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Abstract 

Data on gender, school attended for the National Diploma (ND), ND grades and HND grades 

of Higher National Diploma (HND) statistics graduates of the Federal Polytechnic, Bida, 

were examined for presence of association using log linear model. HND grade was found to 

be associated with ND grade but not associated with school attended for ND. Gender 

differences were observed in both ND and HND grades. All two-factor interactions but 

School*HND were found to be significant; so also are all the three-factor interactions but 

Gender*ND*HND. The need to address gender imbalance in performance was observed. 
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1. INTRODUCTION  

Occasions often arise, when there is need to study association between two or more 

categorical variables, particularly in the social and medical sciences. One may be interested 

in studying association between smoking and cardiac arrest or cancer. Association in 

contingency tables is traditionally investigated by the Chi-square statistic due to Pearson 

(1900). Later, new method likened to conventional ANOVA was developed. This method of 

modeling is the log linear modeling.  

The log linear model is a specialized case of generalized linear model for Poisson 

distributed data and is more commonly used for analyzing multidimensional contingency 

tables that involve more than two variables, although it can be used to analyze two-way 

contingency tables too (Jeansonne, 2002). A log linear model is similar to the more familiar 

ANOVA model except that it is applied to the natural logarithm of the expected frequencies 

(Jibasen, 2004; Lawal, 2003). Response observations in ANOVA are assumed to be 

continuous normal while in log linear modeling; observations are counts having Poisson 

distribution (Lawal, 2003).  
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              In the context of log linear modeling, the main effects are usually not of interest 

(Jibasen, 2004). In fact, Everitt and Dunn (1991) described the main effects parameters in a 

log linear model as “nuisance parameters”. Bishop, Fienberg, and Holland (1975), Goodman 

(1964, 1968, 1970, 1971), Haberman (1978), Everitt (1977), Agresti (1996, 2002), Knoke and 

Burke (1980) are a few of the contributions to the literature on log linear model.  

 This research is aimed at developing an appropriate log linear model for examining 

interactions among gender, school attended for National Diploma (ND), ND grade, and 

Higher National Diploma (HND) grade of HND statistics graduates of the Federal 

Polytechnic, Bida.  

The work is organized as follows: section 2 presents the methods; section 3 presents 

the results and discussion while the last section presents the conclusion. 

2. METHODS 

Data 

Data on gender, school attended for ND, ND grade, and HND grade were retrieved from files 

of 424  HND Statistics graduates of the Federal Polytechnic, Bida. 

The schools attended for ND were classified into two as follows: 

Federal Polytechnic, Bida- Group 1; other schools- Group 2 

ND and HND grades were classified as: Pass; Lower credit; Upper credit; Distinction 

Model 

The log linear model to be considered is the one with four dimensions since four variables are 

involved. The general log linear model for a contingency table with four variables is given as: 

(2.1)                                                  
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and 

µ: overall mean 

u1(i): ith level of gender 

u2(j): jth level of school attended for ND 

u3(k): kth level of ND grade 

u4(l): lth level of HND grade 

u12(ij): interaction between ith level of gender and jth level of school attended for ND 

u123(ijk): interaction between ith level of gender, jth level of school attended for ND and kth 

level of ND grade. 

Other interactions are similarly defined. 

The “sum to zero” constraints on the parameters are to ensure that the model contains as 

many parameters as the number of cells in the table. Such model is called saturated model. 

Equation ( 2.1) is therefore a saturated formulation for a four dimensional table. 

We shall entertain only hierarchical models. The hierarchical principle emphasizes that 

whenever a higher order effect is included in a model, all the lower order effects composed 

from variables in the higher effect are also included (Everitt, 1977). Non-hierarchical models 

should not be entertained because non-hierarchical modeling does not provide statistical 

procedure for choosing among potential models (Jeansonne, 2002). 
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Parameter estimation 

The iterative proportional fitting (IPF) algorithm due to Deming and Stephan (1940) is used 

to estimate model parameters. This is to ensure that expected values are obtained iteratively 

for model whose expected values are not directly obtainable (from marginal totals of 

observed values). 

 Consider the 4-factor model without 4-factor interaction given as: 

(2.2)                                                                    

log
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Equation (2.2) is an example of a model without direct estimates. This model is hereby used 

to illustrate the IPF algorithm for estimating expected frequencies (mijkl), which are inputs to 

parameter estimation in the fitted model. Estimates of parameters are functions of the 

logarithms of mijkl (Everitt, 1977). 

Totals  .jkli.klij.l. m̂ and ,m̂ ,m̂ ,ˆ
ijkm are constrained to be equal to the corresponding observed 

marginal totals. To start the IPF procedure, we set initial values 1)0(ˆ ijklm  and proceed by 

adjusting these proportionally to satisfy the first marginal constraint ( ..
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Complete the cycle by adjusting )3(ˆ
ijklm to satisfy the fourth marginal constraint ( jkljkl nm ..

ˆ  ) 

using: 

                            
)3(ˆ

)3(ˆ
)4(ˆ

.

