
International Journal of Advanced Scientific and Technical Research   Issue 3 volume 1, January-February 2013          

Available online on   http://www.rspublication.com/ijst/index.html                                              ISSN 2249-9954 

 Page 33 
 

The Comparative Study of the Accuracy of an Implicit Linear Multistep Method 
of Order Six and Classical Runge Kutta Method for the Solution of Initial Value 

Problems in Ordinary Differential Equations 

1Fadugba S. Emmanuel, 
2

Okunlola J. Temitayo 

  
1 Department of Mathematical Sciences, Ekiti State University, Ado Ekiti, Nigeria 

2 Department of Mathematical and Physical Sciences, Afe Babalola University, Ado Ekiti, 

Nigeria 
 

___________________________________________________________________________ 
1.0 Introduction 

It has been discovered that mathematical models resulting into single or system of first order ordinary 

differential equations are largely applied in nearly all discipline most especially in Sciences, Engineering and 

Economics. Any system whose behavior can be modeled by first order ordinary differential equations can be 

solved numerically to any desired degree of accuracy. Numerical solution of ordinary differential equations 

remain an active field of investigation, though, the area of research vary significantly.  

 

There are numerous methods that produce numerical approximations to solution of initial value problems in 

ordinary differential equations such as Euler's method which was the oldest and simplest method originated by 
Leonhard Euler in 1768, Improved Euler's method, implicit linear multistep method of order six derived by [1] 

and Runge Kutta methods described by Carl Runge and Martin Kutta in 1895 and 1905 respectively. There are 

many excellent and exhaustive texts on this subject that may be consulted, such as [2], [5], [6], [7], and [8] just 

to mention few. In this work we present the practical use and the accuracy of an implicit linear multistep method 

and Runge Kutta method for the solution of initial value problems in ordinary differential equations. 

 

2.0 The Methods 
This section presents two numerical methods for the solution of initial value problems in ordinary differential 

equations. 

 

2.1 Linear Multistep Method  

  Linear multistep method is a computational procedure whereby a numerical approximation 1nx   to the exact 

solution 1( )nx t   of the first order initial value problem of the form 

  0 0, , ( )x g t x x t x                                                          

         (1)                                                                                              

The general linear multistep method is given by [9] 
0 0

j j

k n k k n k

k k

x h g  

 

                                                                     

(2)                                                                                                                      

 Where k and k are constants, h is the step size. It is assumed that the function  ,g t x is Lipschitz                       

continuous throughout the interval a t b  .  Equation (2) includes Simpson method, Adam Bashforth and 

Adam Molton methods. All Adam’s methods are regarded as constant coefficient method but in this paper, 

linear multistep method with constant coefficient of higher step number j is generated. The parameters of this 

method are determined by the collocation approach in which the approximate solution is determined from the 

condition that the equation must be stratified at certain given point. It involves the determination of an 

approximate solution in a suitable set of function called the basis function.  

 

Now we shall derive an order six implicit linear multistep method for the solution of first order differential 

equation using collocation and interpolation methods.  
     Collocation points are used to collocate the different system. The interpolation points are used to interpolate the 

approximate solution with the diagram below. Both Collocation and interpolation are done at all even points 

2,n nt t t  and 4nt   while evaluation is done at 6.nt t 
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                                                      nt                           2nt                         4nt                     6nt   

 

 Next, we shall present the derivation of the scheme as follows. 

 

 2.1.1 Derivation of the Implicit Scheme [10] 

The basis function is given by: 

6

1

( ) k

k

k

x t b t


                                                                                                                                                                          

(3)                                                                                                                        

Equation (3) is needed in the derivation of the scheme for solving first order differential equation.  

Expanding (3) we have, 

2 3 4 5 6

0 1 2 3 4 5 6( )x t b b t b t b t b t b t b t                            

         (4)                                                                               

 Differentiating (4) with respect to t  

2 3 4 5

1 2 3 4 5 6( ) 2 3 4 5 6x t b b t b t b t b t a t                                                                                                                          

(5)                                                                             

 Collocating (5), we have that at 2 4, ,n n nt t t t  and 6nt   

 Therefore, 

2 3 4 5

1 2 3 4 5 62 3 4 5 6n n n n n ng b b t b t b t b t b t                                                                                                                       

(6)                                                                          
2 3 4 5

2 1 2 2 3 2 4 2 5 2 6 22 3 4 5 6n n n n n ng b b t b t b t b t b t                                                                                                         

(7) 

2 3 4 5

4 1 2 4 3 4 4 4 5 4 6 42 3 4 5 6n n n n n ng b b t b t b t b t b t                                                                                                         

(8)                                                       
2 3 4 5

6 1 2 6 3 6 4 6 5 6 6 62 3 4 5 6n n n n n ng b b t b t b t b t b t                                                                                                          

(9)                           

