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1. Introduction 
 

An-n-dimensional differentiable manifold 𝑊𝑛  is said to be Weyl space if it has a symmetric 

connection ∇∗ and a symmetric conformal metric tensor 𝑔𝑖𝑗  preserved by ∇∗. Accordingly, in local 

coordinates there exists a covariant vector field 𝑇𝑘(complementary vector field) satisfying the 

condition [1],[2], and [3] 
∇∗

𝑘𝑔𝑖𝑗 − 2𝑇𝑘𝑔𝑖𝑗 = 0.                     (1.1) 

The above equation can be extended to 

𝜕𝑘𝑔𝑖𝑗 − 𝑔ℎ𝑗Γ𝑗𝑘
ℎ − 2𝑇𝑘𝑔𝑖𝑗 = 0,                    (1.2) 

whereΓ𝑗𝑘
ℎ  are the connection coefficients of the symmetric connection ∇ and are defined as 

Γ𝑗𝑘
ℎ =  

ℎ
𝑗𝑘 

 − 𝑔ℎ𝑚 (𝑔𝑚𝑗 𝑇𝑘 + 𝑔𝑚𝑘 𝑇𝑗 − 𝑔𝑗𝑘 𝑇𝑚 ),                  (1.3) 

 
ℎ
𝑗𝑘 

 being the  coefficient of the metric connection defined by  

 
ℎ
𝑗𝑘 

 =
1

2
𝑔ℎ𝑚 {𝜕𝑗 𝑔𝑚𝑘 + 𝜕𝑘𝑔𝑗𝑚 − 𝜕𝑚𝑔𝑗𝑖 }. 

Moreover, under the renormalization condition 

𝑔 𝑖𝑗 = 𝜆2𝑔𝑖𝑗 ,                        (1.4) 

of the metric tensor 𝑔𝑖𝑗 , the covariant vector field 𝑇𝑘  is transformed by the law 

𝑇 𝑘 = 𝑇𝑘 + 𝜕𝑘𝐼𝑛𝜆,                      (1.5) 

where𝜆 is a scalar function defined on 𝑊𝑛 . We denote such a Weyl space by 𝑊𝑛(Γ𝑗𝑘
ℎ , 𝑔𝑖𝑗 , 𝑇𝑘)or 

𝑊𝑛(𝑔, 𝑇). 
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An n-dimensional differential manifold having an anti-symmetric connection ∇ and anti-symmetric 

metric tensor 𝑔𝑖𝑗 preserved by ∇ is called generalized Weyl space [4]. It is denoted by 𝐺𝑊𝑛(𝑔, 𝑇). 

For such a space, in local co-ordinate system, the compatibility condition is 

∇𝑘𝑔𝑖𝑗 − 2𝑇𝑘𝑔𝑖𝑗 = 0,                     (1.6) 

where 𝑇𝑘  are the components of a covariant vector field, called the complementary vector field of 

the 𝐺𝑊𝑛(𝑔, 𝑇) space. Using the concept of covariant differentiation ([5],[6]), the compatibility 

condition of (1.6) can be written as 

𝜕𝑘𝑔𝑖𝑘 − 𝑔ℎ𝑗𝐿𝑖𝑘
ℎ − 𝑔𝑖ℎ𝐿𝑗𝑘

ℎ − 2𝑇𝑘𝑔𝑖𝑗 = 0,                   (1.7) 

where𝐿𝑖𝑘
ℎ   are the connection coefficient of the anti-symmetric connection  ∇ and are obtain from 

the compatibility condition as 

𝐿𝑖𝑗
ℎ = Γ𝑖𝑗

ℎ +
1

2
[𝜒𝑖𝑚

ℎ 𝑔𝑗ℎ + 𝜒𝑚𝑗
ℎ 𝑔𝑖ℎ + 𝜒𝑖𝑗

ℎ 𝑔ℎ𝑚 ]𝑔𝑚𝑖  .                  (1.8) 

Now putting 

𝜒𝑖𝑗
ℎ =

1

2
[𝜒𝑖𝑚

ℎ 𝑔𝑗ℎ + 𝜒𝑚𝑗
ℎ 𝑔𝑖ℎ + 𝜒𝑖𝑗

ℎ 𝑔ℎ𝑚 ]𝑔𝑚𝑖 ,                    (1.9) 

we obtain 

𝐿𝑖𝑗
ℎ = Γ𝑖𝑗

ℎ + 𝜒𝑖𝑗
ℎ ,                    (1.10) 

where    Γ𝑖𝑗
ℎ   and  𝜒𝑖𝑗

ℎ  are respectively the coefficient of a Weyl connection and the torsion tensor of 

