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ABSTRACT

In this paper we proposed to solve the fully fuzzy linear system of the form A; ® & =
A, ® £ ®b where A; and A, are m x n fuzzy matrices consisting of positive fuzzy numbers,
the unknown vector X is a vector consisting of n positive fuzzy numbers and the constant b are
vectors consisting of m positive fuzzy numbers, using Matrix Inversion method, Cramer’s rule,
Successive elimination methods such as GaussianElimination method and Gauss Jordan,
Iteration methods such as Gauss Seidel and Gauss Jacobi methods, LU decomposition method,
Cholesky decomposition method, QR decomposition method, Schur complement method, Linear
programming approach, these methods gives the non negative solution of fully fuzzy linear
system. In this paper we considered the fuzzy numbers are octagonal fuzzy numbers. Also we
introduced some definitions for octagonal numbers.
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1. INTRODUCTION

System of simultaneous linear equations plays a vital role in mathematics, Operations Research,
Statistics, Physics, Engineering and Social Sciences etc. In many applications at least some of
the system’s parameters and measurements are represented by fuzzy numbers rather than crisp
numbers. Therefore it is imperative to develop mathematical models and numerical procedures to
solve such a fuzzy linear system. The general model of a fuzzy linear system whose coefficient
matrix is crisp and the right hand side column is an arbitrary fuzzy vector. In the fully fuzzy
linear system all the parameters are considered to be fuzzy numbers. In this paper we considered
square and non square dual fully fuzzy linear system of the fomA; ® & = A, ® ¥ @b with
octagonal fuzzy numbers which are non negative. M. Fridamn et al. [1] introduced a general
model for solving a fuzzy n x n linear system whose coefficient matrix is crisp and the right hand
side column is a fuzzy vector of positive fuzzy numbers. T. Allahyiranloo [2] proposed
solution of a fuzzy linear system by iterative methods such as Jacobi and Gauss Seidel methods.
M. Dehghanet al.[3] are solved n x n fully fuzzy linear system using direct method, Cramer’s
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rule, Gauss Elimination, Doolittle & Crout factorization methods and Linear programming
approach. S.H. Neseri. et al. [4] proposed a method for solving fully fuzzy linear systems by
certain decomposition (LU) of the coefficient matrix with triangular fuzzy numbers. M. Mosleh
et al. [5] introduced ST decomposition for 2x2 fully fuzzy linear systems with triangular fuzzy
numbers. S.H. Neseri et al.[7] have solved n x n fully fuzzy linear system using Cholesky
method. S.H. Nasseri et al. [6] proposed Greville’s method to find the positive solution of fully
fuzzy linear system. Amit Kumar et al. [8] discussed consistency of the fully fuzzy linear system
and the nature of solutions. Amit kumar et al. [9] are bring in a new method for finding the non
negative solution of fully fuzzy linear system without any restriction on the coefficient matrix.
Amit kumar et al. [10] are introduced a new method for finding the non negative solution of the
m X n fully fuzzy linear system without any restriction on the coefficient matrix using Linear
programming problem method.

1.1 The Structure of this paper is organized as follows

In Section 2, we present some basic concepts of fuzzy set theory and define a fully fuzzy linear
system of equations. In Section 3, we have given the general model of dual fully fuzzy linear
system. In Section 4, we extended classical methods such as Matrix Inversion method, Cramer’s
rule, Successive Elimination methods, Iterative methods, Decomposition methods, Schur
complement method, linear programming approach for solving a fully fuzzy linear system In
section 5 we illustrated numerical examples In section 6 gives Conclusion and References

2. PRELIMINARIES

Definition 2.1 [11] An octagonal fuzzy number denoted by A, is defined to be the ordered
quadruple A, = (1,(r), s1(1), s;(V), 1,(r)), for r €[0,k], and t € [k, w] where (i) 1,(r) is a
bounded left continuous non decreasing function over [0, w4], [0< w; < K]

(ii) s1(r) is a bounded left continuous non decreasing function over [k, w,], [K< w, < w]

(iii) s, (r) is a bounded left continuous non decreasing function over [k, w,], [K< w, < w]

(iv) I, (r) is a bounded left continuous non decreasing function over [0, wy], [0< wy < K]

Remark 2.2 [11] If w =1 then the above-defined number is called a normal octagonal fuzzy
number.

Definition 2.3 [11] A fuzzy number A is a normal octagonal fuzzy number denoted by
(a1,a,a3,a4,as,a,a7,ag) Where aq, ay, az, ay, as, ag, a7, ag are real numbers and its
membership function p;(x) is given below
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Where 0 < k < 1.
Graphical representation of a normal octagonal fuzzy number for k = 0.5 is
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Remark 2.4 [11] If k = 0 then the octagonal fuzzy number reduces to the trapezoidal number
(az,a4,a5,a¢) and if k = 1, it reduces to the (a1, a4, as, ag).

Remark 2.5 [11] According to the above mentioned definition, octagonal fuzzy number A,, is
the ordered quadruple (1;(r), s1(0), s;(V), 1;(r)) for r €0, K], and t € [k, w] wherel,(r) =

K(2L), i =k+ (1 - k) (-=2), s5(0) =k+ (1 —K) (2, and I (1) =k (2.

az—ai ag—as dg—as ag—az

Definition 2.6 [11] Membership functions p; (x) are continuous functions.

Remark 2.7 [11] Here A,, represents a fuzzy number in which “w” is the maximum membership
value that a fuzzy number takes on. Whenever a normal fuzzy number is meant, the fuzzy
number is shown A, for convenience.
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Remark 2.8 [11] If A,, be an octagonal fuzzy number, then the a-cut of A,, is
[Au] = (x1Au () = o}
_{ [1; (o), 1, ()] for a e [0, k)
[

s1(a), sy ()] for o€ [k, w)

Remark 2.9 [11] The octagonal fuzzy number is convex as their a-cuts are convex sets in the
classical sense.

Remark 2.10 [11] The collection of all octagonal fuzzy real numbers from R to | is denoted as
R, (D) and if w = 1, then the collection of normal octagonal fuzzy numbers is denoted by R(1).

Definition 2.11A fuzzy number A is called positive (negative), denoted by A > 0 (A < 0), if its
membership function p;(x) satisfies pz(x) =0, VX< 0(vV x> 0).

