ON THE CONSTRUCTION OF THE DEFINITION OF L*-TYPE OF A MEROMORPHIC FUNCTION OF L*-ORDER ZERO OR L*-ORDER INFINITY

${ }^{1}$ SANJIB KUMAR DATTA , ${ }^{2}$ BIBHAS CHANDRA GIRI AND ${ }^{3}$ SANTONU SAVAPONDIT
${ }^{1}$ Department of Mathematics, University of Kalyani, Kalyani, Dist.-Nadia, Pin-741235
West Bengal, India.

(Former Address: Department of Mathematics, University of North Bengal, Raja Rammohunpur, Dist.-Darjeeling, Pin-734013, West Bengal, India.)
${ }^{2}$ Departmemt of Mathematics, Jadavpur University, Kolkata, Pin-700032. West Bengal, India.
${ }^{2}$ Department of Mathematics
Sikkim Manipal Institute of Technology, Majitar, Pin - 737136, Sikkim, India.

Abstract

In this paper we introduce the definition of the L^{*}-type of a meromorphic function of L^{*}-order zero or of L^{*}-order infinity and obtain its integral representation.

AMS Subject Classification (2010): 30D35, 30D30
Key words and phrases: Meromorphic function, L*-type, L*-order, L^{*}-order zero, L^{*}-order infinity, Integral representation.

1 Introduction, Definitions and Notations.

Let f be a meromorphic function defined in the open complex plane \mathbb{C}. We use the standard notations and definitions in the theory of entire and meromorphic
functions which are available in [5] and [1]. In the sequel we use the following notations:

$$
\log ^{[k]} x=\log \left(\log ^{[k-1]} x\right) \text { for } k=1,2,3, \ldots \text { and } \log ^{[0]} x=x
$$

and

$$
\exp ^{[k]} x=\exp \left[\exp ^{[k-1]} x\right] \text { for } k=1,2,3, \ldots . \text { and } \exp ^{[0]} x=x
$$

Somasundaram and Thamizharasi [4] introduced the notion of L^{*}-order and L*-type for entire functions, where $L \equiv L(r)$ is a positive continuous function increasing slowly i.e. $L(a r) \sim L(r)$ as $r \rightarrow \infty$ for every positive constant a.

The L^{*}-order and L^{*}-type of a meromorphic function f are defined in the following way.
Definition 1 The L^{*}-order $\rho_{f}^{L^{*}}$ of a meromorphic function f is defined as

$$
\rho_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log [r \exp \{L(r)\}]}
$$

If f is entire then one can easily verify that

$$
\rho_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log [r \exp \{L(r)\}]}
$$

Definition 2 The L^{*}-type $\sigma_{f}^{L^{*}}$ of a meromorphic function f is defined as follows:

$$
\sigma_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{T(r, f)}{[r \exp \{L(r)\}]^{\rho_{f}^{L^{*}}}}, \quad 0<\rho_{f}^{L^{*}}<\infty
$$

When f is entire then

$$
\sigma_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{[r \exp \{L(r)\}]^{\rho_{f}^{L^{*}}}}, \quad 0<\rho_{f}^{L^{*}}<\infty
$$

But when a meromorphic function f is of L^{*}-order zero or L^{*}-order infinity then the L^{*}-type of f can not be defined. In this paper we introduce the defininition of L^{*}-type of a meromoromorphic function of L^{*}-order zero or L^{*} order infinity and deduce its integral representation. In order to do this we just recall the definition of zero L^{*}-order (i.e., alternatively L^{*}-order zero) of a merommorphic function. In the line of Liao and Yang[3] we may give the following definitions.

