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 ABSTRACT 

An ideal space is a triplet (X, , I), where X is a non empty set,  is a topology on X and I is an ideal of 

subsets of X. In this paper, we introduce and study Hash semi-open sets in an  ideal space. 
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__________________________________________________________________________________ 

1. INTRODUCTION  

The contributions of Hamlett and Jankovic [5, 6, 7, 8] in ideal topological spaces initiated the 

generalization of some important properties in General Topology via Topological ideals. The 

properties like decomposition of continuity, covering property, separation axioms, connectedness, 

extremal disconnectedness, compactness and resolvability [1, 2, 3, 4, 12] have been generalized using 

the concepts of ideals in topological spaces. Manoharan and Thangavelu [11] applied the concept of  

ideals in the field of Graph theory to characterize Eulerian graphs.  

By a space (X,), we mean a topological space X with a topology  defined on X on which no 

separation axioms are assumed unless otherwise explicitly stated. For a given point x in a space (X,), 

the system of open neighborhoods of x is denoted by N(x) = { U   : x U}. 

For a given subset A of a space (X, ), cl (A) and int (A) are used to denote the closure of A and 

interior of A respectively with respect to the topology . 

A non empty collection of subsets of a set X is said to be an ideal on X, if it satisfies the following two 

conditions: (i) If A  I and B A, then B  I; (ii) If A  I and B  I, then AB I. An ideal space 

(X, , I) means a topological space (X, ) with an ideal I defined on X. Let (X, ) be a topological 

space with an ideal  I defined on X. Then for any subset A of X, A*(I , ) ={x  X/ AU I for every 

U  N(x)} is called the local function of A with respect to I and  [9].  If there is no ambiguity, we 

will write A*(I) or simply A* for A*(I, ). Also, Cl*(A) = A  A* defines a Kuratowski closure 

operator for the topology *(I) (or simply *) which is finer than .  
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We use the following ideals in our discussion. 

(i) I = {}, the ideal containing empty set only.   

(ii) (X) = the power set of X = the ideal of all subsets of X. 

(iii) IF  = the ideal of finite sub sets of X. 

(iv) Ic  = the ideal of countable sub sets of X. 

 

2. HASH SEMI-OPEN SETS 

A subset A of a space (X, )  is semi-open (semi-closed)[10] if A  cl (int (A))  

(  A  cl (int (A))  ). Semi-closure of the subset A is the intersection of all semi-closed sets containing 

A and it is denoted by scl (A). We denote  the class of all semi-open sets in (X, )  containing xX by 

SO(X, , x). In this section, we introduce and study a new local function A
#
 for all the subsets A of an 

ideal topological space (X, , I). 

Definition 2.1  

Let (X, ) be a topological space  with an ideal I on X and A  X . Then,  A
#
(I, ) = { x:  A U I  for 

every  U S(X, , x)  }.             

Since N(x)  SO(X, , x)  }, it follows that A
#
 (I, )  A

*
(I, ).             

Definition 2.2  

Let (X,) be a topological space with an ideal I on X. For any subset A of X, scl 
#
(A) = A   A

#
( I, ) .  

Remark 2.3 

In an ideal space (X, , I) ,  

(i)  scl 
#
(A)   cl*(A). 

(ii) If A I,  then A
#
 =  = A*. 

(ii) If A I , then scl 
#
(A) = A =  cl*(A).  

Proposition 2.4 

Let (X, ) be a space with ideals I, I1 and I2  on X, and let A and B be any two  subsets of  X. Then 

(i) A  B  A
#
 B

#
; 

(ii) I1  I2  A
#
 (I2)  A

#
 (I1);  

(iii) A
#
 = scl (A

#
)  scl (A);   

(iv)  (A
#
)

#
  A

#
;   

(v) (A  B)
 #

 = A
#
  B

#
; 

(vi)  (A \ B)
 #
 \ B

#
  A

#
  \ B

#
 ; 

(vii) For every B I, (A  B)
 #
 = A

#
 . 
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Proof 

 Suppose A  B.   Let x A
#
.  Then U A I for every USO(X, , x). Since  UA  UB and 

since I is an ideal, it follows  that U B I for every USO(X, , x). Therefore, x B
#
 that proves (i).   

Now, suppose  I1  I2.  Let xA
#
 (I2) that implies U A I2 for every USO(X, , x). This shows that 

U A I1 for every US(X, , x) , completing the proof for (ii).    

Since scl 
#
(A) = A  A

#
( I, ), A

#
  scl(A

#
).  Let x scl(A

#
) that implies   U A

# 
  for every 

USO(X, , x).  Fix USO(X, , x).  Let y U A
#
.  Since y U  and y  A

#
 ,   U A I that 

implies x  A
#
.  Therefore A

#
 = scl(A

#
).   Since U A I  U A  , it follows that  scl(A

#
)  

scl(A);  This proves (iii).  

Let x (A
#
)

#
 . Then U A

# 
 I for every USO(X, , x).  In particular U A

# 
  for every USO(X, 

, x). Fix USO(X, , x) and  y U A
#
 that implies U A I . This proves that x A

#
 that 

completes the   proof for (iv).  

From (i), it follows that A
#
  B

#
  (A  B)

 #
 . To prove the other inclusion let x (A  B)

 #
. Then U 

(A  B)
  
 I for every USO(X, , x). If U A  I and  

V B  I for some  U, VSO(X, , x) then  

(U V)  (A  B) = 
 
(U V  A)  (U V B)  I that contradicts the choice of x. Therefore   U 

A  I or UB  I  for every USO(X, , x). This shows that   

x A
#
 B

#
 completing the proof for (v).  (vi) is obviously  true from (i).  

From Remark 2.3(ii), B
#
 =  for every B I that implies (A  B)

 #
 = A

#
  B

#
 = A

#
   = A

#
 for every 

B I. This proves (vii) and the proof for the proposition is completed.  

