
International Journal of Advanced Scientific and Technical Research Issue 3 volume 1, January-February 2013

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

 Page 345

Improving the Performance of Concurrent

Operations utilizing the memory hierarchy

By : Satish Dinakar B , Computer Science Automation, IISc .

 Kaushik B.V , Computer Science Automation, IISc

Abstract:

The access time of RAM (physical memory) is very slow compared to the execution time of CPU. To

effectively utilize the latency of memory has always been a very a very challenging problem for computer

architect scientists since the dawn of microprocessor era. In this project we propose to utilize the memory

latency time to eliminate cancelling concurrent operations. We propose new instruction and certain

changes in architecture so as to eliminate concurrent operation across multi-cores when they are in turn

waiting for a memory operation.

1. Introduction

Time per CPU operation is less than one nanosecond, whereas the average memory operation

approximately takes around 10’s of nano-seconds. The memory stalls are seldom utilized effectively. In

this project we propose to utilized the memory stall cycles by carefully cancelling certain concurrent

operations by pairing eliminating/ combining operations.

In the following subsections we introduce two concurrent programming paradigms widely studied in the

literature the Combing-Software tree approach & the Lock-free paradigm. Later we combine these 2

paradigms to provide concurrent cancelling instructions.

1.1 Combing tree paradigm

A CombiningTree is a binary/n-ary tree of nodes, where each node contains bookkeeping information.

We illustrate the method of software combing using the example of shred counter. The counter’s value is

stored at the root. Each thread is assigned a leaf, and at most two threads share a leaf, so if there are p

physical processors, then there are p/2 leaves. To increment the counter, a thread starts at its leaf, and

works its way up the tree to the root. If two threads reach a node at approximately the same time, then they

combine their increments by adding them together. One thread, the active thread, propagates their

combined increments up the tree, while the other, the passive thread, waits for the active thread to

complete their combined work. A thread may be active at one level and become passive at a higher level.

The whole process is repeated back from root to leaf, and it distributes the work back as it traverses back

to leaf. In the best case we get a speed up of n/ log n.

International Journal of Advanced Scientific and Technical Research Issue 3 volume 1, January-February 2013

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

 Page 346

The software combing tree has its own setoff disadvantages; it performs very poorly when there is

comparatively less contention in the sense it performs as poorly giving a bottleneck of O(n log n).

1.2 Lock-free para digm

Lock-free paradigm tries to implement concurrent data structures using special instructions such as

compareAndSwap(). The advantage of this approach is that even though there might be one or two process

starving, there is always a notion of the whole program moving in a progressive manner.

The disadvantage with this approach is, that it does not perform well when there is a high contention,

which could be marginally increased with the help of back-off and elimination techniques, but cannot in

anyway match the performance improvement in the combining paradigm for the same problems under high

contention,

2. Proposed Solution

We propose to combine the lock -free and combing tree paradigms to provide a new instruction SCAS()

which uses the memory stall cycle to cancel concurrent memory operations. To add the new instruction we

propose the following change in the architecture changes:

We add three special registers per core namely DATA-REGISTER, PRO CESS-ID-REGISTER,

and STATE-REGISTER. Schematically, the Operating System while scheduling a particular process will

store the process-id in the PROC ESS-ID-REGISTER. The STATE-REGISTER and DATA-REGISTERS

are general purpose registers, the STATE-REGISTER register is primarily used by the programmer to

store the state of the concurrent operation that is being executed in the processor, for example, a thread

which is pushing an element in a concurrent stack will try to reflect in the STATE-R EGISTER that it is in

a pushing state, and similarly a popping thread would store a value in STATE-REGISTER that would

reflect that it is in the popping state. The DATA-REGISTER is used to store/ retrieve the data that could

potentially be eliminated, for example the thread which is trying to push an element in the concurrent stack

will place the element to be push ed in the DATA-REGISTER waiting for a cancelling pop operation. The

figure below illustrates the above said statements:

Figure 1: Multiple processors with shared registers

International Journal of Advanced Scientific and Technical Research Issue 3 volume 1, January-February 2013