Definition 2.12 Two octagonal fuzzy numbers A = (a;,a, as, as,as,ag az;,ag) & B =
(by, by, b3, by, bs, be, b7, bg) are said to be equal if and only if a; =by, a, =b,, a3 = bg,
dg = b4, dg = b5, dg = b6, Ay = b7, dg = b8'

Definition 2.13 An octagonal fuzzy number A = (a;,a,,as, a4, as, ag, a7, ag) is said to be zero
octagonal fuzzy number if and only if a; =0,a, =0,a3=0,a,=0,a5=0,a, =0, a; =
O, dg = 0.

Definition 2.14 Let A = (a;) and B = (Bij) be two m x n and n x p fuzzy matrices. We define
A®B = C = (§;) Which is the m x p matrix where

— ® =
Cj = Xik=12..n dik ® by

Definition 2.15 Arithmetic operations on octagonal fuzzy numbers
Let A = (aj,ay,a3,a4,as,ag,a7,ag) and B = (by, by, bs, by, bs,bg, by, bg) be two octagonal
fuzzy numbers then
(I) A® E = (alr dp,dz,dy, ds, dg, Ay, a8) ® (bli b2' b3' b4-' b5' b6' b7' b8)
=(a; +by, ay + by, a3+ bz, ag +by,as +bs,ag + bg, a; + by, ag + bg)
(i) A>0and B>0then A® B =(a;,ay,a3,a4,as,a6,a7,ag) ® (by,by, bz, by, bs,bg, by, bg)
o = (aby, azby, azbs, asby,asbs,agbs, azb7,aghg)
(ii)A & B =(ay,ay,a3,a4,as5,a4,a7,ag) @ (by, by, bs, by, bs, b, b7, bg)
=(a; —bg, ay —by, ag —bs, a4 —bs, a5 — by, a5 — bz, a7 —by,ag —by)

Definition 2.16 A matrix A = (&;) is called a fuzzy matrix, if each element of A is a fuzzy
number. A fuzzy matrix A will be positive and denoted by A > 0, if each element of A be
positive. We may represent n x n fuzzy matrix A= (&), such that
a; = (ay, by, c;j, dyj, ey, i, g, hy;) with the new notation A = (A, B,C,D,E,F,G,H), where
A= (a;),B=(by), C=(cy) D=(dy), E = (e5).F=(f;) G=(gy) H=(hy)are
eight n X n crisp matrices.
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Definition 2.17 A square fuzzy matrix A = (@;) will be an upper triangular fuzzy matrix, if
3; = 0=(0,0,0,0,00,00) vV i >j, and a square fuzzy matrix A = (&;) will be a lower
triangular fuzzy matrix, if &; = 0 = (0,0,0,0,0,0,0,0) V i <}].

Definition 2.18 Consider the n x n fuzzy linear system of equations

A1 ®%)D (B2 ®%) Do ® (31, ®F,) = by
(521 ®5{1) ® (522 ®)~(2) (S R ) (32n ®Xn) = b2
(3,1 9%)D A ®%) D v en e ® (B, ®K,) = by,

The matrix form of the above equationsisA® % = b (2.18.1)

Where the coefficient matrix A = (@;), 1 <i,j<nisan X n fuzzy matrix and Si]-B]- e F(R). This
system is called a fully fuzzy linear system.

In this paper A® & = b whereA = (A,B,C,D,E,F,G,H)> 0,
X = (Xl,Xz,Xg,X4,X5,X6,X7,X8) >0 and B = (bl,bz,b3,b4,b5,b6,b7,b8) >0

We have
(A,B,C,D,EF,GH) ® (xq,Xp,X3,X4,Xs5,Xg,X7,Xg) = (b1, by, b3, by, bs, bg, by, bg)
Using 2.15 (ii) we have
(Ax4, Bx,, Cx3, DXy, Exs, Fx¢, GX7, Hxg) = (b1, b,, b3, by, bs, bg, b7, bg)
Using 2.12 we have

AXl = bl! BXZ = bz, CX3 = b3, DX4, = b4,
EX5 = b5, FX6 = b6, GX7 = b7, HX8 = b8 (2182)

By assuming that A, B, C, D, E, F, G, H are non-singular matrices we have

X1 = A_lbl, Xy = B_lbz, X3 = C_lbg, Xy = D_1b4,
X5 = E_lbs, X = F_1b6, X7 = G_1b7, Xg = H_lbg (2183)

Definition 2.19 A square matrix A is symmetric if and only if A = AT.

Definition 2.20 A real symmetric n x n matrix A is said to be positive definite if XTA X > 0, for
all nonzero X in R".
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Definition 2.21 If A is positive definite matrix, then the leading principal sub matrices
AL Ay, ... .. A, of A are all positive definite.

Definition 2.22 Let A be a positive definite matrix then there exists a unique lower triangular
matrix L with positive diagonal entries such that A = LLT.

Definition 2.23 If A is an m x n matrix with full column rank, then A (m=n) can be factored as
A = QR where Q is an m x n matrix whose column vectors form an orthonormal basis for the
column space A and R is a n x n invertible upper triangular matrix.

3. DUAL FULLY FUZZY LINEAR SYSTEM

There is no inverse with respect to addition element for an arbitrary fuzzy numberii € E'.

That is there exists no element 7 € E such that it @ ¥ = 0

For all non crisp fuzzy numbers i € E* we have i @ (—ii) # 0.

Therefore the fully fuzzy linear system A; ® & = A, ® % @b can’t equivalently replaced by
the fully fuzzy linear system (A; —A,)® & = b

Hence the fully fuzzy linear system is of the form A; ® ¥ = A, ® X ® b is called dual fully
fuzzy linear system.

In this paper we are going to find a solution of dual fully fuzzy linear system
AA®X=A,Q%®b (3.1)

Where A; = (Ay,By,Cq,Dq, Eq, Fy, Gy, Hy)Ay = (Ay, By, Cy, Dy, Ey, Fy, Gy, Hy) ,
b =(by, by, bs, by, bs, bg, b7, bg) and X = (xq, X3, X3, X4, X5, Xg, X7, Xg)

A, A,,band $>0

(A1,B1,Cq1, Dy, Eq, Fy, Gy, H)® (x4, X2, X3, X4, X5, X6, X7, Xg) =
(A, By, C3, Dy, Eyp, Fy, Gy, Hy) ® (x4, X3, X3, X4, X5, X6, X7, Xg) @ (by, by, b3, by, bs, b, b7, bg)

Using 2.15 (ii) we get
(A1x1,B1x5, Cyx3, D1x4, Eq x5, F1 %6, Gy X7, HiXg) =
(Azx1, Byxy, Coxs, Doxy, Exxs, Foxg, Gox7, Hoxg) @ (by, by, b, by, bs, bg, b7, bg)

