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Abstract

Legendre collocation method and Trapezoidal rule are presented to solve numer-
ically the Voltterra-Fredholm Integral Equations with Abel kernel. We transform
the Volterra integral equations to a system of Fredholm integral equations of the
second kind which will be solved by Legendre method. This method is based on
replacement of the unknown function by truncated series. This lead to a system
of algebraic equations. Thus, by solving the matrix equation, the coe�cients are
obtained. A numerical example is included to certify the validity and applicability
of the proposed technique.
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1 Introduction

We consider the Volterra-Fredholm integral equation of the second kind with Abel
kernel:

ψ(x, t)−
∫ t

0

∫ 1

−1
|x− y|−αψ(y, τ)dydτ = f(x, t), (x, t) ∈ [−1, 1]× [0, T ] (1)

where 0 6 T is given and α ∈]0, 1[. The elements K(x, y) = |x− y|−α is the Abel
kernel.

For solving Volterra-Fredholm integral equations, many methods with enough
accuracy and e�ciency have been used before by many researches [1, 1, 3, 4, 5, 6,
7, 8, 9]. Maleknejad and Fadaei Yami [5] solved the system of Volterra-Fredholm
integral equations by Adomian decomposition method. Kauthen in [4], used contin-
uous time collocation method for Volterra-Fredholm integral equations. Legendre
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wavelets also were applied for solving Volterra-Fredholm integral equations [10]. In
[11], Yalsinbas developed numerical solution of nonlinear Volterra-Fredholm integral
equations by using Taylor polynomials. In this paper, we use numerical technique
based on Trapezoidal rule, to reduce the Volterra-integral Equations to a linear sys-
tem of Fredhom Integal equations which will be solved using Legendre collocation
method. The paper is organized as follows. In section 2, we transform the Volterra-
fredholm Integral equations to a system of Fredholm integral equations of the second
kind. In Section 3, a rapid review of Legendre polyomial and a linear system is ob-
tained, so an approximation solution is presented with convergence theorem. In the
remainder of the paper, we give a practical example to certify the validity of the
proposed technique.

2 System of Fredholm Integral Equations

First, if t = 0 the Volterra-Fredholm integral equations is reduced to: ψ(x, 0) =
f(x, 0). For t 6= 0, we apply Trapezoidal Method to solve the Volterra integral
equations according to the variable τ . For a given t, we divide the interval of
integration (0; t) into m equal subintervals, δτ = tm−0

m , where tm = t.
Let τ0 = 0, t0 = τ0, tm = τm = t, τj = jδτ, tj = τj . Using the trapezoid rule,

∫ t

0

∫ 1

−1
|x− y|−αψ(y, τ)dydτ ∼ δτ

m∑
j=0

′′ ∫ 1

−1
|x− y|−αψ(y, τj)d y

where the double prime indicates that the �rst and last term to be halved, where

δτ =
τj − 0

j
=
t− 0

m
, τj 6 t, j > 1, t = tm = τm

In all our approximation, the error assumed negligible, this help us to get a system
of Fredholm Integral equations.

Now, for 0 6 r 6 m, the Volterra Fredholm integral equations become a system
of Fredholm integral equations

ψ(x, tr)− δτ
r∑
j=0

′′ ∫ 1

−1
|x− y|−αψ(y, τj)d y = f(x, tr), 1 6 r

and ψ(x, 0) = f(x, 0).
We get the system:
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ψ(x, 0) = f(x, 0)

ψ(x, t1)−
δτ

2

1∫
−1

|x− y|−αψ(y, t1)dy = f(x, t1) +
δτ

2

1∫
−1

|x− y|−αψ(y, 0)dy

ψ(x, t2)−
δτ

2

1∫
−1

|x− y|−αψ(y, t2)dy = f(x, t2) +
δτ

2

1∫
−1

|x− y|−αψ(y, 0)dy + δτ

1∫
−1

|x− y|−αψ(y, t1)dy

...

ψ(x, tm)−
δτ

2

1∫
−1

|x− y|−αψ(y, tm)dy = f(x, tm) + δτ
m−1∑
j=0

′ 1∫
−1

|x− y|−αψ(y, τj)d y,

where the prime indicates that the �rst term to be halved. Denote: f(x, t`) =
f `(x), ψ(y, τ`) = ψ`(y), ` = 0, . . . ,m

Putting

Fm(x) = fm(x) +

m−1∑
j=0

′ 1∫
−1

|x− y|−αψj(y)d y,

An obvious computation gives

Fm(x) = fm(x) + 2

m−1∑
j=1

(−1)j+m
(
f j(x)−ψj(x)

)
+ (−1)m+1 δτ

2

1∫
−1

|x− y|−αψ0(y)dy

Now, our problem become:

ψ`(x)− δτ

2

1∫
−1

|x− y|−αψ`(y)dy = F `(x), ` = 1, . . . ,m (2)

ψ(x, 0) = f(x, 0)

Equations (2) represents a system of Fredholm integral equations of the second
kind which will be solved by Legendre method. For a �xed t`, we solve the Fredholm
integral equations which leads to the required approximate solution of the volterra-
Fredholm integral equation (1).