Definition 3 Let f be a meromorphic function of L^{*}-order zero. Then the quantitiy $\rho_{f}^{* L^{*}}$ is defined as

$$
\rho_{f}^{* L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log ^{[2]}[r \exp \{L(r)\}]}
$$

If f is entire then clearly,

$$
\rho_{f}^{* L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log ^{[2]}[r \exp \{L(r)\}]}
$$

The following definition is also well known.
Definition 4 The hyper L^{*}-order $\bar{\rho}_{f}^{L^{*}}$ of a meromorphic function f is defined as follows:

$$
\bar{\rho}_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log { }^{[2]} T(r, f)}{\log [r \exp \{L(r)\}]}
$$

If f is entire then

$$
\bar{\rho}_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log [r \exp \{L(r)\}]}
$$

In this paper we introduce the following definitions.
Definition A The L^{*}-type $\sigma_{f}^{* L^{*}}$ of a meromorphic function of L^{*}-order zero is defined by

$$
\sigma_{f}^{* L^{*}}=\limsup _{r \rightarrow \infty} \frac{T(r, f)}{[\log [r \exp \{L(r)\}]]_{f}^{\rho_{f}^{* L^{*}}}}, \quad 0<\rho_{f}^{* L^{*}}<\infty
$$

Definition B A meromorphic function f of L^{*}-order zero is said to be of L^{*}-type $\sigma_{f}^{* L^{*}}$ if the integral

$$
\int_{r_{0}}^{\infty} \frac{\exp \{T(r, f)\} d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}} \quad\left(r_{0}>0\right)
$$

is convergent for $k>\sigma_{f}^{* L^{*}}$ and divergent for $k<\sigma_{f}^{* L^{*}}$ where $0<\rho_{f}^{* L^{*}}<\infty$.
Definition C The L^{*}-type $\bar{\sigma}_{f}^{L^{*}}$ of a meromorphic function of L^{*}-order infinity is defined as follows:

$$
\bar{\sigma}_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{[r \exp \{L(r)\}]^{\bar{\rho}_{f}^{L^{*}}}}, \text { where } 0<\bar{\rho}_{f}^{L^{*}}<\infty
$$

Definition \mathbf{D} A meromorphic function f of L^{*}-order infinity is said to be of L^{*}-type $\bar{\sigma}_{f}^{L^{*}}$ if the integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}} \quad\left(r_{0}>0\right)
$$

converges for $k>\bar{\sigma}_{f}^{L^{*}}$ and diverges for $k<\bar{\sigma}_{f}^{L^{*}}$.

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.
Lemma 1 Let the integral

$$
\begin{equation*}
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\sigma_{f}^{L^{*}}}\right]^{k+1}} \quad\left(r_{0}>0\right) \tag{A}
\end{equation*}
$$

converges for $0<k<\infty$. Then

$$
\lim _{r \rightarrow \infty} \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k}}=0
$$

Proof. Since the integral

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}}
$$

is convergent for $0<k<\infty$, given $\epsilon(>0)$ there exists a number $R=R(\epsilon)$ such that

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}}<\epsilon \text { for } r_{0}>R
$$

i.e., for $r_{0}>R$,

$$
\int_{r_{0}}^{r_{0}+\exp \left[\log \left\{r_{0} e^{L\left(r_{0}\right)}\right\}\right]^{\rho_{f}^{* L^{*}}}} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r_{0} e^{L\left(r_{0}\right)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}}<\epsilon
$$

As $\exp [T(r, f)]$ is an increasing function of r, so

$$
\begin{aligned}
& \int_{r_{0}}^{r_{0}+\exp \left[\log \left\{r_{0} e^{L\left(r_{0}\right)}\right\}\right]^{\rho_{f}^{* L^{*}}} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{\rho^{*}}}\right]^{k+1}}} \begin{array}{l}
\geq \\
= \\
\text { i.e., } \\
{\left[\exp \left\{\log \left(r_{0} e^{L\left(r_{0}\right)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1} \cdot \exp \left[\log \left\{r r_{0} e^{L\left(r_{0}\right)}\right\}\right]_{f}^{\rho_{f}^{* L^{*}}}} \\
{\left[\exp \left\{\log \left(r_{0} e^{L\left(r_{0}\right)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k}} \\
{\left[\exp \left[T\left(r_{0}, f\right)\right]\right.} \\
\left.\exp \left\{\log \left(r_{0} e^{L\left(r_{0}\right)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k}
\end{array} \epsilon \text { for } r_{0}>R,
\end{aligned}
$$

from which it follows that

$$
\limsup _{r \rightarrow \infty} \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r_{0} e^{L\left(r_{0}\right)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k}}=0 .
$$