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

 Page 347

Figure 2: Three Registers added that are added

2.1 SCAS()

We know propose a new instruction SCAS() which makes use of the three new proposed register, and

tries to cancel the concurrent ope rations during a memory stall. The proposed instruction is split into 3

parts, 2 parts of it which is customizable by the programmer, namely preConditionStage, NormalCASCall

& cancellationCondition. The preConditionStage and the cancellationContionStage are the entities that are

programmable by programmer, in the preConditionStage the programmer basically sets up the shared

registers indicating that it is read y to get eliminated, the cancellation ConditionStage is the part where

each processor tries to find out a complementary/ combining pair with all other c ores. The structure of

SCAS could be visually described in the figure below:

Figure 3: Structure of SCAS

In the cancellationConditionStage for cancellation to occur the programmer can use CAS2 (), Cas2 ()

compares two registers STATE- REGISTER and PROCESS-ID-REGISTER If both have the specified

values, then they swap the STATE-REGISTER and DATA-REGISTER appropriately. If cancellation

notion succeeds then the Normal CAS () would be aborted, the status register of the core would reflect that

the success of Cancellation.

At the end of the SCAS instruction the programmer has to check the possible outcomes of the SCAS:

a> The SCAS returns false, implying both CAS as well as an attempted elimination failed.

b> The CAS returns true, implying that the normal CAS has succeeded.
c> The cancellation/combining has taken place; in this case the programmer may have to fetch the

operands from DATA/STATE REGISTER.

The SCAS instruction could be abstracted as a java interface as follows:

International Journal of Advanced Scientific and Technical Research Issue 3 volume 1, January-February 2013

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

 Page 348

public interface SCASintf {

public preCondition();

public cancellationCondition(int coreNumber);

}

Each thread that has to execute the SCAS has to define the SCASintf before it calls the SCAS(). The

algorithm for the SCAS() could be outlined as follows:

// Instruction SCAS

public instruction SCAS() {

core[this].preCondtion();

// The following would be done during

// memory stall while actual CAS is being

//executed

for (int i=0; i<numOfProcessors;i++)

if (core[this].cancellationCondition(i)){

set status registers

flush the CAS operation

break;

}

}

We can use the above semantics of SCAS() to execute many concurrent data structures such as stacks,

queues, lists, shared counters etc.. We illustrate one such example for stack with very minor modifications

to the lock-free stack as shown in “The Art of Multiprocessor programming” by Herlihy et.al..

//Example Lock-free implementation using SCAS

public class LockFreeStack implements SCASintf {

private AtomicReference top =

new AtomicReference(null);

public boolean tryPush(Node node){

Node oldTop = top.get();

node.next = oldTop;

ret=top.SCAS(oldTop, node);

if (status.getCancellationFlag())

return true;

if (ret)// CAS succeeded

return true;

International Journal of Advanced Scientific and Technical Research Issue 3 volume 1, January-February 2013

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

 Page 349

return false;

}

public void preCondition() {

set STATE-REGISTER as push;

set DATA-REGISTER the item to be pushed;

}

public boolean cancellationCondition(int

coreNumber){ expectedSTATE-REG= POP;

if CAS2(coreNumber)

return true;

else

return false;

}

3. Simulation Models for Proposed Solution

3.1 Manual Event Driven Simulation of instructions

First we tried to simulate the above set up using a manual event driven simulation of instructions. For

the above proposal we had to simulate the instruction execution, cache system, memory system. It was

difficult for us to come up with such a model which could be implemented in the allotted time for project.

3.2 Modifying M5 simulator

M5 is a modular platform for computer system architecture research, encompassing system-level

architecture as well as processor micro architecture, i.e. the simulator simulates the whole system including

CPU, Cache memory, Physical Memory (RAM). We had to come up with a change in the modules

corresponding to CPU registers, pipelining, Cache memory and physical memory, which in turn turned out

to be very cumbersome since M5 does not have a notion of shared memory, nor did it have any module

which would help us abort a memory operation in the middle which turned out to make us too many

changes in the source code of M5 simulator, which in turn crashed the simulator.

