_{n k}-g_{i k} g_{h j}\right\}$
From (2.7) and (2.9) we have

$$
\begin{equation*}
C_{h i j k}=W_{h i j k}+\frac{R}{(n-1)(n-2)}\left\{g_{i j} g_{n k}-g_{i k} g_{h j}\right\}-\frac{1}{n-2}\left\{g_{i j} R_{h k}-g_{i k} R_{h j}\right\} \tag{2.12}
\end{equation*}
$$

$-\frac{2 n-3}{(n-1)(n-2)}\left\{g_{h k} R_{i j}-g_{h j} R_{i k}\right\}$
Definition (2.1). If the curvature tensor $C_{h i j k}$ of $G R K W_{n}$ satisfies the condition
$\dot{\nabla}_{m} C_{h i j k}=K_{m} C_{h i j k}+L_{m} g_{h i j k}$,
where $K_{m}$ and $L_{m}$ are associate vectors of recurrence then $G R K W_{n}$ is called generalized recurrent Kaehlerian Weyl space with generalized recurrent Weyl Conformal curvature tensor. We denote such a space by $C^{*}-G R K W_{n}$.

Definition (2.2). If the curvature tensor $Z_{h i j k}$ of $G R K W_{n}$ satisfies the condition
$\dot{\nabla}_{m} Z_{h i j k}=K_{m} Z_{h i j k}+L_{m} g_{h i j k}$,
where $K_{m}$ and $L_{m}$ are associate vectors of recurrence then $G R K W_{n}$ is called generalized recurrent Kaehlerian Weyl space with generalized recurrent Weyl Concircular curvature tensor. We denote such a space by $Z^{*}-G R K W_{n}$.

Definition (2.3). If the curvature tensor $W_{h i j k}$ of $G R K W_{n}$ satisfies the condition
$\dot{\nabla}_{m} W_{h i j k}=K_{m} W_{h i j k}+L_{m} g_{h i j k}$,
where $K_{m}$ and $L_{m}$ are associate vectors of recurrence then $G R K W_{n}$ is called generalized recurrent Kaehlerian Weyl space with generalized recurrent Weyl Projective curvature tensor. We denote such a space by $W^{*}-G R K W_{n}$.

Theorem (2.1) : A Kaehlerian Weyl space is generalized recurrent if and only if it is Projective generalized recurrent.

Proof: Let the space be Kaehlerian Weyl generalized recurrent then (2.1) is satisfied.
Taking covariant derivative of (2.9) we have
$\dot{\nabla}_{m} W_{h i j k}=\dot{\nabla}_{m} R_{h i j k}+\frac{1}{n-1}\left\{\dot{\nabla}_{m} R_{i j} g_{h k}-\dot{\nabla}_{m} R_{i k} g_{h j}\right\}$,
using (2.1) and (2.3) above equation reduces to
$\dot{\nabla}_{m} W_{h i j k}=K_{m} R_{h i j k}+L_{m} g_{h i j k}+\frac{1}{n-1}\left\{K_{m} R_{i j} g_{h k}+L_{m}(n-1) g_{i j} g_{n k}-K_{m} R_{i j} g_{n j}-L_{m}(n-1) g_{i k} g_{h j}\right\}$,
which in view of (2.9) gives
$\dot{\nabla}_{m} W_{h i j k}=K_{m} W_{h i j k}+L_{m} g_{h i j k}$.

Conversely, let us assume that (2.17) holds then using (2.9) we obtain
$K_{m}\left[R_{h i j k}+\frac{1}{n-1}\left\{R_{i j} g_{h k}-R_{i k} g_{h j}\right\}\right]+L_{m} g_{h i j k}=\dot{\nabla}_{m} R_{h i j k}+\frac{1}{n-1}\left\{\dot{\nabla}_{m} R_{i j} g_{h k}-\dot{\nabla}_{m} R_{i k} g_{h j}\right\}$,
multiplying (2.18) by $g^{h k}$ we get
$\dot{\nabla}_{m} R_{i j}=K_{m} R_{i j}+\frac{L_{m}}{2} g_{i j}$.
Equation (2.18) in view of (2.19) reduces to
$\dot{\nabla}_{m} R_{h i j k}=K_{m} R_{h i j k}+\frac{2 n-3}{2(n-1)} L_{m} g_{h i j k}$.
which completes the proof.
Theorem (2.2): The necessary and sufficient condition for a $G R K W_{n}$ to be $W^{*}-G R K W_{n}$ is that it should be $Z^{*}-G R K W_{n}$.

