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ABSTRACT 

 We made an attempt to investigate  the combined influence of Soret and Dufour 

effects on convective heat and mass transfer flow of viscous chemically reacting fluid in a 

vertical channel The governing equations flow, heat and mass transfer are solved by using 

Galerkin finite element analysis with three nodded line segments. The velocity, temperature, 

concentration, rate of heat and mass transfer are analysed for different variations of So, Du, 

N, k. 
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INTRODUCTION 

Natural convection heat and mass transfer driven by combined thermal and 

solutal buoyancy forces in fluid-saturated porous media may be met in geophysical, 

geothermal and industrial applications, such as the dispersion of chemical contaminants 

through water-saturated soil, the migration of moisture through air contained in fibrous 

insulations, and grain storage installations. 

Raptis et al(1981) constructed similarity solutions for boundary layer near a 

vertical surface in a porous medium with constant temperature and concentration. Bejan and 

Khair(1985)used Darcy’s law to study the features of natural convection boundary layer flow 

driven by temperature and concentration gradients. Forchheimer(1991) proposed a quadratic  

term in Darcian velocity to describe the inertia effects in porouis media. Plumb and 

Huenefeld(1981) studied the problem on non-Darcian free convection over a vertical 

isothermal flat plate. Bejan and Poulikakos(1984) pointed out that non-Darcy model should 

be used for high velocity flows in porous media with low permeability. Kumari et 

al(1985)studied the non-Darcy free convection from a vertical flat  plate in a saturated porous 

media with mass transfer. Rastogi et al(1995)studied the double diffusion near a vertical 

surface in porous media saturate4d with a non-newtonian fluid. Murthy and Singh(99) 

studied the effect of lateral mass flux on the heat and mass transfer by natural convection in a 

non-Darcy porous medium. Cheng(1977) considered the problem of free and forced 

convection past  inclined surface or wedge. He obtained numerical solutions for isothermal 

plate inclined at an angle of 45
0
 to the vertical, neglecting the component of the buoyancy 

force normal to the inclined plate. A combined experimental and numerical study was 

illustrated of dendritic solidification of ammonium chloride–water solution inside a vertical 

enclosure inducing a variety of double-diffusive phenomena in liquid by Beckerman and 

Visakanta(1988).Nithurasu et al(1997) used a general model of Darcy and non-Darcy porous 

medium to study the double –diffusive free convection. Double-diffusive mixed convection 

in non-Darcy porous medium with moving boundary is investigated numerically by Khanafer 
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and Vafai(2002) obtaining strong dependence of the heat transfer rate and flow  mechanisms 

inside the porous cavities on Richardson number. A detailed review of convective heat and 

mass transfer in Darcian and nonm-Darcian porous medium can be found in the book by 

Nield and Bejan(2013). Vafai and Thiyagaraja (1987) presented analytical solutions for the 

velocity and temperature fields for the interface region using the Brinkman Forchheimer –

extended Darcy equation.  Detailed accounts of the recent efforts on non-Darcy convection 

have been recently reported in Tien and Hong (1985), Cheng (1978), Prasad et al (1987), and 

Kladias and Prasad (1988).  Here, we will restrict our discussion to the vertical cavity only.  

Poulikakos and Bejan (1985) investigated the inertia effects through the inclusion of 

Forchheimer’s velocity squared term, and presented the boundary layer analysis for tall 

cavities.  They also obtained numerical results for a few cases in order to verify the accuracy 

of their boundary layer analysis for tall cavities.  They also obtained numerical results for a 

few cases in order to verify the accuracy of their boundary layer solutions.  Later, Prasad and 

Tuntomo (1987) reported an extensive numerical work for a wide range of parameters, and 

demonstrated that effects of Prandtal number remain almost unaltered while the dependence 

on the modified Grashof number, Gr, changes significantly with an increase in the 

Forchheimer number.  This result in reversal of flow regimes from boundary layer to 

asymptotic to conduction as the contribution of the inertia term increases in comparison with 

that of the boundary term.  They also reported a criterion for the Darcy flow limit. The 

Brinkman – Extended – Darcy modal was considered in Tong and Subramanian (1985), and 

Lauriat and Prasad (1977) to examine the boundary effects on free convection in a vertical 

cavity.  While Tong and Subramanian performed a Weber – type boundary layer analysis, 

Nagaleelakumari(2012) has studied the convective heat and mass transfer on non-Darcy flow 

of a viscous fluid through a porous medium in a vertical channel in the presence of heat 

generating sources. 