𝐺𝑊𝑛(𝑔, 𝑇)  space and are expressed as 

Γ𝑖𝑗
ℎ =

1

2
 𝐿𝑖𝑗

ℎ + 𝐿𝑗𝑖
ℎ  = 𝐿𝑖𝑗

ℎ ,                   (1.11) 

and 

𝜒𝑘𝑙
ℎ =

1

2
 𝐿𝑘𝑙

ℎ − 𝐿𝑙𝑘
ℎ  = 𝐿[𝑘𝑙 ]

ℎ ,                  (1.12) 

where square bracket stands for anti-symmetry. 

The components of mixed curvature tensor and Ricci tensor of 𝐺𝑊𝑛(𝑔, 𝑇) are respectively 

𝐿𝑗𝑘𝑖
ℎ = 𝜕𝑘𝐿𝑗𝑖

ℎ − 𝜕𝑖𝐿𝑗𝑘
ℎ + 𝐿𝑙𝑘

ℎ 𝐿𝑗𝑖
𝑙 − 𝐿𝑙𝑖

ℎ 𝐿𝑗𝑘
𝑙  ,                (1.13) 

𝐿𝑖𝑗 = 𝐿𝑖𝑗𝑎
𝑎 .                    (1.14) 

On the other hand scalar curvature of 𝐺𝑊𝑛(𝑔, 𝑇)  is defined by  

𝐿 = 𝑔𝑖𝑗 𝐿𝑖𝑗 .                    (1.15) 

It is easy to see that curvature tensor  𝐿𝑗𝑘𝑖
ℎ  of 𝐺𝑊𝑛(𝑔, 𝑇)  can be written as  

 𝐿𝑗𝑘𝑖
ℎ = 𝐵𝑗𝑘𝑖

ℎ + 𝜒𝑗𝑘𝑙
ℎ ,                                             (1.16) 

where the tensors  𝐵𝑗𝑘𝑖
ℎ  and  𝜒𝑗𝑘𝑙

ℎ   are defined respectively as 

𝐵𝑗𝑘𝑖
ℎ = 𝜕𝑘Γ𝑗𝑖

ℎ − 𝜕𝑖Γ𝑗𝑘
ℎ + Γ𝑙𝑘

ℎ Γ𝑗𝑖
𝑙 − Γ𝑙𝑘

ℎ Γ𝑗𝑘
𝑙 ,                                            (1.17) 
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𝜒𝑗𝑘𝑖
ℎ = ∇𝑘𝜒𝑗𝑖

ℎ − ∇𝑖𝜒𝑗𝑘
ℎ + 𝜒𝑙𝑖

ℎ𝜒𝑗𝑘
𝑙 − 𝜒𝑙𝑘

ℎ 𝜒𝑗𝑖
𝑙 − 2𝜒𝑗𝑙

ℎ 𝜒𝑘𝑖
𝑙 .                                           (1.18) 

The curvature tensor of 𝐺𝑊𝑛(𝑔, 𝑇)  satisfies the relation [6]. 

𝐿𝑗𝑘𝑙
ℎ + 𝐿𝑗𝑙𝑘

ℎ = 0,                    (1.19) 

𝐿ℎ𝑙𝑘
𝑗

+ 𝐿ℎ𝑘𝑙
𝑗

+ 𝐿𝑘𝑙ℎ
𝑗

= 2 ∇𝑘𝜒𝑙ℎ
𝑗

+ ∇ℎ𝜒𝑘𝑙
𝑗

+ 2𝜒𝑙𝑚
𝑗

𝜒ℎ𝑘
𝑚 + 2𝜒ℎ𝑚

𝑗
𝜒𝑘𝑙

𝑚 + 2𝜒𝑘𝑚
𝑗

𝜒𝑙ℎ
𝑚  ,                                        (1.20) 

∇𝑚𝐿𝑗𝑘𝑙
𝑖 + ∇𝑘𝐿𝑗𝑙𝑚

𝑖 + ∇𝑙𝐿𝑗𝑚𝑘
𝑖 = 2 𝐿𝑗𝑝𝑙

𝑖 𝜒𝑚𝑘
𝑝

+ 𝐿𝑗𝑝𝑘
𝑖 𝜒𝑙𝑚

𝑝
+ 𝐿𝑗𝑝𝑚

𝑖 𝜒𝑘𝑙
𝑝
                                          (1.21) 