Proof: Let $G R K W_{n}$ satisfies the relation (2.15), then (2.15) in view of (2.10) gives
$K_{m} W_{h i j k}+L_{m} g_{h i j k}=\dot{\nabla}_{m} Z_{h i j k}+\frac{\dot{\nabla}_{m} R}{n(n-1)}\left\{g_{i j} g_{n k}-g_{i k} g_{h j}\right\}+\frac{1}{n-1}\left\{\dot{\nabla}_{m} R_{i j} g_{h k}-\dot{\nabla}_{m} R_{i k} g_{h j}\right\}$,
equation (2.20) in view of (2.3) and (2.4) reduces to
$\dot{\nabla}_{m} Z_{h i j k}=K_{m}\left[R_{h i j k}-\frac{R}{n(n-1)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}\right]+L^{\prime}{ }_{m} g_{h i j k}$,
which in view of (2.8) reduces to (2.14).
Conversely, let us assume that (2.14) is satisfied, taking covariant derivative of (2.10) gives
$\dot{\nabla}_{m} W_{h i j k}=\dot{\nabla}_{m} Z_{h i j k}+\frac{\dot{\nabla}_{m} R}{n(n-1)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}+\frac{1}{n-1}\left\{\dot{\nabla}_{m} R_{i j} g_{n k}-\dot{\nabla}_{m} R_{i k} g_{h j}\right\}$.
Using (2.3) and (2.4), equation (2.21) reduces to
$\dot{\nabla}_{m} W_{h i j k}=K_{m}\left[R_{h i j k}+\frac{1}{n-1}\left\{R_{i j} g_{n k}-R_{i k} g_{h j}\right\}+3 L_{m} g_{h i j k}\right.$,
which on using (2.9) gives
$\dot{\nabla}_{m} W_{h i j k}=K_{m} W_{h i j k}+3 L_{m} g_{h i j k}$.
Therefore the proof is completed.
Theorem (2.3): The necessary and sufficient condition for a $G R K W_{n}$ to be $C^{*}-G R K W_{n}$ is that it should beZ ${ }^{*}-G R K W_{n}$.

Proof: Let $G R K W_{n}$ satisfies the relation (2.14), then (2.13) in view of (2.14) gives
$\dot{\nabla}_{m} C_{h i j k}=\dot{\nabla}_{m} Z_{h i j k}-\frac{1}{n-2}\left\{g_{i j} \dot{\nabla}_{m} R_{h k}-g_{i k} \dot{\nabla}_{m} R_{h j}+g_{h k} \dot{\nabla}_{m} R_{i j}-g_{h j} \dot{\nabla}_{m} R_{i k}\right\}+\frac{2 \dot{\nabla}_{m} R}{n(n-2)}\left\{g_{i j} g_{n k}-g_{i k} g_{h j}\right\}$
Using (2.3), (2.4) and (2.14), equation (2.22) reduces to
$\dot{\nabla}_{m} C_{h i j k}=\mathrm{K}_{m} Z_{h i j k}+L_{m} g_{h i j k}-\frac{1}{n-2}\left\{\mathrm{~K}_{m}\left(g_{i j} R_{h k}-g_{i k} R_{h j}+g_{h k} R_{i j}-g_{h j} R_{i k}\right)+2 L_{m}(n-1)\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right)\right\}+$ $\frac{2\left\{\mathrm{~K}_{m} R+L_{m} n(n-1)\right\}}{n(n-1)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}$,
using (2.8), (2.23) reduces to
$\dot{\nabla}_{m} C_{h i j k}=\mathrm{K}_{m} C_{h i j k}+L_{m} g_{h i j k}$.
Conversely, let $G R K W_{n}$ satisfies the relation (2.13), then (2.11) in view of (2.13) gives (2.23).Now from (2.7) and (2.23) we have

