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 ABSTRACT  

                Goldberg (1956) has studied on projectively Euclidean Hermitian 

spaces. Mizusawa and Koto (1960) have studied holomorphically projective 

curvature tensors in certain almost Kaehlerian spaces. Also, Prvanovic and 

Pusic (1995) have studied on manifold admitting some semi-symmetric metric 

connection. In the present paper, we have defined and studied Geodesic lines on 

any metric space are autoparallel lines of its Levi-Civita connection. The 

necessary and sufficient condition for a metric semi-symmetric connection of a  

hyperbolic almost Kaehlerian space to have some of their autoparallel lines in 

common with their Levi-Civita connection.        
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1. INTRODUCTION. 

                   Let us consider a Riemannian space M, of dimension n, with metric 

tensor (gij). Let us denote the Christoffel symbols towards given metrics by       

{j
i
k}, the operator of covariant differentiation towards the Levi-Civita 

connection by  ∇  and components of its curvature tensor by K
i
jkl (or by Kijkl  for 

its Riemann-Christoffel tensor).       

                     The geodesic line, that means, an autoparallel line of Levi-Civita 

connection is characterized by the relation 

(1.1)             𝑣𝑘∇ 𝑘𝑣
𝑗= 0,  

Where 𝑣𝑘  stands for a component of tangent vector field of the geodesic line. 

 

                       The component of metric semi-symmetric connection are given 

by                             

(1.2)                Γ𝑖𝑘
𝑎  = {i  

a  
k} + 𝑝𝑖𝛿𝑘

𝑎  − 𝑝𝑎  𝑔𝑖𝑘  

  

Where  𝑝𝑖    𝑎𝑛𝑑   𝑝𝑎  are covariant and contravariant components of a vectors of 

a vector field. This vector field is called the generator or the generating vector 
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field of metric semi-symmetric connection. The torsion tensor components of 

the metric semi-symmetric connection are equal 

(1.3)                 T𝑖𝑘
𝑎  =  𝑝𝑖𝛿𝑘

𝑎  − 𝑝𝑘𝛿𝑖
𝑎  

 

                       Let 𝑣𝑘  be the component of tangent vector field of a geodesic 

line, then, this geodesic line will be autoparallel for metric semi-symmetric 

connection if and only if three holds 

(1.4)                      𝑝𝑘  𝑣𝑘𝑣𝑗     =    𝑝𝑗𝑣𝑘  𝑣𝑘 

As we consider a Riemannian space and its metrics is positively definite, (1.3) 

reduces if and only if 

(1.5)                        𝑝𝑘    =   𝛼 𝑝𝑘  

 

Where 𝛼 is a scalar function. 

                          If we explore properties of the function  𝛼, as it is the 

proportionality coefficient between the tangent vector field of the geodesic line 

and generating vector field of the metric semi-symmetric connection, we shall 

get an answer to the following question; for a geodesic line on a Riemannian 

space, how many semi-symmetric metric connections have same line as an 

autoparallel line. 

                        Let us denote the operator of covariant differentiation towards 

metric semi- symmetric connection by ∇, then       

                       ∇𝑘𝑣𝑗    =  ∇ 𝑘𝑣𝑗  – 𝛼 𝑣𝑘𝑣𝑗 − 𝑔𝑘𝑗  𝑣 

                        ∇ 𝑘𝑝𝑗   =   𝛼𝑘𝑣𝑗     + 𝛼 ∇ 𝑘𝑣𝑗 ,  

  

Where 𝑣  stands for scalar square of the vector  𝑣𝑘   and   𝛼𝑘  =  𝜕𝛼
𝜕𝑥𝑘   . 

                         The components of Riemannian-Christoffel tensor of the metric 

semi-symmetric connection can be expressed in this way 

    

(1.6)                   𝑅𝑖𝑗𝑘𝑙 = 𝐾𝑖𝑗𝑘𝑙  + 𝑔𝑖𝑘𝑝𝑙𝑗−𝑔𝑖𝑙𝑝𝑘𝑗 + 𝑔𝑗𝑙𝑝𝑘𝑖− 𝑔𝑗𝑘 𝑝𝑙𝑖                

 

Where  𝐾𝑖𝑗𝑘𝑙   denotes a Riemann-Christoffel tensor component of Levi-Civita 

connection and the abbreviation  𝑝𝑘𝑗  stands for the tensor    

(1.7)                    𝑝𝑘𝑗   = ∇ 𝑘𝑝𝑗 − 𝑝𝑗𝑝𝑘  +
1

2
 p𝑠  𝑝𝑠𝑔𝑗𝑘 . 