  Interpolating at the points 2,n nt t t  and 4nt  , then  

2 3 4 5 6

0 1 2 3 4 5 6n n n n n n nx b b t b t b t b t b t b t                                                                                                                        

(10)                                                                            

2 3 4 5 6

2 0 1 2 2 2 3 2 4 2 5 2 6 2n n n n n n nx b b t b t b t b t b t b t                                                                                                       

(11)                                                    
2 3 4 5 6

4 0 1 4 2 4 3 4 4 4 5 4 6 4n n n n n n nx b b t b t b t b t b t b t                                                                                                       

(12)                              

 Using Gaussian Elimination method to determine the values of the coefficients 0, 1 2 3 4 5, , , ,b b b b b b  and 6b , then 

we have that: 

 
2 3 4 5 6

0 1 2 3 4 5 6n n n n n n nb x b t b t b t b t b t b t                                                                                                                       

(13)                                                                         
2 3 4 5

1 2 3 4 5 62 3 4 5 6n n n n n nb g b t b t b t b t b t                                                                                                                      

(14)                                                                      
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       

 

2 2 3 2 3

2 2 3 4 52

4 3 2 3 4

6

1 1
3 2 6 8 4 10 20 2 8

4 2
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n n n n n n n n n

n n n n

b x x g b t h b t t h h b t t ot h h
h h

b t t h t h t h h

           

    

             

(15) 

       2 2

3 2 2 4 52 3

1 1
4 4 10 20 12

4 4
n n n n n n nb g g x x b t h b t t h h

h h
                                                         

(16)                 

       2 2

4 4 2 2 5 64 3

1 1
4 5 2 5 8 15 48 44

64 16
n n n n n n n nb x g x g g b t h b t t h h

h h
                                   

(17) 

     5 4 2 4 64 5

1 3
4 6 12

64 128
n n n n n nb x g g x x b t h

h h
                                                                                 

(18) 

   6 6 4 2 4 25 5

1 1
24 57 10 19 8 11

4224 2816
n n n n n n nb g g g g g g g

h h
                                                        

(19) 

 By inserting the coefficient 0b into (1), evaluating at 6nt t  , substituting equations (14), (15), (16), (17), (18) 

and (19) for 1 2 3 4 5, , , ,b b b b b and 6b respectively and simplify we have the scheme: 

 6 4 2 6 4

27 27 6
9

11 11 11
n n n n n n nx x x x h g g g                                                                                                                    

(20)                                                    

Equation (20) is called an implicit linear multistep method of order six. 

 

2.2 Classical Runge Kutta Method 

Runge Kutta method is a technique for approximating the solution of ordinary differential equation. This 

technique was developed around 1900 by the mathematicians Carl Runge and Wilhelm Kutta. Runge Kutta 

method is popular because it is efficient and used in most computer programs for differential equation.  

The following are the orders of Runge Kutta Method as listed below: 

 Runge Kutta method of order one is called Euler's method. 

 Runge Kutta method of order two is the same as modified Euler’s or Heun's Method. 

 The fourth order Runge Kutta method called classical Runge Kutta method. 

In this paper, we shall only consider the classical Runge Kutta method. We shall derive here the simplest of the 

Runge method. A formula of the following form is sought [3, 4]: 

1 1 2n nx x ak bk                                                                                                                                                                

(21)                                                                                                 

Where 1 ( , )n nk hg t x , 2 1( , )n nk hg t h x k    and  ,,,ba are constants to be determined so that 

(21) will agree with the Taylor algorithm.  Expanding 1( )nx t  in a Taylor series of order
3h , we obtain  

2 3

1

( ) ( )
( ) ( ) ( ) ...

2 6

n n
n n n

h x t h x t
x t x t hx t

 
            =  

2 3 2 2
4

( ) ( 2 )
( ) ( , ) 0( )

2 6

x y n tt tx xx t x x n
n n n

h g gg h g gg g g g g g g
x t hg t x h

    
     

It should be noted that the expansions 
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( , )x g t x  , t xx g g g   and
2 22tt tx xx t x xx g g g g g g g g g      . The subscript n means that all 

functions involved are to be evaluated at ( , )n nt x . 