This proves the lemma.
Lemma 2 If the integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k+1}} \quad\left(r_{0}>0\right)
$$

is convergent for $0<k<\infty$ then

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k}}=0 .
$$

Proof. Since the integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k+1}}
$$

converges for $0<k<\infty$, given $\epsilon(>0)$ there exists a number $R=R(\epsilon)$ such that

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k+1}}<\epsilon \text { for } r>R
$$

i.e.,

$$
\begin{aligned}
& \int_{r_{0}}^{r_{0}+\exp \left[r_{0} e^{L\left(r_{0}\right)}\right]^{\bar{\rho}_{f}^{L^{*}}}} \frac{T(r, f) d r}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k+1}} \\
\geq & \frac{T\left(r_{0}, f\right) \cdot \exp \left[r_{0} e^{L\left(r_{0}\right)}\right]^{\bar{\rho}_{f}^{L^{*}}}}{\left[\exp \left\{r_{0} e^{L\left(r_{0}\right)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k+1}} \\
= & \frac{T\left(r_{0}, f\right)}{\left[\exp \left\{r_{0} e^{L\left(r_{0}\right)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k}} \\
\text { i.e., } \quad & \frac{T\left(r_{0}, f\right)}{\left[\exp \left\{r_{0} e^{L\left(r_{0}\right)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k}}<\epsilon \text { for } r_{0}>R .
\end{aligned}
$$

Now from the above it follows that

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{k}}=0
$$

Thus the lemma is established.
Lemma 3 [2]If f is a non constant entire function then

$$
T(r, f) \leq \log M(r, f) \leq \log T(2 r, f)+o(1) \text { as } r \rightarrow \infty
$$

3 Theorems.

In this section we present the main results of the paper.
Theorem 1 Let f be meromorphic with L^{*}-order zero. Also let $0<\rho_{f}^{* L^{*}}<\infty$. Then Definition A and Definition B are equivalent.

Proof. Case I: $\sigma_{f}^{* L^{*}}=\infty$.
Definition A \Rightarrow Definition B.
As $\sigma_{f}^{* L^{*}}=\infty$, from Definition A we obtain for arbitrary positive G and for a sequence of values of r tending to infinity that

$$
\begin{align*}
T(r, f) & >G \log \{r \exp (L(r))\}^{\rho_{f}^{* L^{*}}} \\
\text { i.e., } \quad \exp (T(r, f)) & >\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{G} . \tag{1}
\end{align*}
$$

If possible, let the integral

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{G+1}} \quad\left(r_{0}>0\right)
$$

be converge. Then by Lemma 1 we get that

$$
\limsup _{r \rightarrow \infty} \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{G}}=0
$$

So for all sufficiently large values of r,

$$
\begin{equation*}
\exp [T(r, f)]<\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{G} \tag{2}
\end{equation*}
$$

Now from (1) and (2) we arrive at a contradiction. Hence

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{G+1}} \quad\left(r_{0}>0\right)
$$

diverges whenever G is finite, which is Definition B.

Definition B \Rightarrow Definition A.

Let G be any positive number. Since $\sigma_{f}^{* L^{*}}=\infty$, from Definition B the divergence of the integral,

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{G+1}} \quad\left(r_{0}>0\right)
$$

gives for arbitrary positive ϵ and for a sequance of values of r tending to infinity

$$
\begin{aligned}
& \exp [T(r, f)]>\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{G-\epsilon} \\
& \text { i.e., } T(r, f)>(G-\epsilon)\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}}
\end{aligned}
$$

This gives that

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{L^{*}}}} \geq G-\epsilon
$$

Since $G>0$ is arbitrary, it follows that

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}}}=\infty
$$

Thus Definition A follows.
Case II: $0 \leq \sigma_{f}^{* L^{*}}<\infty$.