A Kaehlerian Weyl space denoted by 𝐾𝑊𝑛  is an n-dimensional (n=2m) space with an almost 

complex structure 𝐹𝑗
𝑖  satisfying 

𝐹𝑗
𝑖𝐹𝑖

𝑘 = −𝛿𝑗
𝑘 ,  𝑔𝑖𝑗 𝐹ℎ

𝑖𝐹𝑘
𝑗

= 𝑔ℎ𝑘                                              (1.22)

 ∇ 𝑘𝐹𝑗
𝑖 = 0  (for all i,j,k)                                 (1.23) 

𝐹𝑖𝑗 = 𝑔𝑗𝑘 𝐹𝑖
𝑘 = −𝐹𝑗𝑖                                               (1.24) 

𝐹𝑖𝑗 = 𝑔𝑖ℎ𝐹ℎ
𝑗

= −𝐹𝑗𝑖                                               (1.25) 

the tensors 𝐹𝑖𝑗  and 𝐹𝑖𝑗  are of weight 2 and −2 respectively [4]. 

The mixed curvature tensor 𝑅𝑖𝑗𝑘
ℎ  and the covariant curvature tensor 𝑅ℎ𝑖𝑗𝑘  of 𝑊𝑛(𝑔, 𝑇) are given 

respectively 

𝑅𝑖𝑗𝑘
ℎ =

𝜕

𝜕𝑥𝑘
Γ𝑖𝑗

ℎ −
𝜕

𝜕𝑥 𝑗
Γ𝑖𝑘

ℎ + Γ𝑙𝑘
ℎ Γ𝑖𝑗

𝑙 − Γ𝑙𝑗
ℎΓ𝑖𝑘

𝑙  

and𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖ℎ𝑅𝑗𝑘𝑙
ℎ  . 

The Ricci tensor and the scalar curvature of 𝑊𝑛(𝑔, 𝑇) are defined by 

𝑅𝑖𝑗ℎ
ℎ = 𝑅𝑖𝑗  and 𝑅 = 𝑔𝑖𝑗 𝑅𝑖𝑗  

Also, it can be seen that the anti-symmetric part of the Ricci tensor satisfies 

𝑅[𝑖𝑗 ] = 𝑛∇[𝑖𝑇𝑗 ] 

Let 

𝐺𝑖𝑗 =
1

2
𝑅𝑖𝑗𝑘𝑙 𝐹

𝑘𝑙    ,   𝐻𝑖𝑗 = 𝑔𝑘𝑖𝑅𝑗
𝑘  

where𝑅𝑖𝑗𝑘𝑙 = 𝑔𝑖ℎ𝑅𝑗𝑘𝑖
ℎ  , 𝑅𝑗

𝑖 = 𝑅𝑗𝑖𝑙
ℎ 𝑔𝑘𝑙  . Then the following relations hold 

𝐻𝑖𝑗 =
𝑛 − 2

𝑛
𝑅𝑖𝑗 +

2

𝑛
𝑅𝑗𝑖 = 𝑅𝑖𝑗 +

2

𝑛
{𝑅𝑗𝑖 − 𝑅𝑖𝑗 } 

𝐺𝑖𝑗 = −𝐻ℎ𝑖𝐹𝑖
ℎ = 𝐻𝑖ℎ𝐹𝑗

ℎ  

𝐺ℎ𝑖𝐹𝑗
ℎ = −𝐺𝑗ℎ𝐹𝑖

ℎ = 𝐻𝑗𝑖  

𝐺ℎ𝑖𝐹
ℎ𝑖 = −𝑀ℎ𝑖𝑔

ℎ𝑖 = −𝑅 
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𝑅𝑖𝑗𝑘𝑙 + 𝑅𝑗𝑖𝑘𝑙 = 4∇[𝑘𝑇𝑖]𝑔𝑖𝑗  

𝐺𝑖𝑗 + 𝐺𝑗𝑖 = 0 

2. Generalized Recurrent Kaehlerian  Weyl Space 

An 𝑛-dimensional Weyl space is called generalized recurrent Weyl space if its curvature tensor 

𝑅ℎ𝑖𝑗𝑘  satisfies 

∇ 𝑚𝑅ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑅ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘                            (2.1) 

where 

𝑔ℎ𝑖𝑗𝑘 = 𝑔ℎ𝑘𝑔𝑖𝑗 − 𝑔ℎ𝑗𝑔𝑖𝑘 .                     (2.2) 

𝐾𝑚   and  𝐿𝑚  are associate vectors of recurrence. 