Using 2.15 (i) we get

(A1x1, B1x2, C1x3, D1x4, Eq X5, Fix6, G X7, HyXg) =
(Ale + bl, BZ-XZ + bz, Cng + b3, D2X4 + b4, EzXS + b5, F2x6 + b6! G2X7 + b7, H2X8 + bg)

Using 2.12 we have

A1x1 = Ale + bl
= (A1 —A)x; = by
lez = BZ-XZ + bz
= (B; —By)x; = b,
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C1X3 = C2x3 + b3
= (C; —Cx)x3 = b3

D1X4 = DzX4 + b4
= (Dy = Dy)x4 = by

E1X5 = EX5 + b5
= (E; — E3)xs = bs
F1X6 = F2X6 + b6
= (F1 —F)xy =by

G1X7 = GzX7 + b7
= (G; — Gp)x; = by

H1x8 = H2x8 + b8
= (Hy — Hz)xg = bg

Let us take (Al - Az) = A, (B1 - Bz) = B, (C1 - Cz) = C, (D1 - Dz) = D, (El - Ez) = E,
(F{ — Fy) =F, (G; — Gy) = G, (H; — Hy) = H, the above equations becomes

AX1 = bl' BXZ = bz, CX3 = b3, DX4 = b4,
E.X'5 = b5, Fx6 = b6, G.X'7 = b7, ng = bg (32)

By assuming that A, B,C, D, E, F, G, H are non-singular matrices we have

X1 = A_lbl, Xy = B_lbz, X3 = C_lbg, X4 = D_1b4,,
X5 = E_lbs, Xg = F_1b6, X7 = G_1b7, Xg = H_lbg (33)

4. SOLV ING DUAL FULLY FUZZY LINEAR SYSTEM

4.1. Matrix Inversion Method

For solving dual fully fuzzy linear system (3.1) with this method, Consider (3.2), Thus we may
have

X1 = A_lbl, Xy = B_lbz, X3 = C_lbg, X4 = D_1b4_,

X5 = E_lbs, Xg = F_1b6, X7 = G_1b7, Xg = H_lbg

Where A, B,C,D,E,F,G,H are non-singular matrices

4.2 Cramer’s rule
For solving dual fully fuzzy linear system (3.1) with this method, consider (3.2). Thus we may
write
_ detifaM)
L ™ getiga)

,i=1.2.....n, det(A) £ 0

Where A® denotes the matrices obtained from A by replacing its ith column by b;.
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xy = UBD) L5 o det(B) £ 0
2 detiB) ° e ’

Where B® denotes the matrices obtained from B by replacing its ith column by b,.

_ detigc®)
3i 7 detie)

,i=1.2...... n, det(C) # 0
Where ¢® denotes the matrices obtained from C by replacing its ith column by bj.

_deti@p®) .
X4 = ey 0T 1L,2...... n, det(D) # 0

Where D@ denotes the matrices obtained from D by replacing its ith column by b,.

< _ detigE™)
5i T deti{(E)

,i=12......n, det(E) # 0

Where E® denotes the matrices obtained from E by replacing its ith column by bs.

< _ detigF()
6i T detiF) °

—12......n, det(F) # 0

Where F® denotes the matrices obtained from F by replacing its ith column by by

_ deti{icM)
7i T detiin)

,i=12......n, det(G) # 0

Where ¢ denotes the matrices obtained from G by replacing its ith column by b,.

_detigH®) .
X8, = Jerra) L 1,2...... n, det(H) # 0

Where H® denotes the matrices obtained from H by replacing its ith column by bs.
4.3. Successive Eliminations methods

4.3.1. Gaussian-Elimination method

A Well-Known procedure for solving the problem Ax = b is the classical elimination scheme
known as Gaussian elimination, Which is now extended for solving fully fuzzy linear system in
(3.1). The Basic idea is to reduce the system to an equivalent upper triangular fuzzy system so
that the reduced form can be solved easily using back substitution process. Consider the
equation (3.2) and apply the above said procedure.

4.3.2. Gaussian-Jordan method
This method is modified version of Gauss-elimination method. Here the elimination of
unknowns are not only performed in equations below but in equations above also, ultimately to
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get a diagonal coefficient matrix, Which is now extended for solving fully fuzzy linear system in
(3.1). Consider the equation (3.2) and apply the above said procedure.

4.4. Iterative methods

A linear system of equations Ax = b can be written in the equivalent form x=Bx+c. By taking
some initial vector x(* and compute x® = Bx(® +c.

In general iterative rule x™*D = Bx(™ 4 ¢ m=0,1,2,......generates the sequence of the
vectors, which converges to the solution vector &, under some suitable conditions. Such methods
are known as iterative methods.

Result 4.4.1: Let Ax = b be written as x = Bx+c, with some norm of B, ||B|| < 1, then x = Bx+c
has unique solution. Further,sequence{x™)} generated by x™*1 = Bx(™) 4+ ¢, starting with
some initial x© will converge to true solution vector &.

Result 4.4.2:Jacobi’s method to solve Ax=b converges, if coefficient matrix A is strictly
diagonally row dominant.

4.4.3. Gauss-Jacobi method

In matrix form Ax = b = (L+D+U)x=Db, where L, D, U are lower triangular, diagonal and upper
triangular respectively.

Dx=-(L+U)x+b

x=-D~1(L+U)x+D~1b

Since D is a diagonal row dominant. Therefore

xM*D=_p=1(L+U)x™+D~1p

Algorithm of Jacobi method

(m+1) _ m) )
X (b - XjT1ax 1 — Zjsip1 X J(m)

m=0,1,2,..
i=1,2,3....n
Consider the equation (3.2) and apply the above algorithm.

4.4.4. Gauss-Seidel method
Gauss Seidel is a modification of Jacobi’s method while computing x™*", (m + 1)*" iteration
vector, the values of x(™)| | (m)™ iterated vectors are used on right side. In Gauss-Seidel, latest

value of x; are used to computes xi(m“). To compute x(m“), latest values of
(m+1) (m+1) (m+1)
a 1 1
are avallable and x(fl) ) xl(fz) ...... from the previous set. This can be expressed as
(m+1) _ (m+1) _ < ™)
1m - (b — 1311 ]m ]nl+1a1] ] )

In matrix from Ax=b = (L+D+U)x=b
x+D1Lx=-D"1Ux+D~th

X(m+1)+D—1 LX(m+1):_D—1 UX(m)+D—1b
X(m+1):_D—1(LX(m+1)+UX(m))+D—1b

Consider the equation (3.2) and apply the above algorithm.
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4.5. Simplification of LU factorization

Let A be an n x n matrix with all non-zero leading principal minors.  Then A has a unique
factorization. A = LU, Where L is a unit lower triangular unit matrix and U is an upper
triangular unit matrix.