                      The tensor  𝑝𝑘𝑗   is symmetric if and only if   𝑝𝑗    is a gradient, that 

means  

                      𝛼𝑘𝑣𝑗   −  𝛼𝑗𝑣𝑘    = 𝛼( ∇ 𝑗𝑣𝑘   −  ∇ 𝑘𝑣𝑗 ), 

 

Or, equivalently 
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(1.8)                
𝜕𝑣

𝜕𝑥𝑘
  =   

2

𝛼
  (𝜇𝑣𝑘 − 𝑣𝛼𝑘)   

 

Where  𝜇  stands for 𝛼𝑘𝑣
𝑘 .      

                        . 

                        From the expression (1.5), we easily obtain, 

                         𝑅𝑗𝑘   = 𝐾𝑗𝑘 +  2 − 𝑛 𝑝𝑘𝑗 −  𝑔𝑗𝑘 𝑝𝑠
𝑠 , 

                             𝑔𝑘𝑗 𝑝𝑠
𝑠    =    𝐾𝑗𝑘− 𝑅𝑗𝑘   −  𝑛 − 2 𝑝𝑗𝑘 , 

                           𝑛𝑝𝑠
𝑠       =     K  −  R  −  (n−2) 𝑝𝑠

𝑠, 

                            𝑝𝑠
𝑠       =      

(𝐾 − 𝑅) 
2(𝑛 − 1) , 

𝑝𝑘𝑗   =    
𝐾𝑗𝑘 − 𝑅𝑗𝑘

𝑛 − 2
    −    

𝐾 − 𝑅

2 𝑛 − 1 (𝑛 − 2)
𝑔𝑗𝑘 . 

 

By  𝐾𝑗𝑘 , 𝐾 𝑎𝑛𝑑  𝑅𝑗𝑘 , R we denote the Ricci tensor and the curvature scalar for 

the Levi-Civita connection and for metric semi-symmetric connection 

respectively. 

                        We have our curvature tensor (1.5) to satisfy the all algebraic 

properties which are most common for curvature tensors to be skew-symmetric 

in first two Indies, to be invariant under change of places of first and second 

pair of indices and to satisfy the first Bianchi identity. All these properties are 

satisfied if and only if the generating vector field is a gradient. 

                      There holds  

                      𝑣 𝑖∇ 𝑖𝑣𝑘 = 0   and  𝑝𝑖∇ 𝑖𝑝𝑘 = 𝑝𝑖∇ 𝑘𝑝𝑖 = 𝜑𝑝𝑘 = 𝜑𝛼𝑣𝑘. 

 

                      Now, we apply the Ricci identity for the metric semi-symmetric 

connection to the generator and we obtain 

(1.9)                     𝑣𝛼𝑗 −  𝜑𝑣𝑗  = 0. 

Then there yields, in view of (1.7),       
𝜕𝑣

𝜕𝑥 𝑘
= 0,                      

and the tangent vector of the geodesic line is of constant length. 

                    From (1.8), we have      𝛼𝑘 =  
𝜑

𝑣
 𝑣𝑘 ,     or     𝛼𝑘 = 𝑓 𝑝𝑘. 

This means that all three vectors are mutually proportional. Then 

 

                       𝑝𝑠𝑝
𝑠 =  𝛼2 𝑣. 