.

jkl

jklijkl

ijkl
m

nm
m                                                                         (2.6) 

This four-step cycle is repeated until convergence to the desired accuracy is attained. That is, 

the process is continued until differences between expected values differ by less than some 

small amount say 0.01 or 0.0001. 

Goodness of Fit Tests 

After fitting the model, it becomes imperative to assess the goodness of its fit. This is done by 

comparing the expected frequencies to the observed cell frequencies for the model. This can 

be done with a number of statistics. The statistics include Pearson Chi-square ( 2 ) due to 

Pearson (1900); likelihood ratio statistic (G
2
) due to Wilks (1938); Neyman modified Chi-

square (NM
2
) due to Neyman (1949); Freeman Tukey (T

2
) due to Freeman and Tukey (1950); 

modified log likelihood ratio (GM
2
) due to Kullback (1959); modified Freeman Tukey (FT) 

due to Bishop, Fienberg, and Holland (1975). 

Comparative studies have suggested preference for use of G
2
 statistic over others 

owing to decomposability into small components and simplicity when comparing two 

competing models (Lawal, 2003). 

 The G
2 
statistic is given as: 
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Where 

                 ni is the observed frequency and mi is the expected frequency. 

G
2
 is Chi-square distributed with degree of freedom (d.f) equal to: 



International Journal of Advanced Scientific and Technical Research   Issue 3 volume 1, January-February 2013 

Available online on   http://www.rspublication.com/ijst/index.html                                             ISSN 2249-9954   

 Page 592 
 

d.f = number of cells in the table – number of independent parameters estimated. That is, d.f 

is the number of parameters set equal to zero for the purpose of identifiability.  

 It is possible that more than one model (often the case) is providing a good fit to the 

data. When that happens, the goodness of fit of any two competing models (A and B, where 

A is nested within B) can be compared using the quantity:  

                                                G
2 
(B, A) = G

2
(A)-G

2
(B)  

where G
2
(A) and G

2
(B) are the G

2
 values for model A and model B respectively. 

 If their respective d.f are d.fA and d.fB, then G
2 

(B, A) is Chi-square distributed with (d.fA - 

d.fB) d.f. If G
2 

(B, A) is not significant, then model A is not significantly worse than model B 

and hence, we would choose the more parsimonious model A. 

Model Selection 

Many techniques exist in the literature for selecting models. These include: forward selection; 

backward selection; stepwise procedure; selection based on saturated parameters; selection 

based on marginal and partial association due to Brown (1976) and Aitkin (1979) method. 

The backward selection method is however used in this work. 

 In backward selection, we usually start with the most complex model. Terms are then 

sequentially deleted from the model. G
2
 is computed for each of the current and the reduced 

model (model resulting from deletion) and using a cut off of predetermined α, say 0.05, we 

delete the term for which p-value is least significant (term with highest p-value). The process 

continues until further deletion would lead to a significantly poorer fit. 

3. RESULTS AND DISCUSSION 

The marginal and partial association tests have suggested the significance of two-factor and 

three-factor interactions. The partial association tests indicated significance of all two-factor 

interactions except School*HND (U24) with chi-square value of 3.051 and p-value of .384. It 
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also indicated significance of all three-factor interactions but Gender*ND*HND (U134) with 

chi-square value of 7.669 and p-value of .568.    

            The final model obtained through backward elimination procedure has the generating 

class: Gender*School*ND (U123),  Gender*School*HND (U124), School*ND*HND (U234). 

The goodness of fit statistics are: 

                   Likelihood ratio (G
2
) = 8.376; d.f =18; p-value = .972 

                   Pearson Chi-square (χ
2
) = 8.157; d.f =18; p-value = .976 

Both the G
2
 and χ

2 
have suggested model adequacy. 

 The only three-factor interaction (Gender*ND*HND (U134)), declared insignificant by 

the association test would not appear in the final model. The same does not however apply to 

the insignificant two-factor interaction (School*HND (U24)).U24 has to be included in the 

final model in harmony with the hierarchy principle.  

              The final model is hence: 

(2.8)                                                                                 

log
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Although ND grade is associated with HND grade, the association does not depend on 

gender. Association between gender and ND grade does not depend on HND grade just as 

association between gender and HND grade does not depend on ND grade. There is gender 

imbalance in both ND and HND grades. HND grade is found not to be associated with school 

attended for ND. It is however associated with ND grades. This is indicative of the fact that 

the HND tutors are not partial in the HND grading. Preference has not been given to HND 

students who bagged the ND at the Federal Polytechnic, Bida. The major determinant of 

HND grade is the ND grade, regardless of school attended for the ND. This is an indication 

that standard does not significantly vary from school to school. 
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4. CONCLUSION 

The research has performed log linear modeling on four factors: Gender, school attended for 

ND, ND grade and HND grade. All two-factor interactions but School*HND are significant. 

HND grade is hence not influenced by school attended for the ND but rather by the ND grade 

- an indication that standard does not significantly vary across schools. All three-factor 

interactions but Gender*ND*HND are significant. Gender imbalance exists in both ND and 

HND grades - an issue that deserves attention of the society. 
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