               In all of the above mentioned studies the thermal-diffusion and the diffusion-thermo 

are negligible. However, the thermal-diffusion and the diffusion-thermo effects with suction 

or injection are an interesting macroscopically physical phenomenon in fluid mechanics. The 

effects of the thermal-diffusion and the diffusion-thermo on the transport of heat and mass 

has been developed from the kinetic theory of gases by Chapman and Cowling (1952) and 

Hirshfelder et al. (1991) explained the phenomena and derived the necessary formulae to 

calculate the thermal-diffusion coefficient and thermal-diffusion factor for monatomic gases 

or for polyatomic gas mixtures. Sparrow et al. (1954) studied experimentally the effect of 

diffusion thermo in stagnation-point flow of air with injection of gases of various molecular 

weights into the boundary layer. Kafoussias and Williams (1995) studied the effects of 

thermal-diffusion and diffusion thermo on steady mixed free-forced convective and mass 

transfer over a vertical flat plate, when the viscosity of the fluid is-varies with temperature.  

Alam et al (2005) studied the effects of Dufour and Soret numbers on unsteady free 

convection and mass-transfer flow past an impulsively started infinite vertical porous flat 

plate, of a viscous incompressible and electrically conducting fluid, in the presence of an 

uniform transverse magnetic field. Alam et. al. (2007) studied diffusion thermo and thermal-

diffusion effects on unsteady free convection and mass transfer flow past an accelerated 

vertical porous flat plate embedded in a porous medium with time dependent temperature and 

concentration. Alam et al. (2006) studied the effects of Dufour and Soret numbers on 

unsteady MHD free convection and mass transfer flow past an infinite vertical porous plate 

embedded in a porous medium. Alam et al. (2006) studied the effects of Dufour and Soret 

numbers on steady combined free-forced convective and mass transfer flow past a semi-

infinite vertical flat plate in the presence of an uniform transverse magnetic field. Malsetty et 
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al (2002) have studied the effect of both the Soret coefficient and Dufour coefficient on the 

double diffusive convective with compensating horizontal thermal and solutal gradients. 

Keeping the above application in view we made an attempt in this chapter to 

study the combined influence of thermo-diffusion, diffusion-thermo and chemical reaction 

effects on non-Darcy convective heat and Mass transfer flow of a viscous fluid in a vertical 

channel.  The governing equations flow, heat and mass transfer are solved by using Galerkin 

finite element analysis with three nodded line segments. The velocity, temperature, 

concentration, rate of Heat and Mass transfer are evaluated numerically for different 

variations of parameters.  

FORMULATION OF THE PROBLEM 

 We consider a fully developed 

laminar convective heat and mass transfer 

flow of a viscous, electrically conducting 

fluid through a porous medium confined in a 

vertical channel bounded by flat walls. We 

choose a Cartesian co-ordinate system 

O(x,y,z) with x- axis in the vertical direction 

and y-axis normal to the walls. the walls are 

taken at y= L. The walls are maintained at  

constant temperature and concentration ..The 

temperature gradient in the flow field is 

sufficient to cause  natural convection in the 

flow field .A constant axial pressure gradient 

is also imposed so that this resultant flow is a 

mixed convection flow.The porous medium is assumed to be isotropic and homogeneous 

with constant porosity and effective thermal diffusivity. The thermo physical properties of 

porous matrix are also assumed to be constant and Boussinesq approximation is invoked by 

confining the density variation to the buoyancy term. In the absence of any extraneous force 

flow is unidirectional along the x-axis which is assumed to be infinite.  

  The Brinkman-Forchheimer-extended Darcy equation which account for 

boundary inertia effects in the momentum equation is used to obtain the velocity field. Based 

on the above assumptions the governing equations are  
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The boundary conditions are  
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 Configuration of the Problem 
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The axial temperature and concentration gradients  
x

T




&  

x

C




 are assumed to be  constant 

,say,A &B respectively. 