Besides 

 
 𝜕(𝑝𝑠𝑝

𝑠)  

𝜕𝑥𝑘
 =  𝑝𝑠∇ 𝑘𝑝𝑠 + 𝑝𝑠∇ 𝑘𝑝

𝑠 =  𝑝𝑠𝛼𝑘𝑝𝑠 +  𝛼𝑝𝑠∇ 𝑘  𝑣𝑠 

                                    = 2𝛼𝑘𝑝𝑠𝑝
𝑠 +  2𝛼𝑝𝑠∇ 𝑘𝑣𝑠 = 2𝛼𝑘𝑝𝑠𝑝

𝑠 +  2𝛼2𝑣𝑠∇ 𝑘𝑣𝑠 

                                   = 2𝑝𝑠𝑝
𝑠𝛼𝑘 = 2𝛼2𝛼𝑘𝑣. 

                      As   ∇ 𝑘𝑣
𝑠𝑣𝑠 = 0  and   consequently    𝑣𝑠∇ 𝑘𝑣𝑠 = 0, 

Then, on the other side  
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 𝜕(𝑝𝑠𝑝

𝑠)  

𝜕𝑥𝑘
 =  2𝑝𝑠∇ 𝑘𝑝𝑠 =  2𝛼𝑘𝑝

𝑠𝑝𝑠 =  2𝛼2𝑣𝛼𝑘  

                                            = 2𝛼𝑣 𝛼𝑘 . 
 

Comparing two results for    
 𝜕(𝑝𝑠𝑝

𝑠)  

𝜕𝑥𝑘
,    we obtain  𝛼 = 1 or 𝛼𝑘= 0. Then 

(1)    𝑝𝑘   and   𝑣𝑘   are equal,   both gradients, both of constant length, 

Or 

(2)    𝑝𝑘  and  𝑣𝑘  are collinear vectors, both of constant length and both 

gradients. Therefore 

                    Definition (1.1): On a Riemannian space, the curvature tensor of 

metric semi-symmetric metric connection satisfies the all most common 

algebraic properties for any curvature tensor if and only if the generating vector 

field is a gradient. Then the Levi-Civita connection and metric semi- symmetric 

connection have some of their autoparallel lines in common if the generating 

vector field of metric semi-symmetric connection and tangent vector field of the   

geodesic line are collinear gradients of constant length. 

 

2. HYPERBOLIC ALMOST KAEHLERIAN SPACE  

                    A hyperbolic almost Kaehlerian space is an even-dimensional 

pseudo-Riemannian space, endowed with a nondegenerate structure tensor 𝐹𝑗
𝑖  

satisfying  

 

(2.1)           𝐹𝑗
𝑖𝐹𝑘

𝑗
= 𝛿𝑘

𝑖  ,           𝐹𝑖𝑗 =  − 𝐹𝑗𝑖 ,      ∇  𝐹𝑖𝑗 = 0. 

 

                   

                     Theorem (2.1): The curvature scalars of Levi-Civita connection, 

the Riemannian part of metric semi-symmetric connection and metric semi-

symmetric F-connection are mutually equal. 

                       Proof: Consider a semi-symmetric on a hyperbolic almost 

Kaehlerian space has the torsion   

(2.2)             𝑇𝒊𝒋
𝑘 =  𝑝𝑖𝛿𝒋

𝒌 − 𝑝𝒋𝛿𝒊
𝒌 +  𝑞𝒊𝐾𝒋

𝒌 − 𝑞𝒋𝐹𝒊
𝒌, 

where  𝑝𝒊 and  𝑞𝒊 are components of certain vector fields. If we, moreover, want 

this connection to be a metric one, then it has components   

 2.3              𝐻𝑖𝑘
𝑎 =  

𝑎
𝑖   𝑘

   +  𝑝𝑖𝛿𝑘
𝑎 − 𝑝𝑎𝑔𝑖𝑘 − 𝑞𝑘𝐹𝑖

𝑎  

The connection ∇ is an F-connection, that means that ∇𝐹 = 0. Then 

(2.4)              𝑞𝑗 =  −
𝑛

2
 𝑝𝑎  𝐹𝑗

𝑎   ,    𝑝𝑎𝐹𝑗
𝑎 =  − 

2

𝑛
 𝑞𝑗                                               

Then we can denote  

(2.5)                𝐻𝑖𝑘
𝑎 =  Γ𝑖𝑘

𝑎 − 𝑞𝑘𝐹𝑖
𝑎  
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where Γ𝑖𝑘
𝑎  is a component of Riemannian part of metric semi-symmetric F-

connection, which is itself a component of a metric semi-symmetric connection  

on the adjoint pseudo-Riemannian space, satisfying conditions of the 

definition(1.1). 