Definition A \Rightarrow Definition B

Subcase (a): Let f be of L^{*}-type $\sigma_{f}^{* L^{*}}$ where $0<\sigma_{f}^{* L^{*}}<\infty$. Then for arbitrary $\epsilon>0$ and for all sufficiently large values of r,

$$
\begin{array}{rlrl}
& \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]_{f}^{\rho_{f}^{* L^{*}}}} & <\sigma_{f}^{* L^{*}}+\epsilon \\
\text { i.e., } & T(r, f) & <\left(\sigma_{f}^{* L^{*}}+\epsilon\right)\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}} \\
\text { i.e., } & \exp [T(r, f)] & <\exp \left[\left(\sigma_{f}^{* L^{*}}+\epsilon\right)\left(\log r e^{L(r)}\right)^{\rho_{f}^{* L^{*}}}\right] \\
\text { i.e., } & \exp [T(r, f)] & <\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\left(\sigma_{f}^{* L^{*}}+\epsilon\right)} \\
\text { i.e., } \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}_{f}^{\rho_{f}^{* L^{*}}}\right]^{k}} & <\frac{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\left(\sigma_{f}^{* L^{*}}+\epsilon\right)}}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k}} \\
\text { i.e., } \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k}} & <\frac{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k-\left(\sigma_{f}^{* L^{*}}+\epsilon\right)}}{}
\end{array}
$$

Therefore

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}} \quad\left(r_{0}>0\right)
$$

converges if $k>\sigma_{f}^{* L^{*}}$ and diverges if $k<\sigma_{f}^{* L^{*}}$.
Subcase (b): When f is of type $\sigma_{f}^{* L^{*}}=0$.
Definition A gives for all sufficiently large values of r that

$$
\frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}}}<\epsilon
$$

Then as before we obtain that

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}} \quad\left(r_{0}>0\right)
$$

converges for $k>0$ and diverges for $k<0$.
Thus combining Subcase (a) and Subcase (b), Definition B follows.
Definition B \Rightarrow Definition A
Since f be of L^{*}-type $\sigma_{f}^{* L^{*}}$, by Definition B for arbitrary $\epsilon(>0)$ the integral

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1+\epsilon}}
$$

converges. Then by Lemma 1

$$
\limsup _{r \rightarrow \infty} \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+\epsilon}}=0
$$

i.e., for all sufficiently large values of r,

$$
\begin{array}{ll}
& \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+\epsilon}}<\epsilon \\
\text { i.e., } \quad & \exp [T(r, f)]<\epsilon\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+\epsilon} \\
\text { i.e., } \quad & T(r, f)<\log \epsilon+\left(\sigma_{f}^{* L^{*}}+\epsilon\right)\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}} \\
\text { i.e., } \quad & \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]_{f}^{\rho_{f}^{* L^{*}}}<\frac{\log \epsilon}{\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}}}+\left(\sigma_{f}^{* L^{*}}+\epsilon\right)} \\
\text { i.e., } \quad & \limsup \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]_{f}^{\rho_{f}^{* L^{*}}} \leq \sigma_{f}^{* L^{*}}+\epsilon .}
\end{array}
$$

Since $\epsilon(>0)$ is arbitrary, it follows from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}}} \leq \sigma_{f}^{* L^{*}} \tag{3}
\end{equation*}
$$

Again by Definition B, the divergence of the integral

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1-\epsilon}}
$$

implies that there exists a sequence of values of r tending to infinity such that

$$
\begin{array}{ll}
& \frac{\exp [T(r, f)]}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\left.{\rho_{f}^{*} L^{*}}^{\sigma_{f}^{* L^{*}}+1-\epsilon}\right]^{\prime}}>\frac{1}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{1+\epsilon}}\right.} \begin{array}{ll}
\text { i.e., } & \exp [T(r, f)]>\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}-2 \epsilon} \\
\text { i.e., } & T(r, f)>\left(\sigma_{f}^{* L^{*}}-2 \epsilon\right)\left[\log \left\{r e^{L(r)}\right\}\right]_{f}^{\rho_{f}^{* L^{*}}} \\
\text { i.e., } & \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]_{f}^{\rho_{f}^{* L^{*}}}>\sigma_{f}^{* L^{*}}-2 \epsilon .}
\end{array} . l
\end{array}
$$

As $\epsilon(>0)$ is arbitrary we get that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}}} \geq \sigma_{f}^{* L^{*}} \tag{4}
\end{equation*}
$$

Therefore from (3) and (4) it follows that

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\log \left\{r e^{L(r)}\right\}\right]^{\rho_{f}^{* L^{*}}}}=\sigma_{f}^{* L^{*}} .
$$

Thus we obtain Definition A.
Now combining Case I and Case II, the theorem follows.
Theorem 2 The integral