 

where q =(u,0,0) is the velocity, T, C are the temperature and Concentration, p is the pressure 

, is the density of the fluid ,Cp is the specific heat at constant pressure,  is the coefficient of 

viscosity, k is the permeability of  the porous medium,  is the porosity of the medium, is 

the coefficient of thermal expansion ,kf is the coefficient of thermal conductivity ,F is a 

function that depends on the Reynolds number and the microstructure of porous medium,   

is the volumetric coefficient of expansion with mass fraction concentration, k is  the chemical 

reaction coefficient and D1 is the chemical molecular diffusivity,qR is the radiative heat 

flux,k11is the cross diffusivity  and Q is the strength of the heat generating source. Here ,the 

thermophysical properties of the solid and fluid have been assumed to be constant except for 

the density variation in the body force term(Boussinesq approximation) and the solid particles 

and the fluid are considered to be in the thermal equilibrium) . 

Introducing the on-dimensional variables as  
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the governing equations in the dimensionless form reduce to (on dropping the dashes) 
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The corresponding boundary conditions are  
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FINITE ELEMENT ANALYSIS 

 

 To solve these differential equations with the corresponding boundary conditions, we 
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These errors are orthogonal to the weight function over the domain of e
i
 under Galerkin finite 

element technique we choose the approximation functions as the weight function. Multiply 

both sides of the equations (10 - 12) by the weight function i.e. each of the approximation 

function 
i

j  and integrate over the typical three nodded linear element (e, e+1) we obtain 
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Following the Galerkin weighted residual method and integration by parts method to the 

equations (17) – (19) we obtain 
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Making use of equations (13) we can write above equations as  
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choosing different 
i

j ’s corresponding to each element e in the equation (23) yields a local 

stiffness matrix of order 33 in the form  
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Likewise the equation (24) & (25) gives rise to stiffness matrices 
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J SSRRQQ 121,2,1,2   and  ,,,,  

are 31 column matrices and such stiffness matrices (26) – (28) in terms of local nodes in 

each element are assembled using inter element continuity and equilibrium conditions to 

obtain the coupled global matrices in terms of the global nodal values of k,  & C. In case we 

choose n-quadratic elements then the global matrices are of order 2n+1. The ultimate coupled 

global matrices are solved to determine the unknown global nodal values of the velocity, 

temperature and concentration in fluid region. In solving these global matrices an iteration 

procedure has been adopted to include the boundary and effects in the porous region. 

 

STIFFNESS MATRICES 

The global matrix for  is  

A3 X3 = B3         (29) 

The global matrix for N is  

A4 X4 = B4         (30) 

The global matrix u is 

A5 X5 = B5         (31) 

   In fact, the non-linear term arises in the modified Brinkman linear momentum 

equation (17) of the porous medium. The iteration procedure in taking the global matrices as 

follows.  We split the square term into a product term and keeping one of them say ui’s under  

integration, the other is expanded in terms of local nodal values as in  (13),  resulting in the 

corresponding coefficient matrix )'( sn
j

k

i   in (26),  whose coefficients involve the unknown 

ui’s . To evaluated (27) to begin with choose the initial global nodal values of ui’s as zeros in 

the zeroth approximation.  We evaluate ui’s , θi’s and Ci’s in the usual procedure mentioned 

earlier.  Later choosing these values of ui’s as first order approximation calculate θi’s, Ci’s.  In 

the second iteration, we substitute for ui’s the first order approximation of and ui’s and the 

first approximation of θi’s and Ci’s obtain second order approximation.  This procedure is 

repeated till the consecutive values of ui’s , θi’s and Ci’s differ by a preassigned percentage. 

For computational purpose we choose five elements in flow region. 

 

NUSSELT NUMBER AND SHERWOOD NUMBER 

The rate of heat transfer (Nusselt Number) is given by  1)(   yiy
dy

d
Nu


 

The rate of mass transfer (Sherwood  Number) is given by 11 )(   yy
dy

dC
Sh  

 

DISCUSSION OF RESULTS 

 In this analysis we discuss the combined influence of Soret and Dufour effect on 

convective heat and mass transfer flow of a viscous incompressible fluid through a porous 

medium in a vertical channel bounded by flat walls. The non- linear coupled equations 
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governing the flow, heat and mass transfer have been solved by employing a Galerkin finite 

element analysis with Quadratic approximation polynomial. 