On the other hand, using Taylor’s expansion for functions of two variables, we find that  
2 2 2 2

31
2 1 1 1( , ) ( , ) 0( )

2 2

tt xx
n n n n t x tx

h g k g
k g t h x k g t x hg k g h k g h

 
                                    

(22) 

All the derivatives above are evaluated at ( , )n nt x . If we now substitute this expression for 
2k into (21) and 

note that 1 ( , )n nk hg t x , we find upon rearrangement in powers of h and by setting 1,
2

1
 ba

that 

1 1 2 3 4

1
( 2 2 )

6
n nx x k k k k                                                                                                                                         

(23)                                                                      

Where 1 ( , )n nk hg t x , 

2 1

1
( , )

2 2
n n

h
k hg t x k   , 3 2

1
( , )

2 2
n n

h
k hg t x k   and 4 3( , )n nk hg t h x k    

This method (23) is undoubtedly the most popular of all Runge Kutta methods. Indeed it is frequently referred to 

as “the fourth order Runge Kutta method or classical Runge Kutta Method”. Many numerical analyst rely on (3), 

because it is quite stable, accurate and easy to program. 

 

2.2.1 Error Estimate for Runge Kutta Method [3] 

For all one step methods like Runge Kutta Method, the conceptually-simplest definition of local truncation error 

is that it is the error committed in the most recent integration step, on a single integration step. We denote the 

solution to the initial value problem (1) by , (0), (0)t t x . We have noted that the truncation error in 
thp  order 

Runge Kutta method is
1pkp , where k is some constant. Bounds on k  for 4,3,2p  also exist. The 

derivation of these bounds is not a simple matter and moreover, their evaluation requires some quantities. One 

of the serious draw backs of Runge Kutta method is error estimation. 

 

3.0 Numerical Experiments 
In order to confirm the suitability and applicability of the methods for the solution of initial value problem in 

ordinary differential equations, it was computerized in Q BASIC programming languages and implemented on a 

macro-computer adopting double precision arithmetic. The performance of the two methods under consideration 
was checked by comparing their accuracy and efficiency. Efficiency was determined from the number iterations 

counts and the number of the function s evaluations per step while the accuracy is determined by the size of the 

discretization errors estimated from the difference between the true solution and the numerical approximations. 

 

The first order initial value problem considered in this paper is given by  

, (0) 1, [0,1]x x x t                                                                                                                                                       

(24) 

The true solution of equation (24) is given by  

( ) exp( )x t t                                                                                                                                                                       

(25) 

The results obtained shown in Tables 1 and 2, the comparison of the two methods to the true solution and the 

error incurred respectively. 

 

3.1 Table of Results 

We present below the comparative result analysis and the error incurred from the two methods.



International Journal of Advanced Scientific and Technical Research   Issue 3 volume 1, January-February 2013          

Available online on   http://www.rspublication.com/ijst/index.html                                              ISSN 2249-9954 

 Page 37 
 

 

Table 1: Comparative Result Analysis of an Implicit Linear Multistep Method and Classical Runge Kutta 

Method 

n  
nt  ( )nx t  nIx  nRx  

0 0.0 1.0000 1.0000 1.0000 

1 0.1 0.9048 0.9047 0.9045 

2 0.2 0.8187 0.8186 0.8185 

3 0.3 0.7408 0.7407 0.7404 

4 0.4 0.6703 0.6703 0.6701 

5 0.5 0.6065 0.6065 0.6064 

6 0.6 0.5488 0.5487 0.5485 

7 0.7 0.4965 0.4965 0.4966 

8 0.8 0.4493 0.4493 0.4491 

9 0.9 0.4066 0.4067 0.4065 

10 1.0 0.3678 0.3678 0.3679 

 

Table 2: Error incurred in an Implicit Linear Multistep Method and Classical Runge Kutta Method 

 

n  
nt  ( )nI n nIe x t x   ( )nR n nRe x t x   

0 0.0 0.0000 0.0000 

1 0.1 0.0001 0.0002 

2 0.2 0.0001 0.0002 

3 0.3 0.0001 0.0004 

4 0.4 0.0000 0.0002 

5 0.5 0.0000 0.0001 

6 0.6 0.0001 0.0003 

7 0.7 0.0000 0.0001 

8 0.8 0.0000 0.0002 

9 0.9 0.0001 0.0001 

10 1.0 0.0000 0.0001 

 

 

3.2 Discussion of Results 
As we can see from the above tables, using a step size of 0.1, the error incurred in an implicit linear multistep 

method is smaller than that of classical Runge Kutta method. Hence a six step implicit method is consistent and 

better in accuracy. 

 

4.0 Conclusion  

In this paper and two numerical methods for the solution of initial value problems in ordinary differential equations 

have been developed. From the two methods used, an order six implicit linear multistep method converges faster, 

provides the closest accurate value for the solution of any first order differential equations. Hence the method is 

more accurate than classical Runge Kutta method.  
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