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Abstract : 

Intermittency is sporadic switching between two qualitatively different behaviours.The intermittent 

transition to turbulence was first discussed  byPomeau and Manneville[15] in connection with Lorentz 

model. The type  I intermittency is associated with a saddle-node bifurcation or tangent bifurcation in 

one dimensional maps.The aim of this paper is to examinethe laminar length given by the power law 

establishedby Pomeauand  Manneville [15, 18] in case of the Logistic map .  
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1. Introduction: 

Intermittency denotes a type of behaviour where the dynamics varies chaotically between two 

different phases of motion. One of these phases is regular (close to stationary, periodic or 

quasiperiodic motion) and is called laminar phase. The laminar phase is interrupted by turbulent 

bursts which corresponds to some irregular phases of motion. In chaotic systems, there exist different 

types of intermittencies. Pomeau and Manneville[15,18]described three different types of 

intermittency. Each type of intermittencyis related to a different kind of bifurcation. For example type 

I intermittency occurs when the system is close to a saddle node bifurcation, type II is due to the Hopf 

bifurcation, and type III due to the reverse period doubling bifurcation. All these types of 

intermittency yield chaotic behaviour when a system's parameter is varied. This is manifested by more 

and more frequent turbulent bursts. The mean time between the appearance of bursts becomes shorter 

and changes according to certain scaling laws which are characteristic to the different types of  

intermittency.    

In crisis-induced intermittency[7,8] a chaotic attractor suffers a crisis, where two or more attractors 
cross the boundaries of each other's basin of attraction. As an orbit moves through the first attractor it 

can cross over the boundary and become attracted to the second attractor, where it will stay until its 
dynamics moves it across the boundary again. 

Experimentally, the type I intermittency has been observed in turbulent fluids [3], nonlinear 
oscillators [12], chemical reactions [19] and Josephson junctions [23]. An excellent introduction to the 

intermittency route to chaos is given in Schuster [21] and Ott [16].    
  
Manffra, Caldas, Viana and Kalinowski have detected Type I intermittency and crisis induced 

intermittency in a Semiconductor Laser under Injection Current Modulation[14]. 

 

As already mentioned above, intermittency is characterized by rather long laminar phases of the 

dynamics in the neighbourhood of some former stable fixed point or periodic orbit, interrupted by 

turbulent bursts. After the bursts, the dynamics come close to the fixed point again. Hence, on one 

hand we need the presence of a saddle-node bifurcation, which ensures a dynamics corresponding to 

the laminar phase. Beyond the saddle-node bifurcation the trajectory travels through some small 

http://en.wikipedia.org/wiki/Crisis_%28dynamical_systems%29
http://en.wikipedia.org/wiki/Basin_of_attraction
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"channel" in the neighbourhood of the former fixed points. On the other hand a certain re-injection 

mechanism is necessary which models the turbulent bursts and makes sure that the trajectory comes 

close to the channel again to repeat the laminar phase. 

The logistic map given by 

𝑓 𝑥 = 𝜇𝑥(1 − 𝑥) 

where 𝜇, the control parameter is the “fertility” or “growth rate” of a population with limited 

resources, 0 ≤ 𝜇 ≤ 4 and 𝑥 ∈ [0,1], fulfils these conditions. It displays the type I intermittency during 

the transition from the periodic to chaotic state near the period three window [9, 11]. 

 

2. Saddle node bifurcation or tangent bifurcation or Fold bifurcation in one dimensional 

maps: 

The saddle-node bifurcation occurs when a stable fixed point and an unstable fixed point appear 

simultaneously as the parameter 𝜇 passes through a critical value,say𝜇𝑡 . Reversing the direction of 𝜇, 

we can see a stable and unstable fixed point merge in phase space and then both disappear. 

At a tangent bifurcation, we have        

     
df(n)(x∗)

dx
= 1 

Where x∗ is a fixed point of the n
th
  iterate of the map function. i.e., the function 𝑓𝜇𝑡

 𝑛 
(𝑥) is 

tangent to the diagonal line i.e.𝑦 =  𝑥 . 