 The axial velocity (u) is exhibited in fig1-5 for  different values of,Sc, So, N, Du and

.The variation of u with Sc is exhibited in Fig-1. It is found that lesser the molecular 

diffusivity, larger |u| and for further lowering of molecular diffusivity smaller|u| in the flow 

region. Effect of thermo- diffusion on u is shown in fig-2. It can be seen from the profiles that 

|u| depreciates with increase in So. Fig-3 represents u with buoyancy ratio N. When the 

molecular buoyancy force dominates over the thermal buoyancy force |u| depreciates 

irrespective of the directions of the buoyancy forces. Fig-4 represent u with Dufour parameter 

Du. We observe from this fig. that higher the Dufour parameter, larger |u| in the entire flow 

region. Fig-5 represents u with chemical reaction parameter. It is observed that |u| enhances 

with increase in  ≤ 1.5 and depreciates with higher ≥ 2.5 while in the generating chemical 

reaction case |u| enhances in the flow region.  

 

 

 The non-dimensional temperature distribution (ϴ ) is exhibited in fig6-10 for different 

parametric values. We follow the convention that the non - dimension temperature positive or 

negative according as the actual temperature is greater/ lesser than , the temperature on the 

right wall y =+L. Fig-6 represents ϴ with Sc. It is observed that lesser the molecular 

diffusivity, smaller the actual temperature in the entire flow region except in a narrow region 
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Fig. 1 : Variation of u with Sc      Fig. 2 : Variation of u with S0 
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adjacent to y = +L and for further lowering of the molecular diffusivity, larger the actual 

temperature in the left half and smaller in the right half. Fig-7 represents  ϴ with Soret 

parameter So. It reveals that actual temperature enhances with increase in So. Fig-8 

represents the variation of ϴ with buoyancy ratio N. It shows that when the molecular 

buoyancy force dominates over the thermal buoyancy force the actual temperature 

depreciates when the buoyancy forces act in the same direction and enhances for the 

buoyancy forces acting in opposite direction. From fig-9 we observe that the actual 

temperature enhances with increase in Dufour parameter Du. The variation of ϴ with 

chemical reaction parameter  shows that the actual temperature enhances with increase in  ≤ 

1.5 and depreciates with in  ≥ 2.5 while it enhances in the generating chemical reaction 

parameter K(fig.10).  
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Fig. 5 : Variation of u with N 
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Fig. 10 : Variation of  with N 

        G=10
3
, D

-1
=10

2
, Sc=1.3, S0=0.5, Du=0.03,      

=0.5          

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

C

Sc = 1.3,2.01

Sc = 0.6

Sc = 0.24

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

y

C S0 = 1.2,0.8,0.6,0.4

 
Fig. 11 : Variation of C with Sc      Fig. 12 : Variation of C with S0 
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 The concentration distribution C is exhibited in fig11-15 for different parametric 

values. It is found that the non dimensional concentration is positive for all variations. This 

indicates that the actual concentration is greater than , the concentration on the wall y = 

+L. From fig-11 it is observed that the variation of C with Sc shows that lesser the molecular 

diffusivity, larger the actual concentration and for further lowering of diffusivity (Sc ≥1.3), 

smaller the actual concentration. From fig-12 we find that the actual concentration 

depreciates with So. With respect to buoyancy ratio N we find that the actual concentration 

depreciates with increase in N > and enhances with |N| (<0) (fig-13). The variation of C with 

Du shows that the actual concentration depreciates with increase Du ≤ 0.07 and enhances 

with Du ≥ 0.09(fig-14). The variation of C with chemical reaction parameter  shows that the 

actual concentration enhances in the degenerating chemical reaction case and depreciates in 

the generating chemical reaction case (fig-15). 

 
The Rate of heat transfer (Nusselt number) at y = 1 is shown in tables 1-4 for 

different parametric values. It is found that the rate of heat transfer depreciates with increase 

in |G| and enhances with D
-1

. An increase in Sc ≤ 0.6, depreciates |Nu| at y =1. While for 

higher Sc ≥ 2.01 |Nu| depreciates at y = +1 and enhances at y = -1 for |G| = 10
2
 and for higher 

|G| = 3x10
2
 a reversal effect is noticed in the behavior of |Nu|.  An increase in Soret parameter 

So depreciates |Nu| at y =+1 and enhances at y = -1while for an increase in |So| enhances |Nu| 

for |G| = 10
2
 and depreciates for |G| = 3x10

2
 on both the walls. (tables5&7). The variation of 

Nu with Dufour Parameter Du indicates that |Nu| at y = +1 enhances with D
-1

<10
2
 and 

depreciates for D
-1

>3x10
2 .

