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Abstract 

 

The study investigated agreement between Kolmogorov-Smirnov and Anderson-

Darling goodness of fit statistics on simulated Pareto and Gumbel Minimum 

densities. The simulation was carried out with EasyFit Version 4.3 software and 

36 continuous distributions were examined for fit on each simulated 

distribution. Sample sizes 20, 100 and 1000 were used and 100 replications 

performed. The observed coefficients were also modeled. Results revealed: 

supremacy of Komogorov-Smirnov test over  Anderson-Darling test for Pareto 

(for all sample sizes)  and supremacy of Anderson-Darling test over 

Kolmogorov-Smirnov test for Gumbel Minimum (for small and moderate 

sample sizes); stalemate between Kolmogorov-Smirnov and Anderson-Darling 

for large n (n=1000) in the case of Gumbel Minimum; improved agreement 

between Kolmogorov-Smirnov and Anderson-Darling with increasing sample 

size for case of Pareto; constant agreement between Kolmogorov-Smirnov and 

Anderson-Darling for all sample sizes in the case of Gumbel Minimum. 

Recommendation for inclusion of more distributions and goodness of fit tests 

was made 

  

Keywords: Fit; Pareto; Gumbel Minimum; Kolmogorov-Smirnov; Anderson-

Darling; Simulation. 
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1.0  INTRODUCTION 

Many a time, the need to test whether a set of observations follow a particular 

distribution or whether two or more sets follow the same distribution arises. 

Such an exercise may be informed by the need to satisfy distributional 

assumptions of a certain statistical procedure or the need to associate that 

particular type of data with a particular distribution or family of distributions. 

The test in question called ‘the goodness of fit’ test is traditionally investigated 

by the chi-square statistic due to Pearson (1900).     After this, a lot of other 

statistics have been developed.  

           These include the likelihood ratio statistic due to Wilks (1938), Neyman 

modified chi-square due to Neyman (1949),  Freeman-Tukey statistic due to 

Freeman and Tukey (1950), Anderson-Darling due to Anderson and Darling 

(1952), Kuper’s test due to Kuper (1962), Shapiro-Wilks test due to Shapiro and 

Wilks (1965), deviance method due to Nelder and Wedderburn (1972), Jarque-

Bera test due to Jarque and Bera (1980), Cressie-Read statistic due to Cressie 

and Read (1984), and Kolmogorov-Smirnov test. Efforts at comparing tests 

include West and Kempthorne (1972), Larntz (1978), Lawal (1984, 1989, 

1993)), Lawal and Upton (1990). 
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The aim of this article is to investigate agreement between Kolmogorov-

Smirnov and Anderson-Darling tests on simulated Pareto and Gumbel 

Minimum densities.  

The article is organized as follows: Section 2 presents the methods; 

section 3 presents the results and discussions while the last section presents the 

conclusion. 

1.1Kolmogorov-Smirnov (K-S) Test 

Kolmogorov-Smirnov (K-S) tests whether or not a given distribution is not 

significantly different from hypothesized distribution. The test is based on the 

Empirical Cumulative Distribution Function (ECDF). 

Let’s assume that we have a random sample (of size n) x1, x2,…, xn from some 

pdf with cumulative distribution function (CDF) F(x), then the ECDF is 

denoted: 

              
n

xFn

1
)(  [Number of observations   x]                              (1.1.1a) 

The K-S statistic (D) is based on the largest vertical difference between the 

theoretical and the empirical CDF and is defined: 
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                                                 (1.1.1b) 

The null and the alternative hypotheses are: 

              H0: The data follow the specified distribution 

               H1: The data do not follow the specified distribution 
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H0 is rejected if D > critical value or if p-value < α 

 

 

1.2 Anderson-Darling  (A-D) Test 

The Anderson-Darling (A) test, due to Anderson and Darling (1952) is a general 

test for comparing the fit of an empirical CDF to a theoretical CDF. It is in the 

literature that this test assigns more weight to the tails than does the K-S test.  