Let

(A1,B1,Cy, Dy, Eq, Fy, Gy, Hy) = (Ly, L, L3, Ly, Ls, Lg, Ly, Lg) ® (Uy, Uz, Uz, Uy, Us, Ug, U7, Ug)
= (LlUlr L2U2,L3U3, L4U4, L5U5, L6U6i L7U7, L8U8) (451)

Where matrices L1, L, L3, Ly, Ls, Lg, L7, Lg are lower triangular crisp matrices,
Uy, Uy, Uz, Uy, Us, Ug, Uy, Ug are upper triangular crisp matrices.

Let

(A2,B,Cy, Dy, Ey, Fy, Gy, Hy) =

(Lf,L%, L3 L%, L8, L8, L%, L8) © (UF, US, US, UF, US, U, US, US)

= (LYUF,L8US, L5US, LAUS, LBUS, LBUS, LYUS, LEUS) (45.2)

Where matrices LY, LY, L%, L%, L¥, L%, LY, LY are lower triangular crisp matrices,
Uf, U2, us,uf,us,ud, U, U are upper triangular crisp matrices.

For solving dual fully fuzzy linear system (3.1) with this method.
Consider A; ® ¥ = A, @ X ®b

(A1,B1,Cy, Dy, Eq, Fy, Gy, H)® (x4, X3, X3, X4, X5, X6, X7, Xg) =
(A, By, C3, Dy, Eyp, Fy, Gy, Hy) ® (x4, X3, X3, X4, X5, X6, X7, Xg) @ (by, by, b3, by, bs, b, b7, bg)

Where A4, B4, Cy, Dy, Eq, F1, Gy, Hy, Ay, B, C, Dy, E,, Fy, Gy, H, are non singular matrices
Using (4.5.1) and (4.5.2) we have

(L1Uy, LUy, L3U3, LyUy, LsUs, LgUg, Ly U7, LgUg) ® (x1, X3, X3, X4, X5, X6, X7, Xg) =
(LTUT, L7UZ, L3US, LRUS, L3Us, LEUG, L7U7, L§Ug) ® (x1, X3, X3, X4, X5, Xg, X7, Xg)

® (b1, by, b3, by, bs, be, b7, bg)

Using 2.15(ii) we have

(L1Uqxq, LyUgpxp, L3Usxs, LyUgxy, LsUsxs, LeUgx6, L7U7x7, LgUgxg) =
(LY Uf'xq, L3UZ xp, L3US x5, LU S x4, LEUS x5, LR Ug x6, L7 U x7, LEUS x5)® (b1, by, b3, by, bs, bg, b7, bg)

Using 2.15(i) we have
(L1Uqxq, LyUgpxp, L3Usxs, LyUgxs, LsUsxs, LeUgx6, L7U7x7, LgUgxg) =

(LT Ul.xl + bl' LEUZ.xZ + bz,LgU;xg + b3,LZU4’X4 + b4, LEUSIXS + b5, LEU6.x6 +
b6, L.7mU7mx7+471.8mUBMx8+H8
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Using 2.12 we have

Lllel = LT U1'x1 + b1
=x; = (LU — LY UP) by

L2U2x2 = L; U2-x2 + bz
=x; = (LU, — L3 US) 7 'h,

L3U3X3 = L; U;x?, + b3
=x3 = (L3Us —L§US) 'by

L4U4X4 = Lz U:x4 + b4.
=x4 = (LyUy —LEUS) 1D,

L5U5X5 = LE U5'x5 + b5
=x5 = (LsUs — L3 US) "'bs

L6U6x6 = Lz U6-x6 + b6
=xs = (LgUs — L§ US) " 'byg

L7U7X7 = L; U7-.X'7 + b7
=x; = (L;U; = L7 UM 'y

L8U8x8 = LE Ug'xg + bg
=>xg = (LgUg — L§UZ) 1hy

4.6. Simplification of LLT factorization
Let A be an n x n non singular symmetric positive definite matrix with all non-zero leading

principal minors.  Then A has a unique factorization. A = LLT, Where L is a unit lower
triangular unit matrix.

Let (A;,By,Cq, D1, Eq,F;, Gy, Hy) = (Ly, Ly, L3, Ly, Ls, Lg, Ly, Lg) @ (LY, L5, L%, L, LE, LY LY, L)
(L, LY, L,L5, LsL%, L, LY Le LY, L LY, Lo LY, LgLY) (4.6.1)

Where matrices L, L,, L3, Ly, Lg, Lg, L, Lg are lower triangular crisp matrices

Let (Az;Bz,Cz,Dz,Ez;Fz;Gz,Hz)

(LT, L2, L5, L%, L3, 8) ®((L )" (L3 )T (L7 )T (L’ (L )", (Lg )T LHT, LHH

= (L (L )T, 2 (L2 )T, (L )T LA, LT, LE (L), LY (LT, LE (LT (4.6.2)
Where matrices LY, LY, L%, L%, LS, 7, Lg are lower triangular crisp matrices,

For solving dual fully fuzzy linear system (3.1) with this method.

Consider A, ® X = A, ® X ®b
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(A1, B{,C1, D1, Eq, Fy, Gy, H1)® (X1; X2,X3,X4,X5,Xe, X7, x8) =
(Az; B,,C;, Dy, Ey, Fy, Gy, Hz) ® (X1; X2,X3,X4,Xs5, X6, X7, x8) @ (b1, by, b3, by, bs, bg, b7, b8)

Where A4, B4, Cq, Dy, E, F1, Gy, Hy, Ay, By, Cy, Dy, Ey, Fy, Gy, Hy are non singular matrices
Using (4.5.1) and (4.5.2) we have

(LiLE, LpLd, LsL, LyLy, LsLE, LeLg, LyLY, LgLg) ® Cxy, X2, X3, X4, X5, Xg, X7, Xg) =

(LY (LT)T: E(LE)T: E(LE)T: Z(LZ)T; E(LE)T, E(LE)T' ?(L?)T: g(Lg)T)®(xl'xz'x3:x4:x5'x6'x7:x8)
® (blr b2; b3' b4r b5' b6) b7, b8)