At y = -1 |Nu|, enhances with increase in Du≤ 0.07 and higher Du≥ 
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Fig. 13 : Variation of C with Du      Fig. 14 : Variation of C with   
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0.09, |Nu| enhances for |G| = 10
2
 and depreciates for |G| = 3x10

2
.With respect to chemical 

reaction parameter  it is observed that |Nu| depreciates for G>0 and enhances for G<0 in 

the degenerating chemical reaction case and in the generating chemical reaction case|Nu| 

enhances for |G| = 10
2
 at y = 1 and for higher |G| = 3x10

2
 |Nu| depreciates at y = +1 and 

enhances at y = -1.The variation of Nu with buoyancy ratio N shows that |Nu| enhances with 

increase in N>0 and depreciates with |N| at both the walls(tables 2&4) 
 

Table 1 

Nusselt Number(Nu) at y=1 

G I II III IV V VI VII VIII IX 

10 84.4228 14.5446 14.4538 14.9214 14.9184 14.9687 15.5563 14.9264 15.57 

30 -21.9935 15.5926 14.9493 -26.051 -24.5954 -19.5567 -24.5938 -16.2063 -12.9535 

-10 93.3733 14.1088 14.1676 13.9684 13.966 14.0113 14.6004 13.9642 14.6051 

-30 84.4228 13.8369 13.9802 -42.6777 -38.2614 -23.4224 -39.289 -15.8744 -9.69538 

D-1 102 2 x 102 3 x 102 102 102 102 102 102 102 

Sc 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 

So 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

Table 2 :  Nu at y=1 

G 1 II 111 IV V VI VII VIII IX X XI XII 

10 14.3169 14.3429 14.3686 14.3941 14.9109 14.8995 14.9103 14.9154 14.9163 14.919 14.9081 15.4787 

30 22.1465 21.0024 19.2332 17.4489 -25.1871 -25.8503 -32.0832 -28.5113 -27.8329 -30.7924 -21.2926 -21.6913 

-10 13.6868 13.6987 13.7104 13.7222 13.956 13.9434 13.959 13.9615 13.9624 13.9614 13.9666 14.5365 

-30 11.4654 9.52424 7.58567 5.65905 -40.3254 -42.4356 -64.1161 -51.5353 -49.1985 -53.6582 -43.8291 -44.89 

Du 0.03 0.05 0.07 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 0.5 

N 1 1 1 1 1 1 1 1 1 2 -0.8 -0.5 

Table 3 

Nu at y=-1 

G I II III IV V VI VII VIII IX 

10 506.52 23.1511 42.2263 27.3136 27.0949 27.2341 28.6167 27.1472 28.6928 

30 -443.695 22.9195 47.5973 -494.995 -476.43 -413.393 -26.834 -164.664 15.1764 

-10 644.32 18.6731 19.2861 17.2184 17.198 17.5941 18.6848 17.1925 18.6947 

-30 606.56 15.8923 17.4318 -716.837 -663.075 -479.235 116.3224 15.581 12.265 

AD 102 2 x 102 3 x 102 102 102 102 102 102 102 

Sc 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 

So 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

 

Table 4 

Nu at y=-1 

G I II III IV V VI VII VIII IX X XI XII 

10 21.208 21.4652 21.7229 21.9654 27.0421 27.0245 27.0312 27.0572 27.0597 27.087 26.9529 28.3487 

30 60.8637 89.8717 89.9254 65.9704 83.925 9.998 14.24 14.718 14.6375 14.6799 0.131 -44.667 

-10 14.6972 14.8033 14.9082 15.0136 17.1514 17.1496 17.1322 17.1418 17.1418 17.1409 17.1577 18.4531 

-30 -11.941 -37.415 12.9311 11.2231 -68.606 -71.516 -73.75 -82.867 -83.867 -49.709 28.134 34.8969 

Du 0.03 0.05 0.07 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 0.5 

N 1 1 1 1 1 1 1 1 1 2 -0.8 -0.5 

The rate of mass transfer at y = 1 is exhibited in tables5-8 for different values. It is 

found that the rate of mass transfer depreciates at y = +1 and enhances at y = -1 with increase 

in G>0, while for G<0, |Sh| enhances at y = +1 and depreciates at y = -1. The variation of Sh 

with D
-1

 shows that an increase in D
-1

<2x10
2
 depreciates |Sh| at y = +1 and enhances at y = -1 

and for higher D
-1
3x10

2
 it enhances at y = +1 and depreciates at y = -1. The variation of Sh 

with Sc shows that lesser the molecular diffusivity, larger |Sh| at y =1. With Soret parameter 

So it can be seen that |Sh| depreciates at y = +1 and enhances at y = -1 with increase in So. 