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}} \quad\left(r_{0}>0\right)
$$

follows if and only if the integral

$$
\int_{r_{0}}^{\infty} \frac{M(r, f) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}} \quad \text { converges. }
$$

Proof. Let

$$
\int_{r_{0}}^{\infty} \frac{M(r, f) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}} \quad\left(r_{0}>0\right)
$$

converges. Then by the first part of Lemma 3, we obtain that

$$
\begin{gathered}
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1} \leq \int_{r_{0}}^{\infty} \frac{M(r, f) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}}} \begin{array}{l}
\text { i.e., } \quad \int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}} \text { converges. }
\end{array} .=\text {. }
\end{gathered}
$$

Next let

$$
\int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}} \quad\left(r_{0}>0\right)
$$

be convergent. Then by the second part of Lemma 3, we get that

$$
\begin{aligned}
& \int_{r_{0}}^{\infty} \frac{M(r, f) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}} \\
< & \int_{r_{0}}^{\infty} \frac{\exp [T(2 r, f)] d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}}+\int_{r_{0}}^{\infty} \frac{o(1) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}+1}}} \\
= & \frac{1}{2\left[\exp \left(\frac{1}{2} \rho_{f}^{* L^{*}}\right)\right]} \int_{r_{0}}^{\infty} \frac{\exp [T(r, f)] d r}{\left[\exp \left\{\log \left(r e^{\left(\frac{r}{2}\right)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}}+o(1) .
\end{aligned}
$$

Thus

$$
\int_{r_{0}}^{\infty} \frac{M(r, f) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{\sigma_{f}^{* L^{*}}+1}}
$$

converges. This proves the theorem.
Now in view of Theorem 1 and Theorem 2 we may give an alternative definition of L^{*}-type $\sigma_{f}^{* L^{*}}$ of an entire function f with L^{*}-order zero as follows:

An entire function f with L^{*}-order zero is said to be of type $\sigma_{f}^{* L^{*}}$ if the integral

$$
\int_{r_{0}}^{\infty} \frac{M(r, f) d r}{\left[\exp \left\{\log \left(r e^{L(r)}\right)\right\}^{\rho_{f}^{* L^{*}}}\right]^{k+1}} \quad\left(r_{0}>0\right)
$$

converges for $k>\sigma_{f}^{* L^{*}}$ and diverges for $k<\sigma_{f}^{* L^{*}}$.

Theorem 3 If f be a meromorphic function of infinite L^{*}-order and $0<\bar{\rho}_{f}^{L^{*}}<$ ∞ then Definition C and Definition D are equivalant.

Proof. Case I: $\bar{\sigma}_{f}^{L^{*}}=\infty$.
Definition $\mathbf{C} \Rightarrow$ Definition D
As $\bar{\sigma}_{f}^{L^{*}}=\infty$, from Definition C, we obtain for arbitrary positive G and for a sequence of values of r tending to infinity that

$$
\begin{align*}
\log T(r, f) & >G\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}} \\
\text { i.e., } T(r, f) & >\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{G} \tag{5}
\end{align*}
$$

If possible, let the integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L *}}\right]^{G+1}} \quad\left(r_{0}>0\right)
$$

be convergent. Then by Lemma 2

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L *}}\right]^{G}}=0
$$

So for all sufficiently large values of r,

$$
\begin{equation*}
T(r, f)<\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{*}}\right]^{G} \tag{6}
\end{equation*}
$$

Now from (5) and (6) we arrive at a contradiction. Hence

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{G+1}} \quad\left(r_{0}>0\right)
$$

diverges whenever G is finite, which is Definition D.
Definition $\mathbf{D} \Rightarrow$ Definition \mathbf{C}
Let G be any positive number. Since $\bar{\sigma}_{f}^{L^{*}}=\infty$, from Definition D the divergence of the integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{G+1}} \quad\left(r_{0}>0\right)
$$

gives for arbitrary positive ϵ and for a sequence of values of r tending to infinity,

$$
\begin{aligned}
T(r, f) & >\left[\exp \left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right]^{G-\epsilon} \\
\text { i.e., } \log T(r, f) & >(G-\epsilon)\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}
\end{aligned}
$$

