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ABSTRACT 

Most of the classification techniques are developed under the normality assumption. In 

practical situations data set of course may be non-normal. Hence, we are motivated to apply 

Box-Cox transformation for transforming non-normal data set to near normal data set. In this 

paper we consider different parametric classification techniques to classify objects into 

classes and make a comparative study among these classification techniques to recognize the 

suitable one for a given situation. There is no unique classification technique that is suitable 

for all the situations. In most of the situations classification techniques gives few 

misclassifications under transformed data set. Also, the classification accuracy through Naive 

Bayes technique is better than the other classification techniques. We also investigate the 

effect of Box-Cox transformation and observe that, the classification accuracy under 

transformed data set is higher than the simulated data set. 
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INTRODUCTION 

Traditionally, there have been two main approaches to classification (Christopher M. Bishop) 

[1] - supervised classification and unsupervised classification (usually referred to as 

segmentation or clustering). In supervised classification we have a set of data samples that 

have class labels associated with them. This set is called the training data set and is used to 

estimate the parameters of the classifier. The classifier is then tested on an unknown datasets 

referred to as the test dataset. Classification is perhaps the most familiar and most popular 

data mining technique (M. H. Dunham) [2]. Examples of classification applications include 

image and pattern recognition, medical diagnosis, loan approval, detecting faults in industry 

applications, and classifying financial market trends. Estimation and prediction may be 

viewed as types of classification. When someone estimates your age or guesses the number of 

marbles in a jar, these are actually classification problems. Before the use of current data 

mining techniques, classification was frequently performed by simply applying knowledge of 

the data. This is illustrated in the following example. Credit card companies must determine 

whether to authorize credit card purchases (M. H. Dunham) [2]. Suppose that based on past 

historical information about purchases, each purchase is placed into one of the four classes: 

(i) authorize, (ii) ask for further identification before authorization, (iii) do not authorize and 

(iv) do not authorize but contact police. Here the historical data must be examined first to 

determine how the data fit into the four classes. Then the problem is to apply this model to 

each new purchase. Statistical classification is a procedure in which individual items are 

placed into groups based on quantitative information on one or more characteristics inherent 

in the items (referred to as traits, variables, characters, etc) and based on a training set of 
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previously labeled items. We still do not have single classifier that can reliably outperform all 

others on a given data set. The accuracy of a particular parametric classifier on a given data 

set will clearly depend on the relationship between the classifier and the data (C. M. Van Der 

Walt and E. Barnard) [3]. By developing statistical classification methods we can asses the 

performance of the assignment rule, the relative sizes of the classes can be measured formally 

the differences between classes can also be tested (D. J. Hand) [4]. 

 

Classification technique cannot usually provide an error-free method of assignment (R. A. 

Johnson and D. W. Wichern) [5]. This is because there may not be a clear distinction between 

the measured characteristics of the populations: that is the groups may overlap. A good 

classification procedure should result in few misclassifications. In other words the chances or 

probabilities of misclassification should be small. In practice, labeling large amounts of data 

may sometimes require considerable human resources or expertise (M. R. Amini and P. 

Gallinari) [6]. This is for example the case for many information retrieval tasks where the 

relevance of retrieved information has to be evaluated by a human. For this type of 

application, although data are usually widely available, the development of labeled datasets is 

a long and resource consuming process. For other applications like medical diagnosis, 

labeling datasets may require expensive tests and be therefore very costly. For rapidly 

evolving domains or databases there is simply no time to process by hand large datasets.  

 

The supervised parametric classification techniques (Fisher’s Linear Discrimination, 

Quadratic Classification, Naïve Bayes, Bayesian Network and Logistic Classification) has 

been proposed as a solution to this type of problem when simulated data are available and not 

time consuming. Since there is a belief that simulated data contain relevant information about 

the class, it is a natural idea to extract this information to provide a classifier more evidence. 