A-D test statistic (A
2
) is defined as: 

    ))](1()()[12(12
iin

xFInxInFinA                           (1.2.1) 

The null and the alternative hypotheses are same as those of K-S test. 

The null hypothesis is rejected if A
2
 > critical value. The critical values for this 

procedure depend on the specific distribution being tested and this poses a great 

problem, particularly if the distribution in question is not one of the most widely 

used ones, whose tables are available. However an approximation formula 

which depends only on the sample size has been developed. 

1.3 Pareto Distribution 

The Pareto distribution is a positively skewed continuous distribution originally 

used for modeling allocation of wealth among individuals. It describes a 

situation where the larger portion of the wealth of the society is owned by a 

smaller percentage of the people- a typical situation in any society. Frequencies 

of words in longer texts, size of human settlements, size of sand particles are 
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cases that can be modeled by Pareto. This distribution is often described in 

relation to ‘80/20’ Rule. In economics, it may mean that 20% of the inputs 

create 80% of the result; 20% of the customers create 80% of the revenue; 20% 

of the population hold 80% of the wealth. The basic principle is that most things 

in life are not evenly distributed. 

The Pareto distribution has two parameters (α and β) and is defined as: 

             
1

)(







x
xf          x ; 0 ; 0                    (1.3.1) 

  and   are shape and scale parameters respectively 
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The implication is that E(X) does not exist if 1  and V(X) does not exist if 
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Hence raw moments, variance, skewness and the kurtosis are defined but not for 

all values of the shape parameter,  . 

Random number generation can be performed for a Pareto distribution by 

transforming a continuous uniform variable  U(0, 1) with the distribution’s 

inverse function as follows: 





1

1) U(0,-1

1
) ,( 
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
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
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Par                                                  (1.3.4)  

1.4 Gumbel Distribution 

The Gumbel distribution is used for modeling the distribution of the maximum 

(minimum) of a number of samples of organizations. It may be used to model 

the maximum (minimum) water level of a river. It is particular case of 

generalized extreme value distribution (otherwise known as Fisher-Tippet 

distribution). Their exist two types of Gumbel distribution namely: Gumbel 

minimum and Gumbel maximum. The former is of particular interest to this 

article. The Gumbel minimum distribution (also called log-Weibull distribution 

or double exponential distribution) is negatively skewed and has  two 

parameters  (α and β).  

     The pdf is: 
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  and   are  scale and location parameters respectively. 
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13955.1Skewness                                                                 (1.4.3c) 

4.5Kurtosis                                                                           (1.4.3d) 

When and 0  1 in (1.4.1), we have the standard Gumbel minimum 

defined as: 

         )]exp(exp[)( xxxf                                                      (1.4.4) 

(1.4.4) is of particular interest to this research. 

Gumbel random numbers can be generated by transforming a continuous 

Uniform variable, U(0, 1) with the distribution’s inverse probability function as 

follows: 
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2.0 METHODS    

2.1 Design of Experiments 

Each of Pareto (with parameters  and 5  1 ) and standard Gumbel 

minimum distributions was simulated for sample sizes 20, 100, and 1000. 

Kolmogorov-Smirnov and Anderson-Darling tests were applied on the 

simulated data for fit on 36 continuous distributions, which were ranked on the 

order of goodness of fit to the simulated data. Spearman’s correlation 

coefficient (r) was observed between the ranks assigned by the two statistics. 

Median r was obtained for each scenario (distribution and sample size). The 

observed r values were also modeled for each scenario. 100 replications were 

performed. EasyFit 4.3 and SPSS 17.0 were used for the simulation and 

analysis. 

2.2 Model Estimation 

Model estimation was carried out by the maximum likelihood method (MLE). 