                                                                                                                                                    

                  Corollary 2.5 

 Let B be a subset of an ideal space (X, , I)  . Then ,(X \ B)
 #
 \ B

#
  X

#
 \  B

#
 . 

Proof 

Replacing A by X in Theorem 2.4(vi), we get this corollary.                       

Definition 2.6 

Let A be a subset of an ideal space (X, , I)  . Then, A is 
#
-semi-closed if scl 

#
(A) = A and A is  

#
-

semi-open if and only if  X \ A is 
#
-semi-closed. We will call a 

#
-semi-open set as Hash semi-open 

set. 

It is clear that A is 
#
-semi-closed if and only if A

#
  A and A is  


#
-semi-open if and only if (X\A)

#
  X \ A if and only if   X \ (X\A)

#
  A if and only if A(X\A)

#
 = . 
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          SC
#
 (X, , I) denotes the collection of all 

#
-semi-closed sets in (X, , I) and  

SO
#
 (X, ,  I) denotes the collection of all 

#
-semi-open sets in (X, , I). 

Proposition 2.7 

In an ideal space (X, , I), 

(i) SC
#
 (X, , I) contains X and , and is closed under arbitrary intersection. 

(ii) SO
#
 (X, , I) contains X and , and is closed under arbitrary union. 

(iii) Every 
*
-closed set is 

#
-semi-closed. 

(iv) Every 
*
-open set is 

#
-semi-open. 

Proof 

Obviously X and  are 
#
-semi-closed sets. Suppose   is a family of 

#
-semi-closed sets. Then for 

every A, A
#
  A. Then 

#

A

A

















   

A

#A     
A

A . This shows that 
A

A  is 
#
-semi-closed.  

This proves (i).  (ii) follows from (i) and Definition 2.6.  (iii) and (iv) follows from the fact that  A
#
  

A
*
.  

Remark 2.8 

If I = { }, SO
#
(X, , I) = SO(X, ) = SO(X, *).  

Remark 2.9 

If I = (X),  then SO
#
(X, , I) = = SC

#
(X, , I).  

Proposition 2.10 

If I1  I2   then  SO
#
(X, , I1)  SO

#
(X, , I2)  

Proof 

Since I1  I2   , by using Proposition 2.4,  we get  A
#
 (I2)  A

#
 (I1).Now A SC

#
 (X, , I1)   A

#
 (I1)   

A  A
#
 (I2)   A  A SC

#
 (X, , I2).  

This proves that SO
#
(X, , I1)  SO

#
(X, , I2). 

                                                                                                                    

  The following corollary is a direct application of the above theorem. 

Corollary 2.11 

In an ideal space (X, , I),  SO(X, )  SO
#
(X, , I) (X). 

 

Notations 

1. A
sd

 denotes the set of all semi-accumulation points of A. That is x  A
sd

 if and only if 

(U\{x}) A   for every U  SO(X, , x).   
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2. A
s

 denotes the set of all - semi-accumulation points of A. That is x  A
s

 if and only if U 

A is infinite for every U  SO(X, , x).   

3. A
sc

 denotes the set of all semi-condensation points of A. That is x  A
sc

 if and only if U A is 

uncountable for every U  SO(X, , x).   

 

Proposition 2.12 

Let A be a subset of an ideal space (X, , I) . Then 

(i) A
sd# 
 A

#
. 

(ii) A
sd# 
  A

sd
 .  

(iii) If {x} I then xA
sd# 

 if and only if xA
#
. 

(iv) A
sd# 

 =A
#
( IF). 

Proof 

xA
sd#

  if and only if x scl
#
(A\{x}) if and only if x(A\{x})  (A\{x})

# 
if and only if  

x (A\{x})
#
 if and only if (A\{x})  UI for every USO(X, , x).  This proves that  

A
sd# 
 A

#
.We also see that  xA

sd#
 implies (A\{x})  U for every U SO(X, , x) that shows that  

A
sd# 
  A

sd
  . Suppose {x}  I.  

Then x A
#
   AUI for every USO(X, , x).   

                      AU  and AU {x} for every   

                             USO(X, , x).   

                      (A\{x})U   for every USO(X, , x).   

                      xA
sd#

 

This proves (iii) and (iv). 

                             

Proposition 2.13 

Let A be a subset of an ideal space (X, , I) . Then 

(i) A
s 

=  A
#
 (IF )   

(ii) A
cs 

=  A
#
 (IC)   

Proof 

xA
s 

 if and only if UA  is infinite for every USO(X, , x) if and only if   AU IF for every 

USO(X, , x) if and only if xA
#
 (IF ).   This proves (i). 
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xA
cs 

 if and only if U A  is uncountable for every USO(X, , x) if and only if  

AU IC , for every USO(X, , x) if and only if   

xA
#
 (IF).   This proves (ii). 

Proposition 2.14 

Let IF be the ideal of all finite subsets of (X, ). Then   

 A
s 

=  A
#
 (IF) =  A

sd#
. 

Proof:
 

Now {x} A
#
(IF) if and only if U A  is infinite for every    USO(X, , x) if and only if   

U A  IF for every USO(X,,x). Therefore, A
s 

=  A
#
 (IF). By Proposition 2.14 (iv),  

A
#
 (IF) =  A

sd#
. Thus, A

s 
=  A

#
 (IF) =  A

sd#
. 
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