In this paper, we investigate the performance of different classification techniques and 

observed that, some of the techniques give few misclassifications under Box-Cox 

transformed data set than the simulated data set. Hence, the classification accuracy under 

Box-Cox transformed data set is higher than the simulated data set. In this paper, we also 

investigate that, there is no unique classification technique that gives better result in all the 

situations. Different classification technique gives better result in different situation. 

Considering all the situations, the classification accuracy is achieved by the Naïve Bayes 

Classification technique is better than the other classification techniques.  

 

The paper is organized as follows: first we present the formal framework of our 

representation, and then discuss the Box-Cox transformation methods and classification 

techniques used in this study.  We also apply these classification techniques on the simulated 

data set and transformed data set. Finally, we make a comparative study among the 

classification techniques used in this study to recognize the effectiveness of Box-Cox 

transformation and also identify the suitable technique.    

 

BOX-COX TRANSFORMATION METHODS 

Some of the methods of classification are developed on the basis of normality assumption (R. 

A. Johnson and D. W. Wichern) [5]. If the normality assumption is not satisfied then using 

this type of method is theoretically wrong and gives the misleading results. Then we need to 

make non-normal data more “normal looking” by considering Box-Cox transformation of the 

data.  
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 Transforming Univariate Observation 

A convenient analytical method is available for choosing a power transformation (R. A. 

Johnson and D. W. Wichern) [5]. In case of univariate analysis, Box and Cox considers 

slightly modified family of power transformations. 
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Transforming Multivariate Observation 

With multivariate observations a power transformation must be selected for each of the 

variables (R. A. Johnson and D. W. Wichern) [5]. Let 1 2, ,..., p   be the power 

transformations for the p-measured characteristics. Each k can be selected by maximizing 

the equation.  
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where 1 2, ,...,k k nkx x x are the n observations on the k
th  

variable, 1,2,...,k p . Here 
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where 1 2
ˆ ˆ ˆ, ,..., p   are the values that individually maximize the equation (2). 

 

CLASSIFICATION TECHNIQUES  

Data mining is a process to mine and organize data in useful and coherent collections (J. Han 

and M. Kamber; B. A. Aski and H. A. Torshizi) [7, 8]. Data mining is sometimes used to 

discover and show some knowledge in an understandable form. The aim of data mining is 

description and prediction. There are many strategies in data mining which can be led to the 

prediction. One of them is classification. A classification is first trained on a given labelled 

set of training samples. A given test sample is then assigned to a particular class by the 

classifier (R. O. Duda, P. E. Hart, D. G. Stork; M. P. Sampat,  A. C. Bovik, J. K. Aggarwal and 

K. R. Castleman) [9, 10]. 
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SUPERVISED PARAMETRIC CLASSIFICATION TECHNIQUES   

Classification maps data into predefined groups or classes. It is often referred to as supervised 

learning because the classes are determined before examining the data (M. H. Dunham) [2]. 

This section gives a brief review of the different supervised parametric classification 

techniques that are used in this paper.  

 

Fisher’s Linear Classification 

Fisher-LDA considers maximizing the following objective (M. Welling) [11]: 
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where BS  is the “between classes scatter matrix” and WS  is the “within classes scatter 

matrix”. Note that due to the fact that scatter matrices are proportional to the covariance 

matrices we could have defined J  using covariance matrices the proportionality constant 

would have no effect on the solution. The definitions of the scatter matrices are: 
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where, x is the overall mean of the data cases. Oftentimes you will see that for 2 classes BS  is 

defined as   1 2 1 2

T

BS        . This is the scatter of class 1 with respect to the scatter of 

class 2 and hence corresponds to computing the scatter relative to a different vector. By using 

the general transformation rule for scatter matrices: 

 2
TT

vS S Nvv Nv x        

with   
T

i ii
S x x     we can deduce that the only difference is a constant shift 

not depending on any relative distances between points. A study concerned with this 

function maximally separates the two populations and used to classify new observations. 