Multiplying (2.1) by  𝑔ℎ𝑘  we get 

∇ 𝑚𝑅𝑖𝑗 = 𝐾𝑚𝑅𝑖𝑗 + 𝐿𝑚 (𝑛 − 1)𝑔𝑖𝑗                     (2.3) 

Transvecting (2.3) by 𝑔𝑖𝑗  we have 

∇ 𝑚𝑅 = 𝐾𝑚𝑅 + 𝐿𝑚𝑛 𝑛 − 1 𝑔𝑖𝑗                     (2.4) 

Eliminating 𝐿𝑚  from (2.1)  and (2.4) we have 

∇ 𝑚𝑆ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑆ℎ𝑖𝑗𝑘  

where 

𝑆ℎ𝑖𝑗𝑘 = 𝑅ℎ𝑖𝑗𝑘 −
𝑅

𝑛(𝑛−1)
𝑔ℎ𝑖𝑗𝑘                     (2.5) 

Multiplying (2.5) by 𝑔ℎ𝑘  we get 

𝑆𝑖𝑗 = 𝑅𝑖𝑗 −
𝑅

𝑛
𝑔𝑖𝑗                       (2.6) 

Such a space is denoted by 𝑊𝑛  . 

The Weyl Conformal curvature 𝐶ℎ𝑖𝑗𝑘  , Weyl Concircular cuvature tensor 𝑍ℎ𝑖𝑗𝑘  and Weyl Projective 

cuvature tensor 𝑍ℎ𝑖𝑗𝑘   in 𝑊𝑛(𝑔, 𝑇)is given by 

𝐶ℎ𝑖𝑗𝑘 = 𝑅ℎ𝑖𝑗𝑘 −
1

𝑛−2
 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗 + 𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗𝑅𝑖𝑘  +

𝑅

 𝑛−1  𝑛−2 
{𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 }             (2.7) 

𝑍ℎ𝑖𝑗𝑘 = 𝑅ℎ𝑖𝑗𝑘 −
𝑅

𝑛(𝑛−1)
{𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 }                   (2.8) 

𝑊ℎ𝑖𝑗𝑘 = 𝑅ℎ𝑖𝑗𝑘 +
1

𝑛−1
{𝑅𝑖𝑗 𝑔ℎ𝑘 − 𝑅𝑖𝑘𝑔ℎ𝑗 }                   (2.9) 

From (2.8) and (2.9) we have 

𝑊ℎ𝑖𝑗𝑘 = 𝑍ℎ𝑖𝑗𝑘 +
𝑅

𝑛(𝑛−1)
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗  +

1

𝑛−1
{𝑅𝑖𝑗 𝑔ℎ𝑘 − 𝑅𝑖𝑘𝑔ℎ𝑗 }              (2.10) 
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From (2.7) and (2.8) we have 

𝐶ℎ𝑖𝑗𝑘 = 𝑍ℎ𝑖𝑗𝑘 −
1

𝑛−2
 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗 + 𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗𝑅𝑖𝑘  +

2𝑅

𝑛 𝑛−2 
{𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 }            (2.11) 

From   (2.7) and (2.9) we have 

                                                  𝐶ℎ𝑖𝑗𝑘 = 𝑊ℎ𝑖𝑗𝑘 +
𝑅

 𝑛 − 1  𝑛 − 2 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗  −

1

𝑛 − 2
 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗   

−
2𝑛−3

(𝑛−1)(𝑛−2)
 𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗 𝑅𝑖𝑘                  (2.12) 

Definition (2.1). If the curvature tensor 𝐶ℎ𝑖𝑗𝑘  of  𝐺𝑅𝐾𝑊𝑛  satisfies the condition 

∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = 𝐾𝑚𝐶ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 ,                 (2.13) 

where𝐾𝑚   and  𝐿𝑚  are associate vectors of recurrence then 𝐺𝑅𝐾𝑊𝑛  is called generalized recurrent 

Kaehlerian Weyl space  with generalized recurrent Weyl Conformal curvature tensor. We denote 

such a space by 𝐶∗ − 𝐺𝑅𝐾𝑊𝑛 . 