In order to explain the phenomena of saddle node bifurcation we consider an one dimensional map  

𝑔(𝑥) = 𝜇 − 𝑥2 . This map can be transformed by a change of variables to the logistic map, 𝑥𝑛+1 =

𝜇𝑥𝑛(1 − 𝑥𝑛 ). Note however that the logistic map does not possesses a tangent bifurcation analogous 

to that of the equation 𝑔(𝑥) = 𝜇 − 𝑥2  at 𝜇 = −
1

4
 due to its non-genericbehaviour[8]. On the contrary, 

for the transformed logistic map, we get a transcritical bifurcation at 𝜇 = 1 which corresponds to 

𝜇 = −
1

4
 for the map 𝑔(𝑥) = 𝜇 − 𝑥2. 

For themap𝑔 𝑥 = 𝜇 − 𝑥2 , 𝑥 ∈ ℝ,when 𝜇 < −1/4 there are no fixed points.  At 𝜇 = −1/4, 

the graph of 𝑓 is tangent to the line 𝑦 = 𝑥. Using the condition of tangent bifurcation stated above, the 

fixed point is found to be 𝑥 = −1/2. As 𝜇 increases beyond −1/4 , the graph of 𝑔 crosses the line 

𝑦 = 𝑥 in two points, giving rise to two fixed points of 𝑔 viz, 𝑥1 =
−1+ 1+4𝜇

2
  and 𝑥2 =

−1− 1+4𝜇

2
which are shown in the following figure. 
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To verify the nature of stability of the above fixed points, we observe that  

For 𝜇 > −
1

4
,   𝑑𝑔

𝑑𝑥
 
𝑥=

−1− 1+4𝜇

2

= 1 +  1 + 4𝜇 > 1  

  𝑑𝑔

𝑑𝑥
 
𝑥=

−1+ 1+4𝜇

2

= 1 −  1 + 4𝜇 < 1  

Which ascertains that the fixed point𝑥1 =
−1+ 1+4𝜇

2
  is an attracting fixed (taking 𝜇 < 0.75 ) point 

and 𝑥2 =
−1− 1+4𝜇

2
 is a repelling fixed point.  

If we start with 𝜇 < −
1

4
 and let it increase, then we find that a bifurcation takes place at 𝜇 = −

1

4
. 

Atthat value of the parameter we have 
𝑑𝑔

𝑑𝑥
= 1, i.e. at  𝜇 = −

1

4
 , we have a saddle point as shown in 

figure 2. As 𝜇 increases further we have a pair of stable and unstable fixed 

points.  

In reverse direction as 𝜇 decreases, the two stable and unstable fixed points collide at 𝜇 = −
1

4
 and 

annihilate themselves.     

Figure: 2 
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Figure 1: The graph of 𝑔 𝑥 = 𝜇 − 𝑥2 before, at  and following a saddle node bifurcation is 

shown. (a) At 𝜇 = −1, the graph does not intersect  the line 𝑦 = 𝑥. (b) At 𝜇 = −
1

4
, the graph 

and the line 𝑦 = 𝑥 intersect in one point, the point of tangency; (c) for 𝜇 > −
1

4
, they intersect 

in two points for e.g. at 𝜇 =
1

2
, 𝑔 has a repelling fixed point and an attracting fixed point which 

is shown in the third figure.   
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In the nonlinear dynamics literature, the bifurcation just described above is called a saddle node 

bifurcation, tangent bifurcation, or a fold bifurcation.   

 

Thus the saddle node bifurcation is the basic mechanism by which fixed points are created and 

destroyed. As a parameter is varied, two fixed points move toward each other, collide and annihilate 

each other. 

 

3. Periodic window and tangent bifurcation in logistic map: 

 

One of the most interesting features of the orbit diagram or bifurcation diagram (Figure 3) is 

the occurrence of periodic windows which are marked by the white spaces.These periodic windows 

appear for 𝜇 > 𝜇∞ = 3.5699456 …,where 𝜇∞ is the critical value of the parameter after which chaos 

creeps into the dynamics given by the logistic map after an infinite series of period doubling 

bifurcations.The most prominent and largest period 3-window occurs in the interval 3.8284 … ≤ 𝜇 ≤

3.8415 …where at 3.8415… we again visualise period doubling bifurcation[6]. 