Using 2.15(ii) we have

(LiLTx;, LyLYx,, LaLlxs, LyLhxy, LsLExs, LeLExs, Ly LT x,, LgLixg) =
(LT (LT)Txl' LE (LE)TXZI Lg (LE)TXSI LZ (LZ)T-X‘}' LE (LE)TXSI LE (LE)T-X@ L; (L;)Tx% LE (Lg)TxS)
® (b1, by, b3, by, bs, bg, b7, bg)

Using 2.15(i) we have

(LyLixy, LoLixy, LaLixs, LyLhxs, LsLExs, LeLExe, LyLYx7, LgLixs) =
(LY (L) "xy + by, LY (L) X, + by, L3 (L5) T3 + by, LY (LE) x4 + by, LT (L) x5 +
£5L6 (L6M)Tx6+56L7m(L7m)Tx7+571.8m(L8W) T4+ 48

Using 2.12 we have
LiLix; = LY (L) x; + by
=x; = (L1L] — LY (LD by

LoLyx, =L (L8)"x, + b,
=>x, = (L,L} — L8 (L)") !,

L3Lixz = L5 (L) x3 + b3
=>x3 = (L3Ly — L3 (L)) by

LyLixs = L§ (L3) x4 + by
=x4 = (LyLi — LE(LHT) by

LsLixs = L% (L3) x5 + bs
=x5 = (LsL§ — L3 (L8)T) b5

LeL§xs = L§ (L&) xg + be
=>x¢ = (LeLg — L (LE)T) b

LyLYx; = LY (L) %7 + by
=>x; = (L;Ly — LY (L)) b,
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LgLgxg = L§ (L§) xg + bg
=>xg = (LgL§ — L§ (L§)") by

4.7. Simplification of QR factorization

Let (A1, By, Cy, Dy, Eq, Fy, Gy, Hy) =
(QI,QZ,Q3,Q4,! QS,J Q6,) Q7,) QS) ® (Rll RZ! R31 R4—F RSI R6l R7I RB)
= (QlRli QZRZ, Q3R3, Q4R4, Q5R51 Q6R6l Q7R7’ Q8R8) (471)

Let (Az,Bz,CZ,Dz,Ez,Fz,Gz,Hz) =

Q. Q2,Q3,Q%,Q5,Q5,Q7,Q8) ® (RT, Ry, Ry, RY, RS, RE, R7, Rg)

= (QI'RT,Q2R2, Q3R5, QFRY, QFRS, QERE, Q7RY, Qg RF) (4.7.2)
For solving dual fully fuzzy linear system (3.1) with this method.

Consider A; ® X = A, ® X ®b

(A1,B1,Cq, Dy, Eq, Fy, Gy, H)® (x4, X2, X3, X4, X5, X6, X7, Xg) =
(Az, Bz, Cz, Dz, Ez,Fz, Gz,Hz) ® (Xl,Xz,Xg,X4,X5,X6,X7,X8) @ (bl,bz,bg,b4_, b5,b6,b7, bg)

Where A, By, Cq, D4, E1, Fq, Gy, Hy, Ay, By, Cy, Dy, Ey, Fy, Gy, H, are square matrices

Using (4.5.1) and (4.5.2) we have

(Q1R1,Q2R3,Q3R3,Q4R4, QsRs, QgR6, Q7R7, QgRg) ® (X1, X3, X3, X4, X5, X6, X7, Xg) =
(Ql- T' Q;RE' Qg 51 QZRZI QER;' QERE' Q; ;' QE.BRE.Z) ® (Xl,XZ,Xg,X4,X5,X6,X7,X8)
@ (bll bZI b3r b41 b5r b6: b7; b8)

Using 2.15(ii) we have

(Q1R1x1, Q2R;x2, Q3R3x3, Q4R4x4, QsRs5 x5, QR x4, Q7R7x7, QgRgxg) =
(Ql- Txll Q; R;xZ' Qg R;X3, QZ szll-f Q; REXs, Qg Rng' Q; U7.-X7' Lg U5x8)® (bl' bz, b3' b4—1 b5) b6' b7) b8)

Using 2.15(i) we have

(Q1R1x1, Q2R2x2, Q3R3x3, Q4R4x4, QsRs x5, QR X6, Q7R7x7, QgRgxg) =
(Ql- Txl + blf Q;RExZ + be Q;R;X3 + b3' QZRZ-XAI- + b4' Q;RExS + b5) Qngx6 +
06Q7mR7mx7+47Q8mRE8MAE+H8

Using 2.12 we have
QiRix; = QFRYx; + by
=x; = (QR; = QFRM) 'y

QzRzx; = Q¥ RIx; + by
=x; = (Q;R; — Q¥R%) b,
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Q3R3x3 = Q3 R¥x3 + b3
=>x3 = (Q3R3 — Q¥ R}) b3

Q4R4x4 = QFREx4 + by
=x; = (Q4Ry — QFRY) Dy

QsRsxs = Q§ R§xs + bs
=x5 = (QsRs — Q§RE) ' bs (4.7.3)

QsRexe = QF REx¢ + by
=x6 = (QsRs — QF RE) by

Q7R7x7 = QJRYx7 + by
=x; = (Q;R; — QYRY) b,

QgRgxg = Q§ R§xg + bg
=>xg = (QgRg — Q§RE) by

For solving dual fully fuzzy linear system (3.1) with this method, (for non-square matrix) and in
(3.2) apply QR decomposition we have

A =Q;Ry,B=Q3R,,C= Q3R3,D =Q4Ry,
E = QsRs, F = QgR¢, G = Q7R7, H=QgRg

Therefore we have

QiRix; =b; =x; =R{'Qiby
Q2Ryx; =b, =%, =R;'Q)b,
Q3Rsx3 = by = x3 = R3'Q}bs
Q4Ry4xs =by = x4 =R;'Qiby
QsRsxs = bs = x5 = R5'Qibs (4.7.4)
QsRexs = bg = x4 = Rg'Qibg
Q;R7x; =b; = x; = R7'Qjb,
QsRgxg = bg = xg = Rg'Qgbyg

4.8. Linear Programming approach

For solving dual fully fuzzy linear system (3.1) with this method, Consider (3.2), Thus we may
write

Min s; + s, + 53+ 54 + 55+ 5S¢ + 57+ 53

Subject to

Ax; +5s;=bq

sz + Sy = bz

CX3 + S3 = b3

DX4 + Sy = b4

Ex5 + Sg= b5
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Fx6 + S = b6
GX7 + 5, = b7
ng + Sg = b8
X1,X2,X3,X4,Xs5, Xg, X7, Xg, S1,S52,S53,S54,S5,S¢,S7,Sg >0

4.9. New proposed method for dual fully fuzzy linear system with positive coefficients

To find a solution of dual fully fuzzy linear systemA; ® ¥ = A, ® X ®b, Where the
coefficient matrix &; = (a@;), A, = (b;), 1< i<m, 1<j< nisam x n fuzzy matrix.