Definition (2.2). If the curvature tensor 𝑍ℎ𝑖𝑗𝑘  of  𝐺𝑅𝐾𝑊𝑛  satisfies the condition 

∇ 𝑚𝑍ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑍ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 ,                  (2.14) 

where𝐾𝑚   and  𝐿𝑚  are associate vectors of recurrence then 𝐺𝑅𝐾𝑊𝑛  is called generalized recurrent 

Kaehlerian Weyl space  with generalized recurrent Weyl Concircular curvature tensor. We denote 

such a space by 𝑍∗ − 𝐺𝑅𝐾𝑊𝑛 . 

Definition (2.3). If the curvature tensor 𝑊ℎ𝑖𝑗𝑘  of  𝐺𝑅𝐾𝑊𝑛  satisfies the condition 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑊ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 ,                  (2.15) 

where𝐾𝑚   and  𝐿𝑚  are associate vectors of recurrence then 𝐺𝑅𝐾𝑊𝑛  is called generalized recurrent 

Kaehlerian Weyl space  with generalized recurrent Weyl Projective curvature tensor. We denote 

such a space by 𝑊∗ − 𝐺𝑅𝐾𝑊𝑛 . 

Theorem (2.1) : A Kaehlerian Weyl space is generalized recurrent if and only if it is Projective 

generalized recurrent. 

Proof: Let the space be Kaehlerian Weyl generalized recurrent then (2.1) is satisfied. 

Taking covariant derivative of  (2.9) we have 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = ∇ 𝑚𝑅ℎ𝑖𝑗𝑘 +
1

𝑛−1
{∇ 𝑚𝑅𝑖𝑗 𝑔ℎ𝑘 − ∇ 𝑚𝑅𝑖𝑘𝑔ℎ𝑗 },                (2.16) 

using (2.1) and (2.3) above equation reduces to 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑅ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 +
1

𝑛−1
{𝐾𝑚𝑅𝑖𝑗 𝑔ℎ𝑘 + 𝐿𝑚  𝑛 − 1 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝐾𝑚𝑅𝑖𝑗 𝑔ℎ𝑗 − 𝐿𝑚  𝑛 − 1 𝑔𝑖𝑘𝑔ℎ𝑗 }, 

which in view of (2.9) gives 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑊ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 .                  (2.17) 
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Conversely, let us assume that (2.17) holds then using (2.9) we obtain 

𝐾𝑚  𝑅ℎ𝑖𝑗𝑘 +
1

𝑛−1
 𝑅𝑖𝑗 𝑔ℎ𝑘 − 𝑅𝑖𝑘𝑔ℎ𝑗   + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 = ∇ 𝑚𝑅ℎ𝑖𝑗𝑘 +

1

𝑛−1
 ∇ 𝑚𝑅𝑖𝑗 𝑔ℎ𝑘 − ∇ 𝑚𝑅𝑖𝑘𝑔ℎ𝑗  ,           (2.18) 

multiplying (2.18) by 𝑔ℎ𝑘  we get 

∇ 𝑚𝑅𝑖𝑗 = 𝐾𝑚𝑅𝑖𝑗 +
𝐿𝑚

2
𝑔𝑖𝑗 .            (2.19) 

Equation (2.18) in view of (2.19) reduces to 

∇ 𝑚𝑅ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑅ℎ𝑖𝑗𝑘 +
2𝑛−3

2(𝑛−1)
𝐿𝑚𝑔ℎ𝑖𝑗𝑘 . 

which completes the proof. 

Theorem (2.2): The necessary and sufficient condition for a 𝐺𝑅𝐾𝑊𝑛  to be 𝑊∗ − 𝐺𝑅𝐾𝑊𝑛  is that it 

should be 𝑍∗ − 𝐺𝑅𝐾𝑊𝑛 . 

Proof: Let 𝐺𝑅𝐾𝑊𝑛  satisfies the relation (2.15), then (2.15) in view of (2.10) gives 

𝐾𝑚𝑊ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 = ∇ 𝑚𝑍ℎ𝑖𝑗𝑘 +
∇ 𝑚 𝑅

𝑛(𝑛−1)
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗  +

1

𝑛−1
 ∇ 𝑚𝑅𝑖𝑗 𝑔ℎ𝑘 − ∇ 𝑚𝑅𝑖𝑘𝑔ℎ𝑗  ,           (2.20)                      

equation (2.20) in view of (2.3) and (2.4) reduces to 

∇ 𝑚𝑍ℎ𝑖𝑗𝑘 = 𝐾𝑚  𝑅ℎ𝑖𝑗𝑘 −
𝑅

𝑛 𝑛−1 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗   + 𝐿′𝑚𝑔ℎ𝑖𝑗𝑘 , 

which in view of (2.8) reduces to (2.14). 