This gives that

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}} \geq G-\epsilon
$$

Since G is arbitrary, this shows that

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}}=\infty
$$

Thus Definition C follows.
Case II: $0 \leq \bar{\sigma}_{f}^{L^{*}}<\infty$.
Definition C \Rightarrow Definition D.
Subcase(a): Let f be of L^{*}-type $\bar{\sigma}_{f}^{L^{*}}$ where $0 \leq \bar{\sigma}_{f}^{L^{*}}<\infty$, Then according to Definition C, for arbitrary positive ϵ and for all sufficiently large values of r we get that

$$
\begin{array}{ll}
& \log T(r, f)<\left(\bar{\sigma}_{f}^{L^{*}}+\epsilon\right)\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}} \\
\text { i.e., } & T(r, f)<\exp \left[\left(\bar{\sigma}_{f}^{L^{*}}+\epsilon\right)\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right] \\
\text { i.e., } \quad & T(r, f)<\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\left(\bar{\sigma}_{f}^{L^{*}}+\epsilon\right)} \\
\text { i.e., } & \frac{T(r, f)}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L_{f}^{*}}}\right\}\right]^{k^{\prime}}}<\frac{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\left(\bar{\sigma}_{f}^{L^{*}}+\epsilon\right)}}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L *}}\right\}\right]^{k^{\prime}}} \\
\text { i.e., } \quad & \frac{T(r, f)}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{k^{\prime}}}<\frac{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L_{f}^{*}}}\right\}\right]^{k^{\prime}-\left(\bar{\sigma}_{f}^{L^{*}}+\epsilon\right)}}{[}
\end{array}
$$

Therefore

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L *}}\right\}\right]^{k^{\prime}}} \quad\left(r_{0}>0\right)
$$

converges if $k^{\prime}>\bar{\sigma}_{f}^{L^{*}}$ and diverges if $k^{\prime}<\bar{\sigma}_{f}^{L^{*}}$

$$
\text { i.e., } \int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L *}}\right\}\right]^{k^{\prime}+1}} \quad\left(r_{0}>0\right)
$$

converges if $k^{\prime}>\bar{\sigma}_{f}^{L^{*}}$ and diverges if $k^{\prime}<\bar{\sigma}_{f}^{L^{*}}$.

Subcase (b): When f is of L^{*}-type $\bar{\sigma}_{f}^{L^{*}}=0$, Definition C gives for all sufficiently large values of r,

$$
\frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}}<\epsilon
$$

Then as before we obtain that

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{k^{\prime}+1}} \quad\left(r_{0}>0\right)
$$

converges if $k^{\prime}>0$ and diverges if $k^{\prime}<0$. Thus combining Subcase (a) and Subcase (b), Definition D follows.

Definition $\mathbf{D} \Rightarrow$ Definition C.
Since f is of L^{*}-type $\bar{\sigma}_{f}^{L^{*}}$, by Definition D , for arbitrary $\epsilon(>0)$ the integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1+\epsilon}}
$$

converges. Then by Lemma 2, we obtain that

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+\epsilon}}=0
$$

i.e. for all sufficiently large values of r,

$$
\begin{gathered}
\frac{T(r, f)}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+\epsilon}}<\epsilon \\
\text { i.e., } \\
T(r, f)<\epsilon\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+\epsilon} \\
\text { i.e., } \quad \log T(r, f)<\log \epsilon+\left(\bar{\sigma}_{f}^{L^{*}}+\epsilon\right)\left[\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}\right] \\
\text { i.e., } \quad \frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}}<\frac{\log \epsilon}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}}+\left(\bar{\sigma}_{f}^{L^{*}}+\epsilon\right) .
\end{gathered}
$$

Since $\epsilon(>0)$ is arbitrary it follows from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}} \leq \bar{\sigma}_{f}^{L^{*}} \tag{7}
\end{equation*}
$$