The third-iterate map 𝑓3(𝑥) of the logistic map 𝑓 𝑥 = 𝜇𝑥(1 − 𝑥) is the key to understanding 

the birth of the period-3 cycle. Any point 𝑝 in a period-3 cycle repeats every three iterates, by 

definition, so such points satisfy 𝑝 = 𝑓3(𝑝)  and are therefore fixed points of the third-iterate map. 

Since 𝑓3(𝑥) is an eighth-degree polynomial, we cannot solve for the fixed points explicitly. 

Therefore, we take the help of  graph. Figure 4 shows a plot of𝑓3(𝑥)for =  3.835. 

The solutions of the equation 𝑓3 𝑥 = 𝑥 is given by the intersections between the graph of 𝑓3(𝑥)and 

the diagonal line 𝑦 = 𝑥. There are eight solutions, six solutions are marked with 𝑠𝑖  , 𝑖 = 1,2,3 and 

𝑢𝑖  , 𝑖 = 1,2,3 and the other two solutions are not the genuine period-3 solutions; they are actually fixed 

points or period-1 points for which 𝑓(𝑥)  =  𝑥. In figure 4, the points marked with 𝑠𝑖  , 𝑖 =

1,2,3correspond to a stable period-3 cycle as  
𝑑𝑓3

𝑑𝑥
 < 1 at these points. Again the points marked with 

𝑢𝑖  , 𝑖 = 1,2,3 correspond to an unstable period-3 cycle as  
𝑑𝑓3

𝑑𝑥
 > 1 at these points which are shown in 

table 1.  

 
Figure 2 Figure 3: Bifurcation diagram of the logistic map for 3.5 ≤ 𝜇 ≤ 4 
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Table 1: 

Fixed Point Value of the derivative 
𝑠1 =0.152074… -0.394972… 

𝑢1 =0.167205… 2.32052… 

𝑠2 =0.494514… -0.394972… 

𝑢2 =0.534015… 2.32052… 

𝑢3 =0.954313… 2.32052… 

𝑆3 =0.958635… -0.394972… 

 

Now, if we decrease 𝜇 towards the chaotic regime i.e. to the left of 𝜇 = 1 +  8 =

3.828427124746 ….where the periodic window starts.  Figure 5 shows that when 𝜇 =  3.8, the six 

marked intersections have vanished. The curve therefore moves away from the diagonal.  

 

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0
f 3

Figure 5: Graph of 𝑓3 , Cobweb diagram and time series plot for 𝜇 = 3.8 with initial 

point 0.5 
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Figure 4. Graphical iteration for 𝑓3  when 𝜇 = 3.835 
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Hence, for some intermediate value between 𝜇 =  3.8and 𝜇 =  3.835, the graph of 𝑓3(𝑥) must have 

become tangent to the diagonal. At this critical value of𝜇, the stable and unstable period-3 cycles 

coalesce and annihilate in a tangent bifurcation. This transition defines the beginning of the period 

three window. 

 

It is already established in [2, 6, 20] that the value of 𝜇 at the tangent bifurcation for the 

period three window in logistic map isexactly given by1 + 2 2 = 3.828427124746 …. 

In figure 6, we have drawn the graph of 𝑓3(𝑥) and corresponding cobweb diagram and time series 

plot for 𝜇 = 1 +  8 = 3.828427124746 ….for verification of the above fact.  

4. Intermittency and intermittency routes to chaos in logistic Map:   

The phenomenon of Intermittency is a routeto chaos in nonlinear systems.The period n-behaviour of a 

iterated map function is determined by the fixed points of the n-thiterate of the function. The 

disappearance of the fixed points is the root cause for the occurrence of intermittency.  