Maximum Likelihood Estimation of Pareto parameters   

                        
1
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Taking log 
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MLE of  can not be found by differentiation as done for   since logL is 

unbounded for  . Noting that   is the lower bound of x (see (1.3.1)), logL can 

be maximized subject to the constraint: 

              i
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log L is maximized with respect to  when  
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(2.2f) is hence the MLE of  . Saksena and Johnson (1984) have shown that 

MLE of   and   are best linear unbiased estimators. 

MLE of Gumbel Minimum Parameters 
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3.0 RESULTS AND DISCUSSIONS 

 Table 1. Median r values 

n    Pareto   Gumbel Minimum 

 

20   .594    .675 

100   .678    .675  

1000   .915    .675 

 

Table 1 presents median r for ranks assigned 36 continuous distributions by the 

Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) methods. For the 

Pareto distribution, a coefficient of .594 was observed for n=20. The value 

increased to -678 for n=100 and to .915 for n=1000, indicating that increased 

sample size resulted in better agreement between the rankings of the continuous 

distributions by the two methods. For n=1000, the agreement is very strong. For 

Gumbel Minimum, the same agreement was exhibited for all sample sizes, 
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indicating insensitivity to sample size variation. For all sample sizes, a fairly 

strong agreement of .675 was maintained. 

Table 2. Presentation of best five distributions (n = 20 for Pareto) 

Rank                K-S                                                          A-D 

 

1        Frechet (3P) α = 4.3905, 0.90478             Frechet (3P) α = 4.3905, 0.90478                   

 

2        log-logistic(3P) 21.162, 0.6067          log (3 ) 0.46064, 0.45481normal p     

 

3        Welbull (3P) 0.87077, 0.0277             log-logistic(3P) 21.162, 0.6067    

 

4      log (3 ) 0.46064, 0.45481normal p           Inv.Gaussian (3P) 

                                                                                 0.048, 0.629, 0.578        

5    Gen.Extreme v K= .982, = .0108, = 586      Cauchy  = 0.0143,  = 0.5935 

 
 

Table 2 presents the best five models as ranked by each of K-S and A-D 

for the Pareto case. Both methods picked Frechet as the best fit for r values 

except that K-S picked the 2-parameter Frechet while A-D picked the 3-

parameter Frechet. K-S rated 3-parameter log-logistic as the second while A-D 

rated it as the third best. Both methods rated three distributions (3-parameter 

Frechet; 3-parameter log-logistic; 3-parameter log-normal) in common among 

their best five. 

Table 3 presents the Pareto case for n=100. While K-S rated 2-parameter 

Frechet as the best, A-D rated it as the fourth. Both methods rated uniform 

distribution as the fifth best. K-S rated 3-parameter Frechet as the third best 

while A-D rated it as the second best. Both methods share four distributions in 

common among their best five. 
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Table 3. Presentation of best five distributions (n = 100 for Pareto) 

Rank                K-S                                                          A-D 

 

1      Frechet (3P) α = 13.639,  = 68839               Beta  α1 = 0.12291, α2 = .13024 

                                                                                                    a = .667  b = .785 

2      log-logistic(3P)α =1.249,  = .017  = .665  Frechet (3P) α = 1.073,  = .0175  = .665 

 

3      Frechet (3P) α = 1.073,  = .0175  = .665  log-logistic(3P)α =1.249, = .017  = .665 

 

4      Inv.Gaussian   = 133.8,  = .7196              Frechet  α = 13.639,  = 68839 

 

5    Uniform a= .62823 , b = .81107              Uniform a= .62823 , b = .81107 

 

 

Table 4 presents the case of n=1000. K-S and A-D seem to have 

improved agreement in their ranking. Both rated Generalized extreme and 

Gumbel Minimum as the best and second best. They share four distributions in 

common among their best five. 