Let &l] = (al-]-,bl-]-, ij!dijleij!fij!gij'hij) = OLbU = (kl'j,lij,mij,nl'j,oij,zl'j;O-i]';pi]’) >0

X = (xlj,ij,X3j,X4j,ij,x6j,X7j,x8j) = 0, b= (bli’bzi’bBi’b4i’b5i’b6i’b7i’b8i) >0 be an
octagonal fuzzy numbers then the fully fuzzy linear system can be written as

C

n —
j=1(al'j,bl'j,cl'j,di]‘,el’j;fi';gi]’:hi]’)®(xljiij'x3j'x4j1x5jlx6jlx7j'x8j) -

n
j:1(kij;lij»mij»nijrOij»Zijto-ij'pij) ®(xlj,xzj'x3j'x4j'x5j,x6j,x7j'x8j)
®(b1i'b2i'b3i'b4i’b5i’ b6i’b7i’b8i) A4 i:1,2, ...... m

Using 2.14 (i), (ii and 2.11 we have

n j—
Zj:l(mij'nij'pij'qij'rij'sij»tij'uij) =

n . . .
Zj:l(aij;ﬂij;]/ij, 51']'; lij;]ij;xij;yij)@ (bli' bzi; b3i’ b4i' bsi; b6l~; b7i’ b8i) ViEL2,. m

]T'L:1 mij - Z]r'lzl “ij = bli’ v i:1,2, ...... m
?:1 n; — 2;121 ﬁl] = bzl. A/ i:1,2, ...... m
Py — XV = b3, ViEl2,....m

]7'l=1 qij - anl 61']' = b4i , vV i:1,2, ...... m

j
]7'l=1 Tij - Z}q:l iij = b5i , vV i:1,2, ...... m
Sy — X0 )y = b, Vi=12,.....m
i1ty —Xj=1xj =by, , Vi=l2,..... m

n

j=1 uij - 2?:1 yl] = b8i ) A i:1,2, ...... m

The above linear system of equations converts the m x n fully fuzzy linear system into 8m x 8n
crisp linear system of equations. The solution of the linear system can be achieved through any
one of the classical methods, Schur complements method and also by Linear programming
approach.
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4.10. Schur Complements

Let N be an n x n matrix written as 2 x 2 block matrix

-G 9

Where P isap x p matrix, Sisasxsisamatrix withn=p+s, Qisap xsmatrixand Risas x
p matrix.

To solve the linear system
(r 96)=(

Px+Qy=c
Rx +Sy=d

Assume that S is invertible

y=5"1(d — Rx)

Px+Q[S™1(d — Rx)] =c¢

(P-QS™'R)x=c-Qs~'d

If the matrix (P — QS~'R) is invertible then x = (P - QS™'R)™! [c — QS~1d]
y=S"Hd - R(P- QS™'R)™! [c — QS !d]}

The matrix (P — QS~IR) is called the schur complement of S in N.

5. NUMERICAL EXAMPLE

5.1. Solve the following dual fully fuzzy linear system

(14,16,18,20,22,24,26,28) ® % @ (15,18,21,24,27,30,33,36) ® ¥ = (13,14,15,16,17,18,19,20) ® ¥
®(14,15,16,17,18,19,20,21) ® 7 ® (5,20,43,74,113,160,215,278)

(20,24,28,32,36,40,44,48) ® ¥ ® (21,23,25,27,29,31,33,35) ® § =
(14,17,20,23,26,29,32,35) ® % ® (10,11,12,13,14,15,16,17) ®F @
(45,76,113,156,205,260,321,388)
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Solution:

(14,16,18,20,22,24,26,28) ®(X1, X5, X3, X4, X5, X¢, X7, Xg)D(15,18,21,24,27,30,33,36)®
(Y1l ¥2,¥3,¥4, Y5, Y6, Y7, YS):(13’14!15!16!17!18!19!20) ®(X11 X2, X3, X4, X5, Xg, X7, X8) ®
(14,15,16,17,18,19,20,21)® (y1,V2,Y3, Y4, Vs, Ve, V7, V3)® (5,20,43,74,113,160,215,278)

(20,24,28,32,36,40,44,48) ®(x1, X, X3, X4, X5, X, X7, Xg)D(21,23,25,27,29,31,33,35)®
V1, Y2, Y3, Y4, Y5, Ve, Y7, ¥8)=(14,17,20,23,26,29,32,35) ®(Xy, X7, X3, X4, X5, X6, X7,Xg) D
(10,11,12,13,14,15,16,17)® (y1, V2, Y3, Y4, Vs, Ve, V7, V3)® (45,76,113,156,205,260,321,388)

Using algorithms givenin 4.1, 4.2, 4.3, 4.4, 4.5 we have
X =(24681012,14,16) y = (3,4,5,6,7,8,9,10)
5.2. Solve the following dual fully fuzzy linear system Cholesky decomposition

(14,16,18,20,22,24,26,28) ® ¥ @ (15,18,21,24,27,30,33,36) ®y =
(13,14,15,16,17,18,19,20) ® ¥®(14,15,16,17,18,19,20,21) ®y @ (5,20,43,74,113,160,215,278)

(15,18,21,24,27,30,33,36) ® ¥ @ (21,23,25,27,29,31,33,35) ® y =
(14,15,16,17,18,19,20,21) ® ¥ (10,11,12,13,14,15,16,17)
®7y ©(35,60,95,140,195,260,335,420)

Solution:

(14,16,18,20,22,24,26,28) ®(x1, X2, X3, X4, X5, X, X7, Xg)D(15,18,21,24,27,30,33,36)®

(Y1' Y2,¥3, ¥4, Y5 Y6, Y75 Y8):(13’14!15116!17118!19120) ®(X1' X2,X3,X4,X5, X6, X7, X8) S
(14,15,16,17,18,19,20,21)® (y1,V2,Y3, Y4 Vs, Ve, V7, ¥3)@® (5,20,43,74,113,160,215,278)
(15,18,21,24,27,30,33,36) ®(x1, X2, X3, X4, X5, Xg, X7, Xg)D(21,23,25,27,29,31,33,35)®

(Y1l ¥2,¥3, ¥4, Y5 Y6, Y7, YB):(14’15116117118119120121) ®(X1'X2'X3'X4-'XS'X61X71X8) ®(10111,1
2,13,14,15,16,17)® (y¥1,¥2,¥3, Y4, V5, Y6, Y7, Y8)@ (35,60,95,140,195,260,335,420)

