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In this paper we introduce the definition of the L*-type of a mero-
morphic function of L*-order zero or of L*-order infinity and obtain its
integral representation.
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1 Introduction, Definitions and Notations.

Let f be a meromorphic function defined in the open complex plane C. We use
the standard notations and definitions in the theory of entire and meromorphic
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functions which are available in [5] and [1]. In the sequel we use the following
notations:

log® 2 = log(log*~Y2) for k=1,2,3,... and log¥ 2 = =
and

(%]

expl®l & = explexp® 2] for k =1,2,3,.....and exp¥z = 2.

Somasundaram and Thamizharasi [4] introduced the notion of L*-order and
L*-type for entire functions, where L = L(r) is a positive continuous function
increasing slowly i.e. L(ar) ~ L(r) as r — oo for every positive constant a.

The L*-order and L*-type of a meromorphic function f are defined in the
following way.

Definition 1 The L*-order pj%* of a meromorphic function f is defined as

pL* = lim sup—log AGYD
! rooo loglrexp{L(r)}]’

If f is entire then one can easily verify that

PR - U(GY))
Py = rﬂooplog[rexp{L(r)}]

Definition 2 The L*-type O'JI?* of a meromorphic function f is defined as fol-

lows: T
U]Lc* = limsup(;f)m, 0< pf* < oo.
oo [rexp{L(r)}]’f
When f is entire then
. log M .
U]Lc = limsupOg—M, 0< pJLc < 00.

r—oo [rexp{L(r)})P¥

But when a meromorphic function f is of L*-order zero or L*-order infinity
then the L*-type of f can not be defined. In this paper we introduce the
defininition of L*-type of a meromoromorphic function of L*-order zero or L*-
order infinity and deduce its integral representation. In order to do this we
just recall the definition of zero L*-order (i.e., alternatively L*-order zero) of
a merommorphic function. In the line of Liao and Yang[3] we may give the
following definitions.

Definition 3 Let f be a meromorphic function of L*-order zero. Then the
quantitiy ijL* is defined as

. logT
p;L = lim sup og T(r, f)

r—oo logl[rexp{L(r)}]’
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If f is entire then clearly,

. log!? M
p}L = lim sup 08 (r. )

r—oo log®[rexp{L(r)}]

The following definition is also well known.

Definition 4 The hyper L*-order ﬁ%* of a meromorphic function f is defined
as follows:

B im0 T
! r—oo l0g[rexp{L(r)}]
If f is entire then

ﬁ]Lc* = limsup———————>"—
In this paper we introduce the following definitions.

Definition A The L*-type J}L* of a meromorphic function of L*-order zero
18 defined by

« T «
U}L = lim sup (r, /) — 0< p}L

r—oo [log[rexp{L(r)}]]"s

Definition B A meromorphic function f of L*-order zero is said to be of
L*-type O'}L* if the integral

/°° exp{T'(r, f)}dr
ro [exp {log (ret(") }p}L

< 0.

7’0>0)

TR
r+

is convergent for k > U’}L* and divergent for k < O'?L* where 0 < p;‘cL* < 0.

Definition C The L*-type Ef* of a meromorphic function of L*-order infinity
is defined as follows:

. logT .
EJI{ = limsup%,where 0< ﬁf < 00.

r—oo [rexp{L(r)}]*7

Definition D A meromorphic function f of L*-order infinity is said to be of
L*type EJ% if the integral

/ T(r, f)dr S— (ro > 0)
o [exp flog (reb) }7 |

converges for k > E]Lc* and diverges for k < E‘%*.
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2 Lemmas.
In this section we present some lemmas which will be needed in the sequel.