 

Table 4. Presentation of best five distributions (n = 1000 for Pareto) 

Rank                K-S                                                          A-D 

 

1      Gen.Extreme v K= .581, = .048, = 065   Gen.Extreme v K= .581, = .048, = 065 

                                                                                                     

2      Gumbel Min  = .0368, = 0.9329              Gumbel Min  = .0368, = 0.9329 

 

3      Log-logistic (3P) α = 4.323,  = 1.0506        Weibull α = 8.8272,  = 3.0627  = 3.0627  

                                     = 1.0506 

4      Weibull α = 8.8272, = 3.0627  = 3.0627   Beta  α1 = 0.12291, α2 = .13024 

                                                                                           a = .667  b = .785 

5    lognormal (3P)  α.=0169 = .994  = 1.788    Log-logistic (3P) α = 4.323,  = 1.0506 

                                                                                                              = 1.0506   

 

Table 5 presents the case of Gumbel Minimum for sample size 20. Both 

methods rated Log-logistic as the best. The two methods share four distributions 

in common. Table 6 the case of n=100. K-S and A-D respectively rated 3-
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parameter Log-logistic and 3-parameter Frechet as the best. They share three 

distributions in common. 

 

Table 5. Presentation of best five distributions (n = 20 for Gumbel Minimum) 

Rank                K-S                                                          A-D 

 

1      Gen.Extreme v K= .581, = .048, = 065   Gen.Extreme v K= .581, = .048, = 065 

                                                                                                     

2      Gumbel Min  = .0368, = 0.9329              Gumbel Min  = .0368, = 0.9329 

 

3      Log-logistic (3P) α = 4.323,  = 1.0506        Weibull α = 8.8272,  = 3.0627  = 3.0627  

                                     = 1.0506 

4      Weibull α = 8.8272, = 3.0627  = 3.0627   Beta  α1 = 0.12291, α2 = .13024 

                                                                                           a = .667  b = .785 

5    lognormal (3P)  α.=0169 = .994  = 1.788    Log-logistic (3P) α = 4.323,  = 1.0506 

                                                                                                              = 1.0506   

 

Table 6. Presentation of best five distributions (n = 100 for Gumbel Minimum) 

Rank                K-S                                                          A-D 

 

1      Log-logistic α = 18.854,  = 0.69133            Log-logistic α = 18.854,  = 0.69133 

                                                                                                     

2      Log-logistic (3P) α = 5.3073,  = 0.2562       Frechet  α = 12.627,  = 0.66134 

                                      = 0.4352 

3      Cauchy  = 0.02801, = 0.6613                   Log-logistic (3P) α = 5.3073,  = 0.2562 

                                                                                                       = 0.4352 

4      Frechet  α = 12.627,  = 0.66134                  Cauchy  = 0.02801, = 0.6613 

                                                                                           a = .667  b = .785 

5    Weibull α = 9.2285,  = 0.4684  = 0.2492    Weibull α = 9.2285,  = 0.4684  = 0.2492 

 

 

 

Table 7 presents for n=1000. The Generalized extreme distribution rated 

second by K-S is rated best by A-D while Pert rated best by K-S is rated fourth 

by A-D. The methods shared four distribution s in common. In all but one case, 

four distributions are shared in common among the best five of distributions 

fitted to the values of r. 
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Table 7. Presentation of best five distributions (n = 1000 for Gumbel Minimum) 

Rank                K-S                                                          A-D 

 

1      Pert m= 0.932 a= 0.7677  b = 0.9831            Gen.Extreme v k=0.5225  = 0.0405, =  

 0.9056 

2      Gen.Extrem v k=0.522  = 0.040, = 0.90  Beta α1 = 0.12291, α2 = .13024 

                                                                                           a = .667  b = .785 

3      Beta α1 = 0.12291, α2 = .13024                     Johnson SP  = 0.2492 

                            a = .667  b = .785                         = 0.3165 = 0.9056                                                                               

4      Johwnson SP  = 0.2492                             Pert α1 = 0.12291, α2 = .13024 

                          = 0.3165 = 0.9056                          a = .667  b = .785 

5    Gen.Pareto k= 1.5722  = 0.193, = 0.839    Weibull α = 28.934,  = 0.4684  = 

0.93078 

 