3 Legendre Methods

3.1 Fundamental

Orthogonal polynomials are widely used in applications in mathematics, mathemat-
ical physics, engineering and computer science. One of the most common set of
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orthogonal polynomials is the Legendre polynomials. The Legendre polynomials Pn
satisfy the recurrence formula:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ∈ N∗

P0(x) = 1,

P1(x) = x (3)

An important property of the Legendre polynomials is that they are orthogonal with
respect to the L2 inner product on the interval [−1, 1]:∫ 1

−1
Pm(x)Pn(x) dx =

2

2n+ 1
δmn

where δnm denotes the Kronecker delta.

3.2 Approximate solution

We choose xk, k ∈ {0, . . . , n} the zeros of the Legendre polynomial of degree equal
n + 1. We determine a suitable interpolating elements φ`j(x), j = 0, 1, . . . , n, such
that

ψ`n(x) =

n∑
j=0

φ`j(x)ψ
`(xj) (4)

is the unique interpolating polynomial of degree n, which interpolates ψ` at the
points xi, i = 0, 1, . . . , n.

The elements φj(x), j = 0, 1, . . . , n are called the basic functions associated with
the Legendre interpolation polynomial and they satisfy φj(xi) = δij .

Then we get an approximation of the exactly integral, let say:

In(ψ
`) =

∫ 1

−1
K(x, y)ψ`n(y)dy (5)

This type of approximation must be chosen so that the integral (5) can be eval-
uated (either explicitly or by an e�cient numerical technique).

The functions P0(x), P1(x), . . . , Pn(x) will be called interpolating elements. In
this dissertation, the interpolating function ψ`n will be assumed to be the interpo-
lating polynomial

ψ`n(x) =
n∑
j=0

β`jPj(x) (6)

where Pj are Legendre polynomials of degree j, n is the number of Legendre
polynomials, and β`j are unknown parameters, to be determined. This

The coe�cients β`j are obtained by multiplying both sides of Eq. (6) by Pm,m ≤
n (as weight functions), and integrating the resulting equation with respect to x over
the interval [−1, 1] to obtain

4

International journal of advanced scientific and technical research                                                   Issue 3 volume 1,February 2013          

Available online on  http://www.rspublication.com/ijst/index.html                                                                          ISSN 2249-9954

Page 407 



∫ 1

−1
Pm(x)ψ

`
n(x)dx =

n∑
j=0

β`j

∫ 1

−1
Pm(x)Pj(x)dx = β`m

2

2m+ 1

Therefore,

β`m =
2m+ 1

2

∫ 1

−1
Pm(x)ψ

`
n(x)dx (7)

Here the integrand Pmψ
`
n is a polynomial of degree n+m ≤ 2n then its integration

in (7) can exactly be obtained from just n + 1 point Gauss-Legendre method, by
using the following formula

β`m =
2m+ 1

2

n∑
j=0

wjPm(xj)ψ
`(xj) (8)

where wj , j = 0, . . . , n are the (n+1)-point Gauss-Legendre weights(The wj are
given coe�cients that do not depend on the integrant function).

The n+1 grid points (xi ) of Gauss Legendre integration in formula (8) giving us
the exact integral of an integrand polynomial of degree n+m ≤ 2n can be obtained
as the zeros of the n + 1-th-degree Legendre polynomial. Then, given the n + 1
grid point xi, we can get the corresponding weight wi of the i point Gauss Legendre
integration formula by solving the system of linear equations. Now, the interpolating
polynomial ψ`n can be written as:

ψ`n(x) =

n∑
m=0

(2m+ 1

2

n∑
j=0

wjPm(xj)ψ
`(xj)

)
Pm(x)

=

n∑
j=0

(
wj

n∑
m=0

2m+ 1

2
Pm(xj)Pm(x)

)
ψ`(xj) (9)

Using (4) and (9) we get

φ`j(x) = wj

n∑
m=0

2m+ 1

2
Pm(xj)Pm(x), j = 0, . . . , n (10)

Substituting ψ`n into Eq. (2) and collocating at the points xi, we obtain:

ψ`(xi)−
δτ

2

n∑
j=0

ψ`(xj)

∫ 1

−1
K(xi, y)φ`j(y)dy = F `(xi), i = 0, . . . , n (11)

3.3 Convergence

We de�ne

Hm([−1, 1]) =
{
φ ∈ L2[−1, 1], 0 ≤ k ≤ m, d

kφ

dxk
∈ L2[−1, 1]Big}
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the spaces Hm([−1, 1]) endowed with the following inner product are Hilbert
spaces

< φ,ψ >m=

m∑
k=0

∫ 1

−1

dkφ

dxk
(x)

dkψ

dxk
(x)dx

with the associated norm

||φ||m =

(
m∑
k=0

||d
kφ

dxk
||2L2[−1,1]