Lemma 1 Let the integral

/°° exp[T(T,f)]diL* e (10> 0) (A)
ro {exp {log (relM) 177 }

converges for 0 < k < co. Then

T
BTN
[exp {log (ret )} |
Proof. Since the integral
k+1

/°° exp[T'(r, f)]dr
. Tt ooy

is convergent for 0 < k < oo, given € (> 0) there exists a number R = R(¢) such

that
/°° exp[T'(r, f)]dr
o {

— <eforrg >R
exp {log (reX(m)}71

*:|k>+1

i.e., forrg > R,

ro-+expllog{roe 70 })7F" exp[T'(r, f)]dr
/ S| < €.
o {exp {log (roel(ra))}’s }
As exp[T(r, f)] is an increasing function of r, so
rrtexplog(roe "0 )5 explT(r, f)ldr
/ - Le k1
ro exp {log (reX(m)}71 ]
T «L*
> xplT (7o, /) e k+1~eXP[10g{T0€L(T°)}]pr
[exp {log (roel(ro)) }pf
_ exp(T'(ro, f)]
= Lok
[exp {log (roel(r)) }pr
T
i.e., exp[T'(ro, f)] 7 <e for ro >R,

[exp {1og (roe o)) }p;ﬂ
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from which it follows that

exp[T(r, f)]

lim sup

e {exp {log (ToeL(TO)) }p}

This proves the lemma. m

Lemma 2 If the integral
T(r, f)dr

/TO [exp {reL(T) }51%* } o

is convergent for 0 < k < oo then

T(r,f)

lim sup

L*:|k -

(’I“O > O)

=0.

ek
T fe freso ]

Proof. Since the integral

T(r, f)dr

/oo
o {exp {reL(T)}ﬁf%*}

k+1

converges for 0 < k < oo, given € (> 0) there exists a number R = R(e) such

that - T J
/ (T’f)j;* g <eforr>R.
ro [exp {reL(T)}pf ]
i.e.,
_L*
/7’0+6Xp[T06L(TO)]pf T(’I", f)d?“
ekl
ro [exp {reL(T)}p% ]

*

T(ro, f).exp [roeL(”’)]ﬁ’%
okl
[exp {ToeL(TO)}pJ% }
T(TOa f)
Lk
[exp {ToeL(TO)}pf }

T(TO’f)

i.e.

*

[exp {roek(ro) }ﬁ? ]

k<ef0rro>R.
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Now from the above it follows that
lim sup Gy

e [exp {reL(T)}ﬁJL;*:| =0

Thus the lemma is established. m

Lemma 3 [2/If f is a non constant entire function then

T(r, f) <log M(r, f) <logT(2r, f) + o(1) as r — oc.

3 Theorems.

In this section we present the main results of the paper.

Theorem 1 Let f be meromorphic with L*-order zero. Also let 0 < p’}L* < 00.
Then Definition A and Definition B are equivalent.

Proof. Case I: a’]‘cL* = 00.

Definition A = Definition B.

As O'}L* = 00, from Definition A we obtain for arbitrary positive G and for
a sequence of values of r tending to infinity that

*«L*

T(r,f) > Glog{rexp(L(r))}’*

.21C
exp{log (reL(T))}pf ] . (1)

ie., exp (T'(r, f)) >

If possible, let the integral

= exp [T'(r, f)] dr
/ w7 G+1 (ro > 0)
o [exp {log (ret1) 37"
be converge. Then by Lemma 1 we get that
Jim sup exp [T'(r, f)] o

wL*1G
7 [exp {lo (ret) 7"

So for all sufficiently large values of r,

«L* G
exp [T(r, f)] < lexp {log (re“”) }pf ] . (2)

Now from (1) and (2) we arrive at a contradiction. Hence

o exp [T'(r, f)] dr

To [exp {log (rel(™) }p;L

’I"0>0)

o |
]G+
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diverges whenever G is finite, which is Definition B.

Definition B = Definition A.

Let G be any positive number. Since U}L* = 00, from Definition B the
divergence of the integral,

/°° exp [T'(r, )] dr
0 [exp {tog (ret) 7

gives for arbitrary positive € and for a sequance of values of r tending to infinity

*L* G—e
exp {log (reLm) }pf ]

«L*

e, T(rnf) > (G—¢ [1og{mm)}]pf

This gives that

G+1 (TO > O)

exp[T'(r, f)] >

T
lim sup (r, f) —>G —¢
r—00 [lOg {TCL(7')}]pf
Since G > 0 is arbitrary, it follows that
T
lim sup (r.f) = 00.