                       Now we can calculate the coefficients of curvature tensor of 

connection (2.3)   

                      𝑅 𝑖𝑗𝑘𝑙     =    𝑅𝑖𝑗𝑘𝑙   −   𝐹𝑗𝑖   ∇ 𝑙𝑞𝑘 − ∇ 𝑘  𝑞𝑙   +  

                                                   +   𝑞𝑘  (𝑝𝑗𝐹𝑙𝑖 +  
2

𝑛
 𝑞𝑗𝑔𝑙𝑖 +  

2

𝑛
 𝑞𝑖𝑔𝑙𝑗 + 𝑝𝑖𝐹𝑗𝑙 )− 

                                                   −  𝑞𝑙   𝑝𝑗𝐹𝑘𝑖 +  
2

𝑛
 𝑞𝑗𝑔𝑘𝑖 +

2

𝑛
 𝑞𝑖𝑔𝑘𝑗  + 𝑝𝑖𝐹𝑗𝑘  

 

By    𝑅𝑖𝑗𝑘𝑙  we denote a component of curvature tensor of metric semi-symmetric 

connection, satisfying of definition (1.1) and the tensor 𝑅 𝑖𝑗𝑘𝑙  is skew-symmetric 

in first two Indies.  𝑅 𝑖𝑗𝑘𝑙   is invariant under changing places of first and second 

pair of indies if and only if the tensor ( 𝑝𝑙𝑞𝑘  +  𝑞𝑙𝑝𝑘) is skew-symmetric. Then 

                         𝑝𝑘𝑝
𝑘𝑞𝑙  =  − 𝑝𝑘𝑞𝑘𝑝𝑙  . 

 

As the vectors   𝑝𝑘   and   𝑞𝑘   are mutually orthogonal, there yields 𝑝𝑘𝑝
𝑘 = 0. 

This means that the generator of metric semi-symmetric connection, that is, the 

Riemannian part of metric semi-symmetric F-connection is an isotropic 

gradient, which is in accordance with the statement of definition (1.1). Then the 

vector  𝑞𝑘  is also an isotropic vector.       

     

                        Theorem (2.2): The curvature tensor of a metric semi-symmetric 

F-connection on the hyperbolic almost Kaehlerian space is invariant under 

changing places of first and second pair of indices and satisfies the first Bianchi 

identity if and only if the generators of the connection are isotropic and  ∇ 𝑎𝑝
𝑎  = 

0. Then the all geodesic lines whose tangent vectors are proportional to the 

generators or Eigen for the structure are autoparallel for the metric semi-

symmetric F-connection, and conversely.   

                          Proof: We have the autoparallel lines of the connection (2.3) 

are geodesic lines of the adjoint pseudo-Riemannian space if and only if the 

condition  

(2.6)                  𝑝𝑗𝛿𝑘
𝑖 𝑣𝑗𝑣𝑘 − 𝑝𝑖𝑞𝑗𝑣

𝑗𝑣𝑘 − 𝑞𝑘𝐹𝑗
𝑖𝑣𝑗𝑣𝑘     =   

2

𝑛
𝑝𝑗𝑣

𝑗𝑣 𝑖 

where   𝑣 𝑖  is the tangent vector field of a geodesic line. Then 

(2.7)                 (𝑝𝑗𝑣
𝑗 − 𝑣𝑗𝑣

𝑗 − 
2

𝑛
𝑝𝑗𝑣

𝑗 ) 𝑣 𝑖 = − 𝑞𝑘𝑣
𝑘𝑢𝑖 ,  

where                       𝑢𝑖 =  − 𝐹𝑗𝑖 𝑣𝑗 =  𝐹𝑖𝑗 𝑣𝑗 . 

Then, from (2.7), 
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(2.8)                  𝑢𝑖 =  𝛼 𝑣 𝑖,          or          𝑞𝑘𝑣
𝑘   = 0.              