)1/2

Theorem 1 Let ψ` ∈ Hm[−1, 1], then ψ`n (The truncated Legendre series) is the
best approximation polynomial of ψ`. Moreever, ∃C > 0, such that

||ψ` − ψ`n||L2[−1,1] 6 Cn−m||ψ`||Hm[−1,1]

Proof 1 See [13, 12]

3.4 Matrix Form

To simplify the presentation let us de�ne

ai,j =

∫ 1

−1
K(xi, y)φ`j(y)dy (12)

Then a (n+ 1)× (n+ 1) linear system is obtained:

(Id− δτ

2
A`)ψ` = F ` (13)

where A` = (ai,j)(i,j)∈{0,...,n}2 is square matrix, ψ` = (ψ`(x0), . . . , ψ
`(xn))

T and

F ` = (F `(x0), . . . , F
`(xn))

T , capital T indicate the transpose. Obviously, the system
(13) has a unique solution if the determinant of the matrix Id − δτ

2 A is nonzero,
which also depends on the choice of collocation point.

Substituting (10) into (12) we obtain

ai,j = wj

n∑
k=0

2k + 1

2
Pk(xj)uk(xi)

where uk(xi), (i, k) ∈ {0, . . . , n}2 are de�ned

uk(xi) =

∫ 1

−1
|xi − y|−αPk(y)dy

The constants uk(xi), (i, k) ∈ {0, . . . , n}2, can be evaluated from the recurrence
relation:

(k + 3− α)uk+2(xi) = (2k + 3)xiuk+1(xi)− (k + α)uk(xi), k = 0, . . . , n
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with the starting values for this recurrence relations are:

u0(xi) =
1

1− α

(
(1− xi)1−α + (1 + xi)

1−α
)

(14)

u1(xi) = xiu0(xi) +
1

2− α

(
(1− xi)2−α + (1 + xi)

2−α
)

(15)

4 Numerical Example

In this section, to achieve the validity, the accuracy and support our theoretical
discussion of the proposed method, we give some computational results. The compu-
tations, associated with the example, are performed by MATLAB 7. In our compu-
tation we will take α = 1

2 , n = 9, m = 9 and T = 2. Consider the Volterra-Fredholm
Integral equation of second kind with:

f(x, t) = x3

1+t − ln(1 + t)
(
w1 + w2

)
where

w1 = −1

7
x71 +

3

5
xx51 − x2x31 + x3x1

w2 =
1

7
x72 +

3

5
xx52 + x2x32 + x3x2

x1 =
√
1 + x

x2 =
√
1− x

and the exact solution is ψ(x, t) = x3

1+t .
The numerical and exact solutions are compared by considering the absolute error

|ψ(x, t)− ψn(x, t)|. The Table 1 show that the proposed approach can be a suitable
method for solving Volterra-Fredholm integral equations numerically.

H
HHH

HHxk

tk
0 0.2222 0.4444 0.6667 0.8889 1.1111 1.3333 1.5556 1.7778 2.0000

-0.9739 0 0.0510 0.1609 0.2945 0.4652 0.6906 0.9956 1.4149 1.9983 2.8173

-0.8651 0 0.0502 0.1616 0.3033 0.4918 0.7491 1.1065 1.6084 2.3187 3.3294

-0.6794 0 0.0347 0.1147 0.2237 0.3772 0.5974 0.9160 1.3790 2.0536 3.0376

-0.4334 0 0.0164 0.0564 0.1156 0.2050 0.3403 0.5450 0.8536 1.3173 2.0117

-0.1489 0 0.0041 0.0149 0.0321 0.0597 0.1031 0.1711 0.2762 0.4376 0.6835

0.1489 0 0.0041 0.0149 0.0321 0.0597 0.1031 0.1711 0.2762 0.4376 0.6835

0.4334 0 0.0164 0.0564 0.1156 0.2050 0.3403 0.5450 0.8536 1.3173 2.0117

0.6794 0 0.0347 0.1147 0.2237 0.3772 0.5974 0.9160 1.3790 2.0536 3.0376

0.8651 0 0.0502 0.1616 0.3033 0.4918 0.7491 1.1065 1.6084 2.3187 3.3294

0.9739 0 0.0510 0.1609 0.2945 0.4652 0.6906 0.9956 1.4149 1.9983 2.8173

Table 1: 102|ψ(x, t)− ψ9(x, t)|.
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5 Conclusion

We used the Trapezoidal rule and Legendre expansion to approximate the numer-
ical solution of Volterra-Fredholm integral equations, this allows us to reduce the
Volterra- Fredholm integral equation to a system of linear equations. According to
the numerical results which obtaining from the illustrative example, we conclude that
we have a good accuracy. This method may be applied to solve Volterra Fredholm
integral equations with other singular Kernels (logarithm Kernel), smooth kernels
and a nonlinear Volterra Fredholm integral equation.
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