Solution: Using algorithm given in 4.6 we have

X =(246810,12,14,16) y = (3,4,5,6,7,8,9,10)

5.3. Solve the following dual fully fuzzy linear system QR decomposition method

(14,16,18,20,22,24,26,28) ® % ® (15,18,21,24,27,30,33,36) ® ¥ = (13,14,15,16,17,18,19,20) ® ¥
®(14,15,16,17,18,19,20,21) @ ® (5,20,43,74,113,160,215,278)

(20,24,28,32,36,40,44,48) ® % @ (21,23,25,27,29,31,33,35) ® § = 14,17,20,23,26,29,32,35) ® X
@ (10,11,12,13,14,15,16,17) ® 7 ® (45,76,113,156,205,260,321,388)
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(15,18,21,24,27,30,33,36) ® % @ (21,23,25,27,29,31,33,35) ® ¥ = 14,15,16,17,18,19,20,21) ® X
® (10,11,12,13,14,15,16,17) ® ¥ @ (35,60,95,140,195,260,335,420)

Solution:

(14,16,18,20,22,24,26,28) ®(X1, X5, X3, X4, X5, X¢, X7, Xg)D(15,18,21,24,27,30,33,36)®
(Y1r ¥2,¥3,¥4, Y5, Y6, Y7, YS):(13’14!15!16!17!18!19!20) ®(Xll X2, X3, X4, X5, X6, X7, X8) ®
(14,15,16,17,18,19,20,21)® (V1, V2, V3, Va» V5, Ve, V7, Vo )@ (5,20,43,74,113,160,215,278)

(20,24,28,32,36,40,44,48) ®(X1, X5, X3, X4, X5, Xg, X7, Xg)D(21,23,25,27,29,31,33,35)®
V1, Y2, Y3, Y4, Y5, Ve, Y7, ¥8)=(14,17,20,23,26,29,32,35) ®(xXy, X7, X3, X4, X5, X6, X7,Xg) D
(10,11,12,13,14,15,16,17)® (y1,V2,Y3, Y4, Vs, Ve, V7, V3)® (45,76,113,156,205,260,321,388)

(15,18,21,24,27,30,33,36) ®(xy, Xz, X3, X4, X5, Xe, X7, Xg)D(21,23,25,27,29,31,33,35)®

(Y1r ¥2,¥Y3,¥4, Y5, Y6, Y7, YB):(14’15’16117’18119’20121) ®(X1' X2, X3, X4, X5, X6, X7, X8) S
(10,11,12,13,14,15,16,17)® (1, V2, V3, Var V5» Ve, V7, Ve )® (35,60,95,140,195,260,335,420)

Using algorithm given in 4.7 we have
X =(24681012,14,16) y = (3,4,5,6,7,8,9,10)
5.4. Solve the following dual fully fuzzy linear system

(14,16,18,20,22,24,26,28) ® % @ (15,18,21,24,27,30,33,36) ® ¥ = (13,14,15,16,17,18,19,20) ® ¥
®(14,15,16,17,18,19,20,21) ® 7 ® (5,20,43,74,113,160,215,278)

(20,24,28,32,36,40,44,48) ® ¥ ® (21,23,25,27,29,31,33,35) ® ¥ = 14,17,20,23,26,29,32,35) ® %
@ (10,11,12,13,14,15,16,17) ® y ® (45,76,113,156,205,260,321,388)

Solution:

(14,16,18,20,22,24,26,28) ®(xy, X3, X3, X4, X5, X¢, X7, Xg)D(15,18,21,24,27,30,33,36)®

(Y1l ¥2,Y3,¥4, Y5, Y6, Y7, YB):(13’14115116117118119120) ®(X1'X2'X3'X4'XS'X61X71X8) S
(14,15,16,17,18,19,20,21)® (y1,¥2,Y3, Y4, Y5, Ve, V7, ¥8) D (5,20,43,74,113,160,215,278)

(20,24,28,32,36,40,44,48) ®(x1, X, X3, X4, X5, X, X7, Xg)D(21,23,25,27,29,31,33,35)®
(Y1l ¥2,Y3,¥4, Y5, Y6, Y7, YB)=(14’17!20123!26129!32135) ®(X1'XZ'X3rX4-JX5JX6'X7'X8) ®
(10,11,12,13,14,15,16,17)® (Y1, V2, V3, Var Vs, Ve, V7, Ve )® (45,76,113,156,205,260,321,388)
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Using algorithm given in 4.9 we have

(14x4, 16x,,18x3, 20x4, 22X5, 24x4, 26X, 28x5)D
(15y1, 18y2, 21y3, 24y4, 27ys5, 30ye, 33y7, 35y8)=
(13x4, 14x,, 15x3, 16x4, 17x5, 184, 19x5, 20x5)D
(14y4, 15y,, 16y3, 17y4, 18ys, 19y6, 20y7, 21yg)®
(5,20,43,74,113,160,215,278)

(20x4, 24%,, 28x3, 324, 36X5, 404, 44%7, 48x5)D
(21y4, 23y, 25y3, 27y4, 29ys5, 31y6, 33y7, 35yg)=
(14x4,17x5, 20x3, 23%4, 26X5, 294, 32X7, 35%x5)D
(10y, 11y, 12y3, 13y,, 14ys, 15y, 16y7, 17y5)®
(45,76,113,156,205,260,321,388)

14X1 + 15yl = 13X1 + 14YI + 5, 16X2 + 18yZ = 14'X2 + 1SYZ + 20 ;
18X3 + 21Y3 = 15X3 + 16Y3 + 43; 20X4 + 24Y4, = 16X4 + 17Y4, + 74;
22% + 27ys = 17xs + 18ys + 113: 24x, + 30y, = 18x4 + 19y, + 160:
26X7 + 33Y7 = 19X7 + ZOY7 + 215, 28X8 + 35y8 = 20X8 + 21y8 + 278,

20X1 + Zlyl = 14X1 + 1OYI + 45, 24X2 + 23yZ = 17X2 + 11yZ + 76,
28X3 + ZSY3 = 20X3 + 1ZY3 + 113; 32X4 + 27Y4, = 23X4 + 13}I4 + 156;
36x5 + 29ys = 26x5 + 14ys + 205; 40x¢ + 31y = 29%x4 + 15y¢ + 260;
44X7 + 33Y7 = 32X7 + 16Y7 + 321, 48X8 + 35y8 = 35X8 + 17y8 + 388

x1 +y1 =5; 2xy + 3y, = 20; 3x3 + 5y3 = 43; 4x4 + 7y, = 74; 5x5 + 9ys = 113;
6% + 11y, = 160; 7x; + 13y, = 215; 8xg + 15yg = 278; 6x; + 11y; = 45;