 

Quadratic Classification 

A quadratic discriminant analysis is a general extension of a linear discriminant analysis that 

assumes the same variance-covariance matrix of different classes (K. M. Lee, T. J. Herrman, 

S. R. Bean, D. S. Jackson and J. Lingenfelser) [12]. The individual variance-covariance 

matrix of each class is used as a classification criterion in a quadratic discriminant analysis. 

Among several alternative classification rules used to discriminate among classes, the Bayes 

rule was used to compute the posterior probability to assign an observation x  to a single class 

(G). According to this rule, given prior probabilities i jp and p , the observation x belongs to 

class iG , if 

    / . / .i i j jP x G p P x G p for i j   

where,    / /i jP x G and P x G are the probability densities. A quadratic discriminant assigns 

the observation x to class iG when the discriminant score  iD x , a measure of the generalized 

squared distance between x and class G, is minimized. 

          
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where, i is the mean of class i , and i is the population variance-covariance matrix of class

iG . The posterior probability for each of the possible classifications is then obtained using 
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the computed discriminant score  iD x . An observation x is assigned to the class with the 

largest posterior probability. In a linear discriminant analysis, the notation i of the different 

population covariance matrix is replaced with due to the same variance-covariance matrix 

assumption 

        10.5 logi i i iD x x x p      

 

Naive Bayes 

Bayes theorem with independent assumptions between predictors is core concept of Naive 

Bayes classifier. The simplest approach of Bayesian network is naive bayes in which all 

attribute of a dataset is independent to its class variable value. So, Naive Bayes classifier is a 

Bayesian network where the class has no parents and each attribute has the class as its sole 

parent (M. P. Sampat,  A. C. Bovik, J. K. Aggarwal and K. R. Castleman; W. Buntine; Daniel 

Grossman and Pedro Domingos) [10, 13, 14]. The approach is called “Naïve” because if 

assumes the independence between the various attribute values (M. H. Dunham) [2]. Given a 

data values ix the probability that a related tuple, it , is in class jC is described by  |j iP C x . 

Training data can be used to determine    , |i i jP x P x C and  jP C . From these values, 

Bayes theorem allows us to estimate the posterior probability    | |j i j iP C x and then P C t . 

Given a training set, the Naïve Bayes algorithm first estimates the prior probability  jP C for 

each class by counting how often each class occurs in the training data. For each attribute, ix  

the number of occurrences of each attribute values ix can be counted to determine  iP x . 

Similarly, the probability  |i jP x C can be estimated by counting how often each value 

occurs in the class in the training data. Naïve Bayes classification can be viewed as both a 

descriptive and a predictive type of algorithm. The probabilities are descriptive and are then 

used to predict the class membership for a target tuple. Suppose that tuple it has p

independent attribute values 1 2, ,..,i i ipx x x . From a descriptive phase, we know  |ik jP x C , 

for each class jC and attribute ikx . We then estimate  |i jP t C by    
1

| |
p

i j ik j
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At this point in the algorithm, we then have the needed prior probabilities  jP C for each 

class and the conditional probability  |i jP t C . To calculate  iP t , we can estimate the 

likelihood that it is in each class. The posterior probability  |j iP C t  is then found for each 

class. The class with the highest probability is the one chosen for the tuple.  

 

Bayesian Network 

A Bayesian network B is an annotated acyclic graph that represents a joint probability 

distribution (JPD) over a set of random variables V
11

 [15] (F. Ruggeri, F. Faltin and R. 

Kenett). The network is defined by a pair ,B G    , where G is the directed acyclic graph 

(DAG) whose nodes 1 2, ,..., nX X X represents random variables, and whose edges represent 

the direct dependencies between these variables. The graph G encodes independence 
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assumptions, by which each variable iX is independent of its nondescendents given its parents 

in G. The second component   denotes the set of parameters of the network. This set 

contains the parameter  | |
i ix B i iP x   for each realization i ix of X conditioned on i , the 

set of parents of iX  in G. Accordingly, B defines a unique JPD over V, namely: 

   1 2 |

1 1

, ,..., |
i i

n n

B n B i i X

i i

P X X X P X  
 

    

For simplicity of representation we omit the subscript B henceforth. If iX  has no parents, its 

local probability distribution is said to be unconditional, otherwise it is conditional.  