We have already discussed the mechanism of how the period 3 window occur at 𝜇𝑡 = 1 +  8 =

3.8284 … inside the chaotic region. Inside the periodic window for 𝜇 ≥ 𝜇𝑡 = 3.8284 … the behaviour 

is completely periodic. If we decrease 𝜇 inside the periodic window, at 𝜇𝑡  the two stable and unstable 

fixed points collide and annihilate each other in a tangent bifurcation. In contrast to period doubling, 

the previously stable fixed points are not replaced by new stable fixed points. Hence the motion 

becomes aperiodic. As 𝜇 decreases from 𝜇𝑡 , the aperiodic behaviour increases and periodic behaviour 

decreases.     

Figure 6: The corresponding cobweb diagram and time series plot at  𝜇 = 1 +  8 =

3.828427124746 …. where tangent bifurcation occur 
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Figure 7 and figure8 shows the time series plot and cobweb diagram with its blown up area inside the 

box of Logistic map function for the parameter value 𝜇 = 3.82 and  𝜇 = 3.827with initial point 0.227 

and 0.5 respectively. 

 

 
Figure 8: 
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For parameter value 𝜇 = 3.82, the figure 7 shows that there are three narrow gaps between the curve 

𝑓3(𝑥) and the diagonal. We focus on the middle gap shown in the small box. The graphic iteration 

technique shows that a trajectory spends a significant amount of time (many successive iterations) 

nearly previously stable period -3 fixed points which was attained for the parameter value 𝜇 = 1 +

 8=3.8284271…. The amount of time (number of iterations) which the map spends in the narrow 

channel is known as the laminar region.  Eventually, however, the trajectory is repelled from this 

region and wanders off to another region of state space. In figure 8we observe a similar type of 

behaviour but at the same time it throws light on the fact that as the gap size decreases, the trajectory 

spends more time in the gap region. During the passage through the narrow channel𝑓3(𝑥𝑛) ≈ 𝑥𝑛  and 

so the orbit looks like a 3-cycle.This explains why we see the apparent periodic behaviour. This is 

qualitative evidence that more time is spent in “periodic” behaviour as the parameter approaches the 

parameter value 𝜇𝑡 , at which point the gap between the curve and the line 𝑦 = 𝑥vanishes and the 

behaviour becomes exactly periodic. 

 

5. Length of the Laminar Region: 

 

In the pioneering studies [15, 18], it was found that the number of iterations followed an 𝜀−1/2(where 

= 𝜇𝑡 − 𝜇)dependence for the logistic map.  We further recall that 𝜇𝑡  is the parameter value where the 

tangent bifurcation occurs and 𝜇  is any parameter value prior to 𝜇𝑡  , of course within a certain 
specific intervals. In the work by [11], an expression for the number of iterations spent inside the 

channel was developed which we have verified in the following way.  

 
The third iterate of the Logistic Map is given by   

𝑓3 𝑥, 𝜇 = 𝜇3𝑥 − 𝜇3𝑥2 − 𝜇4𝑥2 − 𝜇5𝑥2 + 2𝜇4𝑥3 + 2𝜇5𝑥3 + 2𝜇6𝑥3 − 𝜇4𝑥4 − 𝜇5𝑥4 − 6𝜇6𝑥4

+ 6𝜇𝑥5 + 4𝜇7𝑥5 − 2𝜇6𝑥6 − 6𝜇7𝑥6 + 4𝜇7𝑥7 − 𝜇7𝑥8  

At 𝜇𝑡 = 1 +  8, where the period three window begins through a saddle node bifurcation.  

𝑑

𝑑𝑥
𝑓3 𝑥𝑡 , 𝜇𝑡 = 1, 𝑓3 𝑥𝑡 , 𝜇𝑡 = 𝑥𝑡  

Expanding 𝑓3(𝑥, 𝜇) around (𝑥𝑡 , 𝜇𝑡) in Taylor’s series, where 𝑥𝑡  is one of the three fixed 