(tables5&7). The variation of Sh with Du shows that higher the diffusion- thermo effects, 

larger |Sh| at y =1. The rate of mass transfer enhances at y = +1 and reduces at y = -1 in the 

degenerating chemical reaction case, while in the generating chemical reaction case |Sh| 
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reduces at y = +1 and enhances at y = -1. The variation of Sh with buoyancy ratio N shows 

that when the molecular buoyancy force dominates over the thermal buoyancy force the rate 

of mass transfer enhances at both the walls. When the buoyancy forces act in the same 

direction and for the forces acting in opposite direction |Sh| depreciates at y = +1 and 

enhances at y = -1(tables6&8). 
Table 5 

Sherwood Number (Sh) at y=1 

 

G I II III IV V VI VII VIII IX 

10 14.5796 13.0859 13.0881 13.0842 13.0868 13.1243 12.2578 13.0496 13.8713 

30 13.9342 13.0612 13.0763 13.2624 13.5095 14.2512 12.6777 14.568 15.6268 

-10 14.3302 13.0963 13.098 13.0884 13.0924 13.1295 12.2681 13.0977 13.9318 

-30 14.5796 13.1029 13.1225 13.3355 13.6644 14.4553 12.8477 14.5899 15.4628 

D-1 102 2 x 102 3 x 102 102 102 102 102 102 102 

Sc 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 

So 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

 

Table 6 

Sh at y=1 

 

G I II II III IV V VI VII VIII IX X XI 

10 13.0767 13.0767 13.0787 13.0767 13.1033 13.1413 13.1247 13.106 13.1014 13.1036 13.1135 13.8541 

30 12.858 12.9661 12.9845 13.0066 13.4133 13.5301 12.0385 12.7708 12.9034 12.8335 12.7405 13.4057 

-10 13.0919 13.0923 13.096 13.093 13.1109 13.1461 13.1022 13.0984 13.0969 13.0979 13.1035 13.8422 

-30 13.1449 13.1913 13.2377 13.2838 13.534 13.6085 12.3559 12.1996 12.0076 13.2218 12.5099 12.7624 

Du 0.03 0.05 0.07 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 0.5 

N 1 1 1 1 1 1 1 1 1 2 -0.8 -0.5 

Table 7 

Sh at y=-1 

G I II III IV V VI VII VIII IX 

10 13.2269 14.4885 14.4876 13.0842 14.4927 14.4988 14.6091 14.511 14.3809 

30 13.9427 14.5022 14.4941 13.2624 14.2189 14.7094 14.342 13.5369 13.2517 

-10 13.4298 14.4843 14.4839 13.0884 14.4875 14.6818 14.604 14.4872 14.3527 

-30 13.2269 14.4999 14.4814 13.3355 14.1118 14.7442 14.2228 13.4621 13.2902 

D-1 102 2 x 102 3 x 102 102 102 102 102 102 102 

Sc 1.3 1.3 1.3 0.24 0.6 2.01 1.3 1.3 1.3 

So 0.5 0.5 0.5 0.5 0.5 0.5 1 -0.5 -1 

 

 

Table.8 

Sh at y=-1 

G I II III IV V VI VII VIII IX X XI XII 

10 14.4961 14.496 14.4929 14.4918 14.4398 14.266 14.4865 14.5035 14.5107 14.5076 14.4995 14.4116 

30 14.6467 14.5803 14.577 14.5483 14.2414 14.1459 15.1806 15.7181 15.6375 14.6799 14.7455 14.7026 

-10 14.4885 14.4883 14.4784 14.4678 14.4358 14.2629 14.4976 14.5072 14.5129 14.5104 145045 14.4175 

-30 14.4571 14.4263 14.3955 14.3649 14.1589 14.0905 15.6139 15.8302 15.9008 14.7661 14.8906 14.7929 

Du 0.03 0.05 0.07 0.09 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

 0.5 0.5 0.5 0.5 1.5 2.5 -0.5 -1.5 -2.5 0.5 0.5 0.5 

N 1 1 1 1 1 1 1 1 1 2 -0.8 -0.5 
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