Conversely, let us assume that (2.14) is satisfied, taking covariant derivative of (2.10) gives 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = ∇ 𝑚𝑍ℎ𝑖𝑗𝑘 +
∇ 𝑚 𝑅

𝑛(𝑛−1)
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗  +

1

𝑛−1
 ∇ 𝑚𝑅𝑖𝑗 𝑔ℎ𝑘 − ∇ 𝑚𝑅𝑖𝑘𝑔ℎ𝑗  .            (2.21) 

Using (2.3) and (2.4), equation (2.21) reduces to 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = 𝐾𝑚 [𝑅ℎ𝑖𝑗𝑘 +
1

𝑛−1
 𝑅𝑖𝑗 𝑔ℎ𝑘 − 𝑅𝑖𝑘𝑔ℎ𝑗  + 3𝐿𝑚𝑔ℎ𝑖𝑗𝑘 , 

which on using (2.9) gives 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑊ℎ𝑖𝑗𝑘 + 3𝐿𝑚𝑔ℎ𝑖𝑗𝑘 . 

Therefore the proof is completed. 

Theorem (2.3): The necessary and sufficient condition for a 𝐺𝑅𝐾𝑊𝑛  to be 𝐶∗ − 𝐺𝑅𝐾𝑊𝑛  is that it 

should be𝑍∗ − 𝐺𝑅𝐾𝑊𝑛 . 

Proof: Let 𝐺𝑅𝐾𝑊𝑛  satisfies the relation (2.14), then (2.13) in view of (2.14) gives 

∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = ∇ 𝑚𝑍ℎ𝑖𝑗𝑘 −
1

𝑛−2
 𝑔𝑖𝑗 ∇ 𝑚𝑅ℎ𝑘 − 𝑔𝑖𝑘∇ 𝑚𝑅ℎ𝑗 + 𝑔ℎ𝑘∇ 𝑚𝑅𝑖𝑗 − 𝑔ℎ𝑗 ∇ 𝑚𝑅𝑖𝑘  +

2∇ 𝑚 𝑅

𝑛 𝑛−2 
{𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 }          (2.22) 

Using (2.3), (2.4) and (2.14), equation (2.22) reduces to 
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∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = K𝑚𝑍ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 −
1

𝑛−2
 K𝑚 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗 + 𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗𝑅𝑖𝑘 + 2𝐿𝑚  𝑛 − 1  𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗    +

2 K𝑚 𝑅+𝐿𝑚 𝑛 𝑛−1  

𝑛(𝑛−1)
{𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 },        (2.23) 

using (2.8), (2.23) reduces to 

∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = K𝑚𝐶ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 . 

Conversely, let 𝐺𝑅𝐾𝑊𝑛  satisfies the relation (2.13), then (2.11) in view of (2.13) gives (2.23).Now 

from (2.7) and (2.23) we have 

𝐾𝑚  𝑅ℎ𝑖𝑗𝑘 −
1

𝑛 − 2
 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗 + 𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗𝑅𝑖𝑘  +

𝑅

 𝑛 − 1  𝑛 − 2 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗   + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘  

= ∇ 𝑚𝑍ℎ𝑖𝑗𝑘 −
1

𝑛 − 2
{K𝑚 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗 + 𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗𝑅𝑖𝑘 + 2𝐿𝑚  𝑛 − 1  𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗  } 

+
2 K𝑚 𝑅+𝐿𝑚 𝑛 𝑛−1  

𝑛(𝑛−1)
{𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 },  

which in view of  (2.8) reduces to 

∇ 𝑚𝑍ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑍ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 . 

Therefore the proof is completed. 

Theorem (2.4): The necessary and sufficient condition for a 𝐺𝑅𝐾𝑊𝑛  to be 𝐶∗ − 𝐺𝑅𝐾𝑊𝑛  is that it 

should be 𝑊∗ − 𝐺𝑅𝐾𝑊𝑛 . 