points,𝑓3 𝑥, 𝜇 = 𝑓3 𝑥𝑡 , 𝜇𝑡 +  𝑥 − 𝑥𝑡 
𝜕

𝜕𝑥
𝑓3 𝑥𝑡 ,  𝜇𝑡 +  𝜇 − 𝜇𝑡 

𝜕

𝜕𝜇
𝑓3 𝑥𝑡 , 𝜇𝑡  

+
1

2
 𝑥 − 𝑥𝑡 

2
𝜕2

𝜕𝑥2
𝑓3(𝑥𝑡 ,  𝜇𝑡) + 𝑕 𝑖𝑔𝑕 𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

= 𝑥𝑡 +  𝑥 − 𝑥𝑡 . 1 +  𝜇 − 𝜇𝑡 
𝜕

𝜕𝜇
𝑓3 𝑥𝑡 , 𝜇𝑡 +

1

2
 𝑥 − 𝑥𝑡 

2
𝜕2

𝜕𝑥2
𝑓3 𝑥𝑡 ,  𝜇𝑡 + 𝑕 𝑖𝑔𝑕 𝑒𝑟 𝑜𝑟𝑑𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 

= 𝑥 + 𝜀 𝑏𝑡 +  𝑥 − 𝑥𝑡 
2𝑎𝑡   (1) 

where𝜀 = 𝜇𝑡 − 𝜇 and 𝑏𝑡 = −
𝜕

𝜕𝜇
𝑓3 𝑥𝑡 , 𝜇𝑡 ,𝑎𝑡 =

1

2

𝜕2

𝜕𝑥 2 𝑓3 𝑥𝑡 ,  𝜇𝑡  . Below in the table we have seen 

that although the value of  𝑎𝑡  and 𝑏𝑡  are different for different fixed point their products are equal.  
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Table 2: 

 𝑥𝑡(fixed point) 𝑎𝑡  𝑏𝑡  𝑎 = 𝑎𝑡𝑏𝑡 
1 0.1599288109970451 … 88.91013710422149 … 0.7793990594531017… 69.29647723487655 … 

2 0.5143552630501662 … 34.145309970391004 … 2.0294579396691006… 69.29647042187253 … 

3 0.9563178296531996… −310.648221390486 … −0.2230702123943047 … 69.29636472548876 … 

 

Since each step is very small one may approximate 𝑥𝑛+1 − 𝑥𝑛  by 𝑑𝑥 and since the number of steps 

through the channel is very large we may write 𝑑𝑛 = 1. These assumptions transform equation (1), 

into an integrable differential equation: 

𝑑𝑥

𝑑𝑛
= 𝑎𝑡(𝑥 − 𝑥𝑡)2 + 𝜀 𝑏𝑡  

Hence we get    
𝑑𝑥

𝑎𝑡(𝑥−𝑥𝑡)2+𝜀 𝑏𝑡

𝑥𝑜𝑢𝑡

𝑥𝑖𝑛
=  𝑑𝑛

𝑁

0
  where 𝑥 𝑖𝑛 ≤ 𝑥 𝑡 ≤ 𝑥 𝑜𝑢𝑡  and N is the 

number of iterations inside the narrow channel.   

⇒  
1

 𝜀 𝑎 𝑡 𝑏 𝑡

tan−1  (𝑥 − 𝑥 𝑡 ) 
𝑎 𝑡

𝜀 𝑏 𝑡
  

𝑥 𝑖𝑛

𝑥 𝑜𝑢𝑡

=  𝑛  0
𝑁  

⇒
1

 𝜀 𝑎 𝑡 𝑏 𝑡

 tan−1  (𝑥 𝑜𝑢𝑡 − 𝑥 𝑡 ) 
𝑎 𝑡

𝜀 𝑏 𝑡
 − tan−1   𝑥 𝑖𝑛 − 𝑥 𝑡   

𝑎 𝑡

𝜀 𝑏 𝑡
  = 𝑁  (2) 

“𝑥 𝑖𝑛 ” is the entrance to the tangency channel and "𝑥 𝑜𝑢𝑡 " is the exit value. 

 

Hirsch, Huberman and Scalapino [11] have considered a transformation 𝑦 =
𝑥 −𝑥 𝑡

𝑏 𝑡
. Applying this 

transformation the equation reduces to  

𝑁 𝑦 𝑖𝑛  =
1

 𝑎𝜀
 tan−1  𝑦 𝑜𝑢𝑡  

𝑎

𝜀
 − tan−1  𝑦 𝑖𝑛  

𝑎

𝜀
      (3) 

 

“𝑦 𝑖𝑛 ” is the entrance to the tangency channel and "𝑦 𝑜𝑢𝑡 " is the exit value and one has that  

−𝑦 𝑜𝑢𝑡 ≤ 𝑦 𝑖𝑛 ≤ 𝑦 𝑜𝑢𝑡 .  