Table 8 presents the results of Mann-Whitney test where the alternative 

hypothesis is that the median rank assigned by the K-S is less than that assigned 

by the A-D. Median  ranks assigned Pareto by K-S and A-D are 10 and 26 

respectively for n=20. The null hypothesis is rejected at α=0.01. Hence the 

median rank assigned by K-S is less than that assigned by A-D. K-S has hence 

performed better in identifying the Pareto. For n=100, the median ranks are 

respectively 6.5 and 11 for K-s and A-D. The test is rejected at α=0.01, 

indicating that K-S is better. For n=1000, the median ranks are 2 and 5 for K-S 

and A-D respectively. The test is also significant the null hypothesis is rejected 

at α=0.01. For both methods, the median rank assigned Pareto decreased with 

increase in sample size. This signifies improvement by both methods as sample 

size increased.  

Table 8. Results of hypothesis testing for Pareto 

n=20 n=100 n=1000 

Median p-val W Median p-val W Median p-value W 

K-S A-D   K-S A-D   K-S A-D   

10 26 0.000 6062 6.5 11 .000 6440 2 5 .000 7510 
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Table 9 presents the results for Gumbel Minimum where the alternative 

hypothesis is that the median rank assigned by K-S is greater than that assigned 

by A-D. The median ranks assigned the Gumbel by K-S and A-D are 

respectively 10 and 8 for n=20; 9 in each case when n=100 and 8 and 7 for 

n=1000.  For n=20, the test is significant. The null hypothesis that the median 

rank for K-S is not greater than that of A-D is rejected at α=0.01. A-D is hence 

better at identifying Gumbel Minimum when n=20. For n=100, the test is also 

significant and can be rejected at α=0.05, still signifying better performance by 

A-D. For n=1000, the situation is not same as the test is not significant. This 

means that A-D is not better for n=1000. 

Table 9. Results of hypothesis testing for Gumbel Minimum 

n=20 n=100 n=1000 

Median p-val W Median p-val W Median p-value W 

K-S A-D   K-S A-

D 

  K-S A-D   

10 8 .0001 11594 9 9 .010 101999 8 7 .01889 10411. 

  

 Table 10. Frequencies of correctly identified cases                                                                                                             

Pareto Gumbel Minimum 

n=20 n=100 n=100 n=20 n=100 n=1000 

K-S A-D K-S A-D K-S A-D K-S A-D K-S A-D K-S A-D 

2 0 9 0 9 3 2 0 0 2 4 4 

 

Table 10 presents the number of times (out of 100 replications) the 

distribution (Pareto or Gumbel Minimum) is correctly identified (rated first) by 

each of K-S and A-D. K-S identified Pareto correctly on 2, 9 and 9 occasions 

for sample size 20, 100 and 1000 respectively. For n=20 and n=100, A-D could 

not identify the Pareto correctly while it identified it correctly on 3 occasions for 

n=1000. Hence, K-S has identified Pareto greater number of times than A-D- (a 
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pointer to supremacy in identifying Pareto). For Gumbel Minimum case, K-S 

identified the simulated distribution as Gumbel Minimum 2 times for n=20; on 

no occasion for n=100 and 4 times for n=1000. On Gumbel, the two methods 

exhibited equal performance.  

4.0 CONCLUSION 

The study has compared the performance of Kolmogov-Smirnov and Anderson-

Darling goodness of fit tests on Pareto and Gumbel Minimum densities. Results 

revealed: supremacy of Komogorov-Smirnov test over  Anderson-Darling test 

for Pareto (for all sample sizes)  and supremacy of Anderson-Darling test over 

Kolmogorov-Smirnov test for Gumbel Minimum (for small and moderate 

sample sizes); stalemate between K-S and A-D for large n (n=1000) in the case 

of Gumbel Minimum; improved agreement between K-S and A-D with 

increasing sample size for case of Pareto; constant agreement between K-S and 

A-D for all sample sizes in the case of Gumbel Minimum. It is recommended 

that more distributions and more goodness of fit tests be investigated. 
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