Proof: Let 𝐺𝑅𝐾𝑊𝑛  satisfies the relation (2.14), then (2.13) in view of (2.14) gives  

∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = ∇ 𝑚𝑊ℎ𝑖𝑗𝑘 +
∇ 𝑚𝑅

 𝑛 − 1  𝑛 − 2 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗  −

1

𝑛 − 2
 𝑔𝑖𝑗 ∇ 𝑚𝑅ℎ𝑘 − 𝑔𝑖𝑘∇ 𝑚𝑅ℎ𝑗   

−
2𝑛−3

(𝑛−1)(𝑛−2)
 𝑔ℎ𝑘∇ 𝑚𝑅𝑖𝑗 − 𝑔ℎ𝑗∇ 𝑚𝑅𝑖𝑘 ,                                            (2.24) 

using (2.3), (2.4) and (2.15), equation (2.24) reduces to 

∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑊ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 +
 K𝑚𝑅 + 𝐿𝑚𝑛 𝑛 − 1  

 𝑛 − 1  𝑛 − 2 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗   

−
1

𝑛 − 2
 𝐾𝑚 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗  + 𝐿𝑚𝑛(𝑛 − 1)(𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 )  

−
2𝑛−3

(𝑛−1)(𝑛−2)
 𝐾𝑚  𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗 𝑅𝑖𝑘 + 𝐿𝑚𝑛(𝑛 − 1)(𝑔ℎ𝑘𝑔𝑖𝑗 − 𝑔ℎ𝑗 𝑔𝑖𝑘 ) ,                                         (2.25) 

using (2.14), (2.25) reduces to 

∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = 𝐾𝑚𝐶ℎ𝑖𝑗𝑘 + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘 .  

Conversely, let 𝐺𝑅𝐾𝑊𝑛  satisfies the relation (2.13), then (2.12) in view of (2.13)  gives 

∇ 𝑚𝐶ℎ𝑖𝑗𝑘 = ∇ 𝑚𝑊ℎ𝑖𝑗𝑘 +
 K𝑚𝑅 + 𝐿𝑚𝑛 𝑛 − 1  

 𝑛 − 1  𝑛 − 2 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗   
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−
1

𝑛 − 2
 𝐾𝑚 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗  + 𝐿𝑚𝑛(𝑛 − 1)(𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 )  

−
2𝑛−3

(𝑛−1)(𝑛−2)
 𝐾𝑚  𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗 𝑅𝑖𝑘 + 𝐿𝑚𝑛(𝑛 − 1)(𝑔ℎ𝑘𝑔𝑖𝑗 − 𝑔ℎ𝑗 𝑔𝑖𝑘 ) ,                                                  (2.26) 

using (2.7), (2.26) reduces to 

𝐾𝑚  𝑅ℎ𝑖𝑗𝑘 −
1

𝑛 − 2
 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗 + 𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗𝑅𝑖𝑘  +

𝑅

 𝑛 − 1  𝑛 − 2 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗   + 𝐿𝑚𝑔ℎ𝑖𝑗𝑘  

= ∇ 𝑚𝑊ℎ𝑖𝑗𝑘 +
 K𝑚𝑅 + 𝐿𝑚𝑛 𝑛 − 1  

 𝑛 − 1  𝑛 − 2 
 𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗   

−
1

𝑛 − 2
 𝐾𝑚 𝑔𝑖𝑗 𝑅ℎ𝑘 − 𝑔𝑖𝑘𝑅ℎ𝑗  + 𝐿𝑚𝑛(𝑛 − 1)(𝑔𝑖𝑗 𝑔ℎ𝑘 − 𝑔𝑖𝑘𝑔ℎ𝑗 )  

−
2𝑛−3

(𝑛−1)(𝑛−2)
 𝐾𝑚  𝑔ℎ𝑘𝑅𝑖𝑗 − 𝑔ℎ𝑗 𝑅𝑖𝑘 + 𝐿𝑚𝑛(𝑛 − 1)(𝑔ℎ𝑘𝑔𝑖𝑗 − 𝑔ℎ𝑗 𝑔𝑖𝑘 ) , 

using (2.9) above equation reduces to 

∇ 𝑚𝑊ℎ𝑖𝑗𝑘 = 𝐾𝑚𝑊ℎ𝑖𝑗𝑘 +
2𝑛−3

𝑛−2
𝑔ℎ𝑖𝑗𝑘 . 

Therefore the proof is completed. 
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