* L*
r—00 [log {TeL(7') }} Py
Thus Definition A follows.
Case II: 0 < a}L* < 00.
Definition A = Definition B

Subcase (a): Let f be of L*-type o}L* where 0 < aj}L* < 00. Then for
arbitrary € > 0 and for all sufficiently large values of r,

T(f)
[log {rez)})°7*

U}L* + €

N

i.e., T(r, f) (O'fL* +¢) [log {reL(T)Hp}L*

i.e., exp[T(r, f)] < exp {(O’;L* + ¢€)(log TeL(T))P?L*]

e @7+
i.e., exp[T(r, f)] < lexp {log (reL(r))} ¥ ]
LA (05" +e)
N esxp [7(r. /)] 3 o os ey |
7 — ok
[exp {log (ret() }pr } [G‘XP {log (ret(™) }pr ]
. exp [T'(r, f)] 1
Z-e~; , p*L* A < p*L* k‘—(o'}L*-‘rC) .
[exp {log (rel(m)}"7 } [exp {log (ret()) }* }
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Therefore

/oo [ exp [T'(r, f)] (ro > 0)

eneq E1
exp {log (rel(m)}" }
converges if k > U?L* and diverges if k < O'?L*.

Subcase (b): When f is of type o%*" = 0.
Definition A gives for all sufficiently large values of r that

T(f)
[log {ret}] 7"

< €.

Then as before we obtain that
/°° exp [T'(r, f)ldr
T0 |:

exp {log (reX(")) }p;L

’I“()>O)

e
}H

converges for £ > 0 and diverges for k£ < 0.
Thus combining Subcase (a) and Subcase (b), Definition B follows.
Definition B = Definition A
Since f be of L*-type U}L*, by Definition B for arbitrary e (> 0) the integral

o exp [T (r, f)] dr
. W L* O’*L*JrlJrE
o [eXp {log (reL(7'))}pr } £

converges. Then by Lemma 1

exp [T'(r, f)]

lim sup " -0
r—00 «L*70 €
Jexp {log (ret) }7 |
i.e., for all sufficiently large values of r,
T
exp [T'(r, f)] .
p*L* 0% —+e€
[exp {log (reL(m)}"1 }
p;L* U;L*Jre
i.e., exp[T(r, f)] < e lexp {log (re””)} ]
* 0% *
ie,  T(rf) <loge+ (U;L +6) {bg {Tew)}] s
T 1 ,
T e e
[log {rel (M }] s [log {rel(™}] Py
T .
i.e., lim sup (r, f) _< O'?L Te

r—oo [log {rel(n)}] Py
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Since € (> 0) is arbitrary, it follows from above that

T(T, f) < U;L* ) (3)

lim sup —
7= [log {rer)}]7"

Again by Definition B, the divergence of the integral
/°° exp [T'(r, f)]dr
h {exp {log (rek) }p*f{L*r;L*H_E
implies that there exists a sequence of values of r tending to infinity such that

exp (7. /) N !

nxorl 11— «L* 1+e
[exp {log (rel () }pr } ! [exp {log (re() }"1 }
p;L* U}L*—Qe
ie., exp [T'(r, f)] > |exp {log (reL(T))}
, wL* L(r) o3t
i.e., T(r, f) > (af - 26) [1og {Te H
T x
i.e., (r.f) — >0 — 2
[log {reL(m}]1
As e (> 0) is arbitrary we get that
T .
lim sup (r.f) — > oim, (4)
r= [log {reL(T)}]pf
Therefore from (3) and (4) it follows that
T .
lim sup (r, f) =%,

r—o0 [log {TGL(T) }]p}L

Thus we obtain Definition A.
Now combining Case I and Case II, the theorem follows. m

Theorem 2 The integral

e exp [T'(r, )] dr
T w L* G}L*-‘rl (TO = O)
* [exp f1og (rer) 37"
follows if and only if the integral
e M(r, f)dr
converges.