$$
\begin{aligned}
& \quad K_{m}\left[R_{h i j k}-\frac{1}{n-2}\left\{g_{i j} R_{h k}-g_{i k} R_{h j}+g_{h k} R_{i j}-g_{h j} R_{i k}\right\}+\frac{R}{(n-1)(n-2)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}\right]+L_{m} g_{h i j k} \\
& \quad=\dot{\nabla}_{m} Z_{h i j k}-\frac{1}{n-2}\left\{K_{m}\left(g_{i j} R_{h k}-g_{i k} R_{h j}+g_{h k} R_{i j}-g_{h j} R_{i k}\right)+2 L_{m}(n-1)\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right)\right\} \\
& +\frac{2\left\{K_{m} R+L_{m} n(n-1)\right\}}{n(n-1)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\},
\end{aligned}
$$

which in view of (2.8) reduces to

$$
\dot{\nabla}_{m} Z_{h i j k}=K_{m} Z_{h i j k}+L_{m} g_{h i j k} .
$$

Therefore the proof is completed.
Theorem (2.4): The necessary and sufficient condition for a $G R K W_{n}$ to be $C^{*}-G R K W_{n}$ is that it should be $W^{*}-G R K W_{n}$.

Proof: Let $G R K W_{n}$ satisfies the relation (2.14), then (2.13) in view of (2.14) gives

$$
\begin{align*}
& \quad \dot{\nabla}_{m} C_{h i j k}=\dot{\nabla}_{m} W_{h i j k}+\frac{\dot{\nabla}_{m} R}{(n-1)(n-2)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}-\frac{1}{n-2}\left\{g_{i j} \dot{\nabla}_{m} R_{h k}-g_{i k} \dot{\nabla}_{m} R_{h j}\right\} \\
& -\frac{2 n-3}{(n-1)(n-2)}\left\{g_{h k} \dot{\nabla}_{m} R_{i j}-g_{h j} \dot{\nabla}_{m} R_{i k}\right\}, \tag{2.24}
\end{align*}
$$

using (2.3), (2.4) and (2.15), equation (2.24) reduces to

$$
\begin{gather*}
\dot{\nabla}_{m} C_{h i j k}=K_{m} W_{h i j k}+L_{m} g_{h i j k}+\frac{\left[K_{m} R+L_{m} n(n-1)\right]}{(n-1)(n-2)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\} \\
-\frac{1}{n-2}\left\{K_{m}\left(g_{i j} R_{h k}-g_{i k} R_{h j}\right)+L_{m} n(n-1)\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right)\right\} \\
-\frac{2 n-3}{(n-1)(n-2)}\left\{K_{m}\left(g_{h k} R_{i j}-g_{h j} R_{i k}\right)+L_{m} n(n-1)\left(g_{h k} g_{i j}-g_{h j} g_{i k}\right)\right\}, \tag{2.25}
\end{gather*}
$$

using (2.14), (2.25) reduces to
$\dot{\nabla}_{m} C_{h i j k}=K_{m} C_{h i j k}+L_{m} g_{h i j k}$.
Conversely, let $G R K W_{n}$ satisfies the relation (2.13), then (2.12) in view of (2.13) gives

$$
\dot{\nabla}_{m} C_{h i j k}=\dot{\nabla}_{m} W_{h i j k}+\frac{\left[K_{m} R+L_{m} n(n-1)\right]}{(n-1)(n-2)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}
$$