 

Logistic Classification 

Logistic regression is a generalization of linear regression. It is basically used for estimating 

binary or multi-class dependent variables (De Mantaras and E. Armengol; Yugal kumar and  

G. Sahoo) [16, 17]. It is a well known technique for classification (M. R. Amini and P. 

Gallinari) [6]. The only distributional assumption with this method is that the log likelihood 

ratio of class distributions is linear in the observations (3), this assumption is verified by a 

large range of exponential density families, e.g. normal, beta, gamma, etc. 
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where, the  , 1,2kf k  are class conditional parametric densities and  
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d

k
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 is the set of 

parameters of the model. An advantage of such a model is that it gives the posterior 

probabilities a simple form: 

 
  

     1 2 1

0

1
/ / 1 / ... 4

1 exp .t
p P x and p P x p P x

x 
  

  
 

The  ’s are trained to optimize the following log-likelihood: 
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where
ix P

 is a summation over all examples ix in the partition kP . Criterion (5) is a convex 

function of the model parameters (3). The latter are estimated in order to maximize (5), 

gradient techniques are generally used to this end. 

 

This model could be implemented using a simple logistic unit G whose parameters are

 0 ,  , i.e.  
  0

1

1 exp .t
G x

x 


  
. After the estimation of    , 1G x and G x  are 

used to estimate  1 /p P x and  2 /p P x . 

 

DATA USED IN THIS STUDY  

In this section, we generate simulated data set from Uniform, F and Gamma distribution. 

Also, apply Box-Cox transformation methods to transform this data set as normal looking 

and used as a transformed data set.  

 

RUSULTS AND DISCUSSION   
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In this section, we apply different parametric classification techniques and discusses about 

the results.  

 

Table1. Results of Fisher’s Linear Classification Technique 

       Apparent Error Rate (APER) in % 

Size of the 

Data Set 
Simulated Distributions 

Simulated Data Set  

 

Transformed Data Set  

 

100 
Group 1: Uniform Distribution 

Group 2: 
75,25F Distribution 50.0 10.0 

100 
Group 1: Uniform Distribution 

Group 2: 
65,35F Distribution 

11.0 11.0 

200 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
47.0 46.0 

500 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
51.5 49.0 

From Table1, we may conclude that, transformed data set performs better than the simulated 

data set.  

 

Table2. Results of Quadratic Classification Technique 

       Apparent Error Rate (APER) in % 

Size of the 

Data Set 
Simulated Distributions 

Simulated Data Set  

 

Transformed Data Set  

 

100 
Group 1: Uniform Distribution 

Group 2: 75,25F Distribution 50.0 10.0 

100 
Group 1: Uniform Distribution 

Group 2: 65,35F Distribution 
50.0 11.0 

200 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
50.0 41.0 

500 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
45.0 44.0 

From Table2, we may conclude that, transformed data set performs better than the simulated 

data set.  

 

Table3. Results of Bayesian Network Classification 

       Apparent Error Rate (APER) in % 

Size of the 

Data Set 
Simulated Distributions 

Simulated Data Set  

 

Transformed Data Set  

 

100 
Group 1: Uniform Distribution 

Group 2: 75,25F Distribution 11.0 7.0 

100 
Group 1: Uniform Distribution 

Group 2: 65,35F Distribution 6.0 6.0 

200 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
50.0 50.0 

500 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
50.0 50.0 

From Table3 we observed that, Bayesian Network gives better results for simulated data set 

as well as transformed data set compare with Fisher’s Linear Classification, Quadratic 
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Classification and Logistic Classification. Also gives slightly better results under transformed 

data set. 