T |
[ {tog (rer) 17 ]
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Proof. Let
> M(r, f)dr

o [exp {log (ret() }p;m

converges. Then by the first part of Lemma 3, we obtain that
/oo exp [T(r, f)] dr - /°° M(r, f)dr
wLxq 0%k 1 — wL*
T0 [exp {log (’I"EL(T)) }p‘fL :| f 0 {exp {log (TeL(r)) }pr ]

- exp [T'(r, f)] dr

(7’0 > O)

}G;L*H

w L*
o —+1

i.e., =) converges.
" [exp {1og (ret0) 7]
Next let - T f)]d
exp |T'(r, T
wprq o 41 (ro > 0)
" [exp flog (rer) 7|

be convergent. Then by the second part of Lemma 3, we get that

> M(r, f)dr
" wpr o 41
* [exp f1og (rer) 37"
- o exp [T(2r, )] dr _ +/°° o(1)dr _
r PR +1 ro i pAL* 0% +1
0 {exp {log (reX(m)}s ] {exp {log (reX () }"s }
_ 1 / exp [T'(r, f)] dr o),
2 {exp (lp*L*)} o pit= 15
2rs [exp {1og (’I“e(%)>} ! }
Th
e e M(r, f)dr
” prL* U}L*+1
0 {exp {log (rel(m)}"s }

converges. This proves the theorem. m

Now in view of Theorem 1 and Theorem 2 we may give an alternative defi-
nition of L*-type U}ZL* of an entire function f with L*-order zero as follows:

An entire function f with L*-order zero is said to be of type O';ZL* if the

integral
e M(r, f)dr
/ r, /) RS (ro > 0)
o [exp {log (reL(m)}"1 }

converges for k > U}L* and diverges for k < O’}L*.
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Theorem 3 If f be a meromorphic function of infinite L*-order and 0 < ﬁ]Lc* <
oo then Definition C and Definition D are equivalant.

Proof. Case I: E]Lc* = 0.

Definition C= Definition D

As EJLC* = 00, from Definition C, we obtain for arbitrary positive G and for
a sequence of values of r tending to infinity that

—L*

logT(r, f) > G{reL(T')}pf

e
i.e., T(rf) > exp{reL(T)}pf] . (5)

If possible, let the integral
o T(r, f)dr
/ o (r0>0)
" )

—L*

exp {rel() }pf

be convergent. Then by Lemma 2

T(r,[)

ligs;;p — = 0.
{exp {reL(”)}pf ]
So for all sufficiently large values of r,
«7G

T(r, f) < [exp {reL(T)}pf

Now from (5) and (6) we arrive at a contradiction. Hence

> T(r, f)dr
o1 (’I‘o > 0)
h | I

exp {rel (") }pﬁ

diverges whenever G is finite, which is Definition D.

Definition D= Definition C

Let G be any positive number. Since E)Lc* = 00, from Definition D the
divergence of the integral

o T(r, f)dr
/ — T (ro >0)
" |

=L
exp {rel(n}°1
gives for arbitrary positive € and for a sequence of values of r tending to infinity,

ﬁL* G—e
exp {reL(r)} ! ]

—L*

i, logT(r,f) > (G—¢) {rew) }”f

T(r, f) >
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This giVGS that
1() T
li S g (T? f)

= >G—e
r—00 {TeL(r)}pf

Since G is arbitrary, this shows that

1
imsup 8L _

r—00 {TeL(r) }ﬁ?*

Thus Definition C follows.

Case II: 0 < E]%* < 00.

Definition C= Definition D.

Subcase(a): Let f be of L*-type EJI?* where 0 < EJI?* < 00, Then according
to Definition C, for arbitrary positive € and for all sufficiently large values of r
we get that

*

logT(r, f) < (EJLc* + 6) {reL(T)}ﬁf

ie., T(r, f) < exp [(0%* + e) {reL(r)}p?*l

ie. T(r, f) < [exp { (reL(r))ﬁﬁ* H (Efurf)
exp { re P ) C77+)

i.e., 7(r, f) < /
[exp { (reL(T))ﬁﬁ* H ' {exp { (reL(T))ﬁ?* H g
; T(r. f) 1
T el ) o)
Therefore

/°° T(r, f)dr (o> 0)

[exp { (reL(”))ﬁ?* H *

converges if k' > EJI?* and diverges if k' < Ejj;“*

) o T(r, f)dr
ie., /TO {exp { (TeL(T))ﬁJ%* H K +1 (ro > 0)

converges if k' > E? and diverges if k' < E?.
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Subcase (b): When f is of L*-type E]Lv* = 0, Definition C gives for all
sufficiently large values of r,

log T(r ) _,

{reL() }ﬁ?*

Then as before we obtain that

o T(r, f)dr .
/?”o {exp{(reL('r'))ﬁf* H E +1 (ro > 0)

converges if k& > 0 and diverges if k& < 0. Thus combining Subcase (a) and
Subcase (b), Definition D follows.