7%y + 12y, = 76; 8x3 + 13y3 = 113; 9x4 + 14y, = 156; 10x5 + 15ys = 205;
11x¢ + 16y, = 260; 12x; + 17y; = 321; 13xg + 18yg = 388

Now the above 16 x 16 linear system of equations can be solved Using any one of the classical
method, as well as using 4.10. Schur Complements method we have (We used TORA software)

X =(2,46810,12,14,16) y = (3,4,5,6,7,8,9,10)
5.5. Solve the following dual fully fuzzy linear system

(14,16,18,20,22,24,26,28) ® % ® (15,18,21,24,27,30,33,36) ® ¥ = (13,14,15,16,17,18,19,20) ® ¥
®(14,15,16,17,18,19,20,21) @ ® (5,20,43,74,113,160,215,278)

(20,24,28,32,36,40,44,48) ® % @ (21,23,25,27,29,31,33,35) ® § = 14,17,20,23,26,29,32,35) ® X
@ (10,11,12,13,14,15,16,17) ®y @ (45,76,113,156,205,260,321,388)

Solution:

(14,16,18,20,22,24,26,28) ® (x4, Xz, X3, X4, X5, X6, X7, Xg)D(15,18,21,24,27,30,33,36)®
(Y1l ¥2,¥3,¥4, Y5, Y6, Y7, YB)=(13’14!15116!17118!19120) ®(X1' X2, X3, X4, X5, X6, X7, XS) S
(14,15,16,17,18,19,20,21)® (1, V2, V3, Var V5 Ver Vo, Vo )® (5,20,43,74,113,160,215,278)
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(20,24,28,32,36,40,44,48) ®(X1, X5, X3, X4, X5, Xg, X7, Xg)D(21,23,25,27,29,31,33,35)®
(Y1r ¥2,¥3,¥4, Y5, Y6, Y7, YS):(14’17!20!23!26!29!32!35) ®(Xll X2, X3, X4, X5, Xg, X7, X8) ®
(10,11,12,13,14,15,16,17)® (y1,¥Y2,Y3, Y4, Y5, Ve, V7, V3)® (45,76,113,156,205,260,321,388)

Using algorithm given in 4.9 we have

(14x4, 16x,,18x3, 20x4, 22x5, 24x4, 26X, 28x5)D
(15y4, 18y, 21y3, 24y, 27ys, 30ye, 33y7, 35y5)=
(13x4, 14x,, 15x3, 16x4, 17x5, 184, 19x5, 20x5)D
(14y4, 15y,, 16y3, 17y4, 18ys, 19y6, 20y7, 21yg)®
(5,20,43,74,113,160,215,278)

(20x4, 24x,, 28x3, 32x4, 36X5, 404, 44x7, 48x5)D
(21y1, 23y3, 25y3, 27y4, 29ys, 31y6, 33y7, 35y8)=
(14x4,17x5, 20x3, 23x4, 26X5, 294, 32X7, 35x5)D
(10y4, 11y,, 12y3, 13y,, 14ys, 15y, 16y, 17yg)®
(45,76,113,156,205,260,321,388)

14X1 + 15yl = 13X1 + 14YI + 5, 16X2 + 18yZ = 14'X2 + 15yZ + 20 ;
18X3 + 21Y3 = 15X3 + 16Y3 + 43; 20X4 + 24Y4 = 16X4 + 17Y4 + 74;
22X5 + 27yS = 17X5 + 18yS + 113; 24X6 + 30y6 = 18X6 + 19y6 + 160;
26X7 + 33Y7 = 19X7 + ZOY7 + 215, 28X8 + 35y8 = 20X8 + 21y8 + 278,

20X1 + Zlyl = 14X1 + 1OYI + 45, 24X2 + 23yZ = 17X2 + 11yZ + 76 ;

28X3 + ZSY3 = 20X3 + 1ZY3 + 113; 32X4 + 27Y4 = 23X4 + 13Y4 + 156;
36xs5 + 29y5 = 26xs5 + 14y + 205; 40x¢ + 31y = 29%x¢ + 15y6 + 260
44X7 + 33Y7 = 32X7 + 16Y7 + 321, 48X8 + 35y8 = 35X8 + 17y8 + 388

x1 +y1 =5; 2xy + 3y, = 20; 3x3 + 5y3 = 43; 4x4 + 7y, = 74; 5x5 + 9ys = 113;
6x¢ + 11y, = 160; 7x; + 13y, = 215; 8xg + 15yg = 278;

6X1 + 11Y1 = 45, 7X2 + 12Y2 = 76, 8X3 + 1SY3 = 113, 9X4 + 14'Y4, = 156,
10xs + 15ys = 205; 11x, + 16y, = 260; 12x; + 17y, = 321; 13x, + 18y, = 388

Now the above linear system can be solved by using two phase method

Minimize (T'l +rt+rtrntrstrgtrytrgtrgt+rygtry 1y i3 14 195 + 7"16)
Subject to

X1 +Y1 +7‘1 = 5, 2X2 +3yZ +T'2 = 20, 3X3 +SY3 +T'3 = 4'3, 4X4,+ 7Y4 +T'4 = 74,

5x5 + 9ys + 15 = 113; 6x¢ + 11y + 14 = 160; 7x; + 13y, + 1, = 215;

8X8 + 15y8 + g = 278, 6X1 + 11y1 + 9 = 45, 7X2 + 12Y2 + o = 76,

8X3 + 1BY3 + " = 113, 9X4 + 14Y4 + T = 156, 10X5 + 1SY5 + "3 = 205,

11xg + 16yg + 114 = 260; 12x; + 17y; + 15 = 321; 13xg + 18yg + ¢ = 388
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Xit1—%=201<i<8,y4,,—y,=201<5j<8

Where r;, 1 < i < 16 are artificial variables

Using Tora software we have ¥ = (2,4,6,8,10,12,14,16) ¥ = (3,4,5,6,7,8,9,10)
CONCLUSION

In this paper, the solution of dual fully fuzzy linear system of the formA; ® ¥ = A, ® X ®b,
whose coefficients are octagonal fuzzy numbers is obtained by Matrix inversion, Cramer’s rule,
LU, LLT, QR decomposition methods, direct methods and indirect methods. These methods are
useful when the system is square as well as non square.
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