 

This yields the number of iterations to travel the channel is approximately   

  𝑁 ≡
2

 𝑎𝜀
tan−1  

𝑦 𝑜𝑢𝑡

 
𝜀

𝑎

    (4)     

 For  
𝜀

𝑎
≪ 𝑦 𝑜𝑢𝑡 ,𝑁 = 𝜋 .

1

 𝑎𝜀
=

𝑘

 𝜀
,  

where𝑘 =
𝜋

 𝑎
 and its value for logistic map is approximately 0.37739341268365634…. 

 

Thus the length of the laminar phase ie.the total number of iterations inside the channel N varies as  

𝑁 ∝ 𝜀 −1/2 

where 𝜀 = 𝜇 𝑡 − 𝜇 . 
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6. Verification of the above theoretical value of the constant k: 

 

Below in the table 3 we have shown the number of iterations inside the channel considering the first 

laminar region taking 0.5 as an initial point for the middle fixed point0.514355… of the period three 

window of the logistic map for 𝜇 = 1 +  8. We have considered 𝑥 𝑖𝑛 = 0.504..and 𝑥 𝑜𝑢𝑡 = 0.525.   

Table 3: 

𝑎  𝜇 𝑎 = 𝜇 𝑡 − 10−𝑎  1/ 𝜇 𝑡 − 𝜇  𝑁(𝜇 𝑎 ), i.e. number of iterations 

within the narrow channelwhich 
is calculated on the basis of 

points used for generations of the 
graphs in figure 10 

𝑘 = 𝑁 𝜇 𝑎   𝜇 𝑡 − 𝜇 𝑎 which is 

the observed value of k 
calculated on the basis of 
observed value of𝑁(𝜇 𝑎 ) of the 

previous column. 

1 3.7284271247461…  101 
0 0 

2 3.8184271247461…  102 
1 0.1 

3 3.8274271247461…  103 
7 0.221359 

4 3.8283271247461…  104 32 0.32 

5 3.8284171247461…  105 113 0.3573373755990… 

6 3.8284261247461…  106 
371 0.371 

7 3.8284270247461…  107 1187 0.3753623582619… 

8 3.8284271147461…  108 
3768 0.3768 

9 3.8284271237461…  109 
11928 0.3771964793048… 

10 3.8284271246461…  1010 
37733 0.37733 

11 3.8284271247361…  1011 
119337 0.3773767291315… 

12 3.8284271247452…  1012 
377407 0.377407 

13 3.8284271247461…  1013 
1195148 0.3779389820994… 

𝜇 𝑡  1 +  8  ∞  

 

 

The slope of the above points when fitted with a straight line [figure 9] by least square method is 

found to be 0.377413with a mean deviation of0.000382827 

From table 3 it is observed that as 𝜇  gets close to 𝜇 𝑡  the number of iterations increase rapidly. The 

last column lists the product𝑁(𝜇 𝑎 ) 𝜇 𝑡 − 𝜇 𝑎  and reveals that it converges to approximately 

0 200 000 400 000 600 000 800 000 1 106 t 1

20

100 000

200 000

300 000

400 000

N

Figure 9 
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0.377413… as the parameter 𝜇  approaches to 𝜇 𝑡  and which is in agreement to the theoretical value 

already found in (4), up to three decimal places. 