Definition D= Definition C.

Since f is of L*-type EJI{*, by Definition D, for arbitrary (> 0) the integral

/°° T(r, f)dr
ey H14e
ro [exp { (reL(r))P? }] f
converges. Then by Lemma 2, we obtain that
T
lim sup (r. ) — =
r—00 pL* af +e
oo
i.e. for all sufficiently large values of r,
T(r,f)
_px N0k Fe
[cxp{(reL(T))p? H !

N
i.e., T(r, f)<e [exp{(re“”)pf }1

i.e., logT(r, f) < loge+ (5? —|—e>

<e€

logT(r, f) < log e

[reLO YT {rel) )75

Since € (> 0) is arbitrary it follows from above that

lim sup08 L)

<wk' (7)
r—o00 {TGL(T)}pf I
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Again by Definition D, for arbitrary positive €, the divergence of the integral

T(r, f)dr

/ OO
To

[exp { (reL(T))ﬁF }]

I 1
o +1—¢

implies that there exist a sequence of values of r tending to infinity such that

>

1

T(r,f)
TL 41—e

{exp { (reL(T'))EIf* }] 0¥

o

}‘| Efc‘* —2e€

(retn)7F

1

—_L*
i.e., T(r,f) > |exp { (reL(r))pf
e
i.e., logT'(r, ) > (EL — 26) {TeL(T)} !
logT .
i.e., M > E? — 2¢
{reL(T)}pf
logT .
i.e., lim supM > EJLc — 2e.

r—00 {,r.eL(T)}pf
As e (> 0) is arbitrary we obtain from above that

log T'(r, f)

lim sup e EEL*.
=00 {reL(r)}Pf !
Now from (7) and (8) it follows that
log T(r, f)

li e
17{ri)S£p {reL(r) }ﬁ?

Thus we get Definition C.

—L*

Hence combining Case I and Case II, the theorem follows. m

Theorem 4 The integral
T(r, f)dr

/m [exp{(reL(r))ﬁ}'* H
converges if and only if the integral

/°° log M (r, f)dr
e {eXP { (TeL(r))ﬁJ%* }}E? i

—I
[ +1

(1o > 0)

(ro > 0) converges.
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Proof. Let

e log M (r, f)dr
/ ] (7’0 > 0)
To

{exp { (TeL(r))ﬁ,Lc* H /

be convergent . Then by the first part of Lemma 3, we obtain that

/oo T(r, f)dr < /°° log M (r, f)dr
) _pxNq0E 1 — sy 1
ro {exp { (reL(T))pf H ! ro [exp { (TeL(T))pf H !
i.e., Tr, f)dr — (ro > 0) converges.
. L™ Ty +1
0 [exp{(,r.eL(r)) 7 }]
Next let
o T(r, f)dr
/TO Ef*-&-l (7’0 > 0)

[exp { (reL(”))ﬁ?* H

be convergent. Then by the second part of Lemma 3, we get that
/ o log M (r, f)dr

Tk
{exp{ eL( ) P }} 7+l

< [ T(r fdr - > odr 1
{exp{ (rel(m) Py H e /TO [exp{(reL( ))ﬁf* H -
T(r, f)dr
= oxb (17 /T A +o(1).
2 [ p(2pf )] 0 [exp{(reL(g)y)f }} +
Thus - log M(r, )dr
r (’I“o > 0)

ro {exp { (TeL(T))ﬁJ%* HEf

is convergent.
This proves the theorem. m

Now in view of Theorem 3 and Theorem 4, we may give an alternative
deifnition of L*-type EJI?* of an entire function f with infinite L*-order as
follows:

An entire function f with L*-infinite order is said to be of L*-type E%* if

the integral
/OO log M (r, f)dr
P
ro [exp{(reL(T))pJ% H

converges for k > E]I?* and diverges for k < E%*.

(7“0 >0)
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