Again by Definition D, for arbitrary positive ϵ, the divergence of the integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L *}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1-\epsilon}}
$$

implies that there exist a sequence of values of r tending to infinity such that

$$
\begin{array}{ll}
& \frac{T(r, f)}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1-\epsilon}}>\frac{1}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{1+\epsilon}} \\
\text { i.e., } & T(r, f)>\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}-2 \epsilon} \\
\text { i.e., } \quad & \log T(r, f)>\left(\bar{\sigma}_{f}^{L^{*}}-2 \epsilon\right)\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}} \\
\text { i.e., } \quad & \frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}} \geq \bar{\sigma}_{f}^{L^{*}}-2 \epsilon} \\
\text { i.e., } \quad & \limsup _{r \rightarrow \infty}^{\log T(r, f)}\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}} \geq \bar{\sigma}_{f}^{L^{*}}-2 \epsilon .
\end{array}
$$

As $\epsilon(>0)$ is arbitrary we obtain from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}} \geq \bar{\sigma}_{f}^{L^{*}} \tag{8}
\end{equation*}
$$

Now from (7) and (8) it follows that

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\left\{r e^{L(r)}\right\}^{\bar{\rho}_{f}^{L^{*}}}}=\bar{\sigma}_{f}^{L^{*}}
$$

Thus we get Definition C.
Hence combining Case I and Case II, the theorem follows.
Theorem 4 The integral

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \quad\left(r_{0}>0\right)
$$

converges if and only if the integral

$$
\int_{r_{0}}^{\infty} \frac{\log M(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \quad\left(r_{0}>0\right) \text { converges. }
$$

Proof. Let

$$
\int_{r_{0}}^{\infty} \frac{\log M(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \quad\left(r_{0}>0\right)
$$

be convergent. Then by the first part of Lemma 3, we obtain that

$$
\begin{aligned}
& \int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \leq \int_{r_{0}}^{\infty} \frac{\log M(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L *}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \\
& \text { i.e., } \quad \int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L *}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \quad\left(r_{0}>0\right) \text { converges. }
\end{aligned}
$$

Next let

$$
\int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \quad\left(r_{0}>0\right)
$$

be convergent. Then by the second part of Lemma 3, we get that

$$
\begin{aligned}
& \int_{r_{0}}^{\infty} \frac{\log M(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \\
\leq & \int_{r_{0}}^{\infty} \frac{T(2 r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}}+\int_{r_{0}}^{\infty} \frac{o(1) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \\
= & \frac{1}{2\left[\exp \left(\frac{1}{2} \bar{\rho}_{f}^{L^{*}}\right)\right]} \int_{r_{0}}^{\infty} \frac{T(r, f) d r}{\left[\exp \left\{\left(r e^{L\left(\frac{r}{2}\right)}\right)^{\bar{\rho}_{f}^{L *}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}}+o(1) .
\end{aligned}
$$

Thus

$$
\int_{r_{0}}^{\infty} \frac{\log M(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{\bar{\sigma}_{f}^{L^{*}}+1}} \quad\left(r_{0}>0\right)
$$

is convergent.
This proves the theorem.
Now in view of Theorem 3 and Theorem 4, we may give an alternative deifnition of L^{*}-type $\bar{\sigma}_{f}^{L^{*}}$ of an entire function f with infinite L^{*}-order as follows:

An entire function f with L^{*}-infinite order is said to be of L^{*}-type $\bar{\sigma}_{f}^{L^{*}}$ if the integral

$$
\int_{r_{0}}^{\infty} \frac{\log M(r, f) d r}{\left[\exp \left\{\left(r e^{L(r)}\right)^{\bar{\rho}_{f}^{L^{*}}}\right\}\right]^{k+1}} \quad\left(r_{0}>0\right)
$$

converges for $k>\bar{\sigma}_{f}^{L^{*}}$ and diverges for $k<\bar{\sigma}_{f}^{L^{*}}$.

References

[1] Hayman, W.K.: Meromorphic functions, The Clarendon Press, Oxford (1964).
[2] Lahiri, I.: Generalised order of meromorphic functions, Soochow J. Math., Vol. 17, No. 1 (1991), pp.67-82.
[3] Liao, L. and Yang, C.C.: On the growth of composite entire functions, Yokohama Math. J., Vol. 46 (1999), pp. 97-107.
[4] Somasundaram, D. and Thamizharasi, R.: A note on the entire functions of L-bounded index and L-type, Indian J. Pure and Appl. Math., Vol. 19, No. 3 (March 1988), pp. 284-293.
[5] Valiron, G.: Lectures on the general theory of integral functions, Chelsea Publishing Company (1949).