 

Table4. Results of Naive Bayes Technique 

       Apparent Error Rate (APER) in % 

Size of the 

Data Set 
Simulated Distributions 

Simulated Data Set  

 

Transformed Data Set  

 

100 
Group 1: Uniform Distribution 

Group 2: 
75,25F Distribution 12.0 12.0 

100 
Group 1: Uniform Distribution 

Group 2: 
65,35F Distribution 

11.0 11.0 

200 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
42.0 41.0 

500 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
46.0 42.5 

From Table4 we observed that, Naïve Bayes Classification gives better results for simulated 

data set as well as transformed data set compare with Fisher’s Linear Classification, 

Quadratic Classification but not constantly Bayesian Network Classification. Consider all the 

situations we also observed that, Naïve Bayes Classification technique performs slightly 

better than the Bayesian Network Classification technique and gives slightly better results 

under transformed data set.   

 

Table5. Results of Logistic Classification Technique 

       Apparent Error Rate (APER) in % 

Size of the 

Data Set 
Simulated Distributions 

Simulated Data Set  

 

Transformed Data Set  

 

100 
Group 1: Uniform Distribution 

Group 2: 75,25F Distribution 11.0 11.0 

100 
Group 1: Uniform Distribution 

Group 2: 65,35F Distribution 
18.0 18.0 

200 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
47.0 46.0 

500 
Group 1: Uniform Distribution 

Group 2: Gamma Distribution 
51.5 50.0 

From Table5 we observed that, Logistic Classification gives better results for simulated data 

set as well as transformed data set compare with Fisher’s Linear Classification and Quadratic 

Classification but not Naïve Bayes Classification. Also gives slightly better results under 

transformed data set. 

 

SUMMARY AND CONCLUSION 

In this section, we discuss the results and investigate the performance of different parametric 

classification techniques. Hence make a comparative study among the techniques to identify 

the effectiveness of Box-Cox transformation. Also identify the appropriate technique in a 

given situation.  

 

In this analysis, we investigate that transformed data set step up the classification techniques 

and reduces the apparent error rate. The apparent error rate for first simulated data set under 

Fisher’s Linear Classification technique is 50%, whereas 10% for the transformed data set 



International Journal of Advanced Scientific and Technical Research   Issue 3 volume 1, January-February 2013       

Available online on   http://www.rspublication.com/ijst/index.html                                              ISSN 2249-9954 

 Page 549 
 

(see, Table1). We also apply Quadratic Classification technique and observed that the 

apparent error rate of first two simulated data set under Quadratic Classification technique is 

50%, whereas 10% and 11% for the transformed data set respectively (see, Table2). Under 

the Bayesian Network Classification technique the apparent error rate of first simulated data 

set is 11%, where as 7% for the transformed data set. Hence we also investigate that Bayesian 

Network and Naïve Bayes gives better results for simulated data set as well as transformed 

data set compare with Fisher’s Linear Classification, Quadratic Classification and Logistic 

Classification (see, Table3 & Table4). Also, we investigate that, in most of the situations 

Logistic Classification gives better results for simulated data set as well as transformed data 

set compare with Fisher’s Linear Classification and Quadratic Classification (see, Table5).  

 

In this paper, we also observed that transformed data set significantly reduce the apparent 

error rate under Fisher’s and Quadratic classification technique, where as Bayesian Network, 

Naïve Bayes and Logistic classification techniques slightly reduce the apparent error rate and 

gives better results than the former two methods. We observed that, Logistic Classification 

technique performs better than Fisher’s and Quadratic classification techniques, where as 

Bayesian Network gives better results than Logistic classification in some situation and vice 

versa. We also observed that, in most of the situations Naïve Bayes classification technique 

comparatively gives better results than the other parametric classification techniques.  

 

From the above results, we observed that there is no unique classification technique, gives 

better results in all the situations. We also observed that, transformed data set gives better 

results than simulated data set for all classification rules used in this study “Thus we may 

conclude that, in case of performing classification techniques, it is suggested to apply the 

Box-Cox Transformation if the data set is non-normal. Also, suggested to apply Naïve Bayes 

classification technique to classify objects”.         
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