 

In figure 10 from the cobweb diagram plot it is quite evident that for the parameter value 𝜇 𝑎 = 𝜇 𝑡 −
1

10𝑎  it shows chaotic behaviour for 𝑎 = 1whereas it shows intermittent behaviour for 𝑎 = 2 onwards 

as the iterates passes through narrow channels in the neighbourhood of the point 0.514355 … 

 

 

 

𝑎 = 3, 𝜇 = 3.8274271247461904 

(𝑖𝑖𝑖) 

𝑎 = 2, 𝜇 = 3.81842712474619 
(𝑖𝑖) 

𝑎 = 1, 𝜇 = 3.72842712474619 

(𝑖) 
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Figure 10.[(i),(ii),(iii),(iv)] 

 

In table 4 we have compared the observed value of  𝑁(𝜇 𝑎 ) which was used in table (3) and its 

corresponding theoretical value given by relation (2) considering𝑥 𝑖𝑛 = 0.504 …and 𝑥 𝑜𝑢𝑡 = 0.525… . 

It further verifies that the phenomena of intermittency occurs in the region  𝜇 𝑡 − 𝜇  ≤
1

102, which 

was reflected in the cobweb diagrams of figure 10. 

 

Table 4: 

 

𝑎  𝜇 𝑎 = 𝜇 𝑡 − 10−𝑎  1/ 𝜇 𝑡 − 𝜇  Iteration 
no. for 

𝑥 𝑖𝑛  

𝑥 𝑖𝑛

= 0.504… 

Iteration 
No. for 

𝑥 𝑜𝑢𝑡  

𝑥 𝑜𝑢𝑡

= 0.525… 

N(𝜇 𝑘 ) 

Observed 
value 

𝑁(𝜇 𝑘 ) 

Theoretical 
value 

1 3.728427124746…  101 
    0 0 

2 3.818427124746…  102 
    0 0 

3 3.827427124746…  103 
1 0.509194… 7 0.524674… 7 7 

4 3.828327124746…  104 1 0.507348… 32 0.524432… 32 32 

5 3.828417124746…  105 1 0.507163… 113 0.523317… 113 113 

6 3.828426124746…  106 
1 0.507144… 371 0.523272… 371 371 

7 3.828427024746…  107 1 0.507142… 1187 0.523225… 1187 1187 

8 3.828427114746…  108 
1 0.507142… 3768 0.524372… 3768 3768 

9 3.828427123746…  109 
1 0.507142… 11928 0.523656… 11928 11928 

10 3.828427124646…  1010 
1 0.507142… 37733 0.523337… 37733 37733 

11 3.828427124736…  1011 
1 0.507142… 119337 0.523305… 119337 119337 

12 3.828427124745…  1012 
1 0.507142… 377407 0.524453… 377407 377388 

13 3.828427124746…  1013 
1 0.507142… 1195148 0.524176… 1195148 1193420 

𝜇 𝑡  1 +  8 0      ∞ 

 

𝑎 = 4, 𝜇 = 3.82832712474619  
(𝑖𝑣) 
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𝑎 = 4, 𝜇 = 3.82832712474619 

(𝑖𝑣) 

𝑎 = 3, 𝜇 = 3.8274271247461904 

(𝑖𝑖𝑖) 

𝑎 = 2, 𝜇 = 3.81842712474619 

(𝑖𝑖) 

𝑎 = 1, 𝜇 = 3.72842712474619 

(𝑖) 
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Figure 11 [(𝑖 ), (𝑖𝑖 ), (𝑖𝑖𝑖 ), (𝑖𝑣 ), (𝑣 )] 

In figure 11 [(𝑖 ), (𝑖𝑖 ), (𝑖𝑖𝑖 ), (𝑖𝑣 ), (𝑣 )]we have plotted the time series plot for 𝑓  and 𝑓 3 in pair 

for different parameter values within 𝜇 𝑎 = 𝜇 𝑡 −
1

10𝑎 and 𝜇 𝑡 . The above figures clearly reflect that 

the length of the laminar region where periodic nature is present gets elongated as it approaches the 

parameter value 𝜇 𝑡  after which that dynamics become totally regular till it reaches the end of the 

periodic window through an infinite series of period doubling bifurcation.   