$$
\begin{gather*}
-\frac{1}{n-2}\left\{K_{m}\left(g_{i j} R_{h k}-g_{i k} R_{h j}\right)+L_{m} n(n-1)\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right)\right\} \\
-\frac{2 n-3}{(n-1)(n-2)}\left\{K_{m}\left(g_{h k} R_{i j}-g_{h j} R_{i k}\right)+L_{m} n(n-1)\left(g_{h k} g_{i j}-g_{h j} g_{i k}\right)\right\}, \tag{2.26}
\end{gather*}
$$

using (2.7), (2.26) reduces to

$$
\begin{gathered}
K_{m}\left[R_{h i j k}-\frac{1}{n-2}\left\{g_{i j} R_{h k}-g_{i k} R_{h j}+g_{h k} R_{i j}-g_{h j} R_{i k}\right\}+\frac{R}{(n-1)(n-2)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\}\right]+L_{m} g_{h i j k} \\
=\dot{\nabla}_{m} W_{h i j k}+\frac{\left[K_{m} R+L_{m} n(n-1)\right]}{(n-1)(n-2)}\left\{g_{i j} g_{h k}-g_{i k} g_{h j}\right\} \\
-\frac{1}{n-2}\left\{K_{m}\left(g_{i j} R_{h k}-g_{i k} R_{h j}\right)+L_{m} n(n-1)\left(g_{i j} g_{h k}-g_{i k} g_{h j}\right)\right\} \\
-\frac{2 n-3}{(n-1)(n-2)}\left\{K_{m}\left(g_{h k} R_{i j}-g_{h j} R_{i k}\right)+L_{m} n(n-1)\left(g_{h k} g_{i j}-g_{h j} g_{i k}\right)\right\},
\end{gathered}
$$

using (2.9) above equation reduces to
$\dot{\nabla}_{m} W_{h i j k}=K_{m} W_{h i j k}+\frac{2 n-3}{n-2} g_{h i j k}$.
Therefore the proof is completed.

## REFERENCES

[1] G.Zlatanov,Nets in the n-dimensional space of Weyl, C.R. Acad. Bulgare. Sci. 41, (1988), 29-32.
[2] B.Tsareva, and G.Zlatanov, On the geometry of the nets in the n-dimensional space of Weyl, J. Geom. 18, (1990),182-197.
[3] A.Norden,Affinely connected spaces, GRMFL, Moscow, (1976).
[4]V.Murgescu, Espaces de Weyl generalized, Rev. Rour. Math. Pure. et. Appl., XX, (2),(1970).
[5] L.ZerenAkgun, On generalized Weyl Spaces, Bul. Cal. Math. Soc., 91, (4), (1999), 267-278.
[6]U.P. Singh andA. K. Singh, On Kaehlerian conharmonic recurrent and Kaehlerian conharmonic symmetric space,Acc. Naz.Dei Lincei, Rend, 62(2), (1977), 173-179.
[7] K.S. Rawat, and Girish Dobhal, On the bi-recurrent Bochner curvature tensor,Journal of the Tensor Society, 1(2007), 33-40.
[8] E.O. Canfes, andAOzdeger, Some applications of prolonged covariant differentiation in Weyl spaces, Journal of Geometry 60 (1997), 7-16.
[9] U.C. De and N. Guha,On generalized recurrent manifolds, National Academy ofMath. 1 (1991), 1-4.
[10] V. Hlavaty, Theoried'immersiond'une $W_{m}$ dans $W_{n}$, Ann. Soc. Polon. Math.,21(1949), 196206.
[11] Y.B. Marabhavi and M. Rathnamma, Generalized recurrent and concircular recurrent manifolds, Indian J. Pure Appl. Math., 30, 11 (1999), 1167-1171.
[12] R. Miron, Mouvementsconfermesdans les espaces $W_{m}$ et $N_{m}$,Tensor N.S. 19(1968), 33-41.
[13] Girish Dobhal and A. R. Gairola, Generalized bi-recurrent Weyl Spaces, Int. jour. of Math. Archive, 2(12), (2011), 2503-2507.
[14] A. Ozdeger and Z. Senturk, Generalized Circles in Weyl spaces and their conformal mapping, Publ. Math. Debrecen 60, (2002), 75-87.