If (2.7) holds, then the tangent vector field is eigen for the structure, for one of 

its eigen values, 1 or -1.  Then  𝑣𝑘  is a self-orthogonal or isotropic vector field. 

The scalar product  𝑞𝑘𝑣
𝑘   then equals to 

 

                            
𝑛−2

𝑛
𝑝𝑗𝑣

𝑗 − 𝑣𝑗𝑣
𝑗 =  

𝑛−2

𝑛
𝑝𝑗𝑣

𝑗 . 

If (2.8) holds, we have express the vectors in the adapted basis  

(2.9)                      𝑝 =  𝑝𝑎 𝑙𝑎  +  𝑝𝑏 𝑙𝑏   , 

 

where  𝑙𝑏  are also eigen vector, for the eigen values -1.  Then 

                            𝑞 =  − 
2

𝑛
 𝑝𝑎 𝑙𝑎  +  

2

𝑛
 𝑝𝑏 𝑙𝑏        and     𝑣 =  𝑣𝑎 𝑙𝑎 +  𝑣𝑏 𝑙𝑏 . 

Then (2.8) gives  

(2.10)                    𝑞𝑘𝑣
𝑘  =  

2

𝑛
  𝑝𝑏 𝑣𝑎 − 𝑝𝑎𝑣𝑏  𝑔𝑎𝑏 =  0,  

It is satisfied if and only if  𝑣 is proportional to p. Anyway, the tangent vector 

field of the geodesic-autoparallel line is isotropic. 

 

                            As for the hyperbolic almost Kaehlerian space the generating 

vector field of the metric semi-symmetric F-connection having some of its 

autoparallel lines in common with Levi-Civita connection is isotropic, then the 

tensor (1.6) looks this way 

(2.11)                     𝑝𝑘𝑗 =  ∇ 𝑘𝑝𝑗 − 𝑝𝑘𝑝𝑗  

and      

(2.12)                     ∇ 𝑠𝑝
𝑠 =  𝑝𝑠

𝑠 =  
𝐾−𝑅

2(𝑛−1)
 . 

Contracting the tensor ( ∇ 𝑘𝑞𝑙 − ∇ 𝑙𝑞𝑘 ) with the tensor 𝐹𝑏
𝑙 , we obtain  

  − 
2

𝑛
∇ 𝑘𝑝𝑏 +

2

 𝑛 
𝐹𝑏 

𝑙 𝐹𝑘
𝑎 ∇ 𝑙𝑝𝑎 =  − 

𝑛

2
 ∇ 𝑘  𝑝𝑏 +  𝐹𝑏

𝑙 ∇ 𝑙𝑞𝑘  

and                      
𝑛−4 

2𝑛
∇ 𝑘  𝑝𝑏 =  𝐹𝑏

𝑙  ∇ 𝑙𝑞𝑘 −
2

𝑛
 𝐹𝑘

𝑎 ∇ 𝑙  𝑝𝑎 . 

Contracting the last relation with   𝑔𝑘𝑏 , we obtain 

𝑛 − 4

2𝑛
 ∇ 𝑎  𝑝𝑎   =  −

2

𝑛
 ∇ 𝑎 𝑝

𝑎 +  
2

𝑛
 𝑝𝑎  𝑝𝑎 = 0. 

If  𝑛 > 4 ,  then   

(2.13)                   ∇ 𝑎 𝑝
𝑎  = 0.     Then, by (2.12),        K = R. 

                          However, from (2.5) and the form of  curvature tensor, we can 

obtain that 
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(2.14)                 𝑅 = 𝑅 +  𝐹𝑙𝑘   ∇ 𝑙  𝑞𝑘 − ∇ 𝑘𝑞𝑙     

                  or     𝑅 = 𝑅 +  
2

𝑛
  ∇ 𝑙  𝑝

𝑙 +  ∇ 𝑙 𝑝
𝑙       =    𝑅 +  

4

𝑛
 ∇ 𝑙 𝑝

𝑙 .         

 If we have our curvature tensor to satisfy the first Bianchi identity, using 

expression for the curvature tensor, then we also obtain and proved   𝛁 𝒂 𝒑𝒂 = 0. 
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