 

 

Average length of the laminar region near the period three window: 

 

In table 3 and 4 we calculated the length of laminar region for different values of 𝑎   with initial point 

0.5 which is the critical point for the logistic map. During the phenomena of intermittency the iterates 

of the map pass through some narrow channel and after sometime (number of iterations) escapes from 

the channelbut gets re-injected to the narrow channel after some intermittent turbulent bursts. We 

cannot expect that every time it will get re-injected to the channel with the initial value 𝑥 = 0.5 and 

hence we made tables (table 5 and table 6 for different values of a) where we listed the length of the 

laminar region for different values of 𝑥 𝑖𝑛 and 𝑥 𝑜𝑢𝑡 .  In table 5 and table 6 we iterated the logistic 

map 10000 times and 15000 times respectively.   

 

 

 

𝑎 = 5, 𝜇 = 3.8284261247 … 
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Table 5 [For 𝑎 = 4and 𝜇 𝑎 = 3.8283271247461…] 

𝑥 𝑖𝑛  Iteration No. (𝑥 𝑖𝑛 ) 𝑥 𝑜𝑢𝑡  Iteration No.(𝑥 𝑜𝑢𝑡 ) Length of the 
Laminar region 

0.507348… 1 0.524432… 32 32 

0.507454… 171 0.524546… 202 32 

0.504166… 241 0.522659… 272 32 

0.510434… 382 0.524718… 411 30 

0.507699… 619 0.524833… 650 32 

0.507362… 1086 0.524447… 1117 32 

0.512152… 1274 0.524656… 1300 27 

0.514763… 1316 0.523356… 1331 16 

0.509576… 1628 0.522667… 1657 30 

0.508159… 2034 0.522856… 2064 31 

0.511149… 2131 0.524642… 2159 29 

0.506685… 2250 0.52384… 2281 32 

0.510663… 2506 0.522921… 2534 29 

0.507566… 2697 0.524673… 2728 32 

0.508287… 2738 0.522994… 2768 31 

0.51337… 2868 0.522258… 2889 22 

0.508612… 2900 0.523389… 2930 31 

 

Average length of the laminar region 

(32+32+32+30+32+32+27+16+30+31+29+32+29+32+31+22+31)=500/17=29.4 

Table 6 [For 𝑎 = 5and 𝜇 𝑎 = 3.8284171247461…] 

𝑥 𝑖𝑛  Iteration No. (𝑥 𝑖𝑛 ) ) 𝑥 𝑜𝑢𝑡  Iteration No. 
(𝑥 𝑜𝑢𝑡 ) 

Length of the Laminar 
region 

0.507163… 1 0.523317… 113 113 

0.510063… 289 0.523534… 399 111 

0.511664… 407 0.524395… 514 108 

0.507554… 543 0.523681… 655 113 

0.508044… 777 0.524268… 889 113 

0.508649… 1427 0.522847… 1538 112 

0.513213… 2130 0.522601… 2225 96 

0.51067… 2538 0.523351… 2647 110 

0.512545… 2832 0.522841… 2934 103 

0.51375… 3586 0.52355… 3670 85 

0.513617… 3710 0.524424… 3798 89 

0.507172… 3815 0.523324… 3927 113 

0.506633… 4518 0.522927… 4630 113 

0.507925… 4840 0.52411… 4952 113 

The average length of the laminar region is  

 113 + 111 + 108 + 113 + 113 + 112 + 96 + 110 + 103 + 85 + 89 + 113 + 113 + 113 14  

= 106.57 

From tables 5 and 6 it is seen that the number of iterations in first laminar region is in good 

conformity with the average length of the laminar region. We further calculated it for 𝑎 = 6 and got 

them to be 365 for the laminar phase when initial value is taken as 0.5 and  the average length of  

laminar phase was got 363 respectively.  

7. Conclusion: 

The phenomenon of intermittency is quite common in systems where the transition from periodic to 

chaotic behaviour takes place through a saddle node bifurcation.In our present investigation, we have 
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verified the power law which states that the number of iterations [𝑁(𝜇 )] inside the narrow channel is 

proportional to  μ
t
− μ 

−
1

2 ; in case of the logistic map. We found out the constant of proportionality 

in the above case for period three window and this was found approximately to be 0.377413... . 

 

We think that there is need of research to find the value of this constant for other periodic windows 

(of period 5, 7 and so on )andto see if there is any relationship between those values. 
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