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ABSTRACT 

In a recent year, classification is computer implemented and most popular data mining 

technique. Thus in this paper, we address the issue of classification errors over small 

samples and propose a new Bootstrap based approach for quantifying the level of 

classification errors. We investigate the performances of classification techniques and 

observed that, Bootstrap based classification techniques significantly reduce the 

classification errors than the usual techniques of small samples. Thus, this paper proposes 

to apply classification techniques under Bootstrap approach for classifying objects in case 

of small samples. 
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INTRODUCTION 

Classification is perhaps the most familiar and most popular data mining technique (M. H. 

Dunham) [1]. Examples of classification applications include image and pattern 

recognition, medical diagnosis, loan approval, detecting faults in industry applications, 

and classifying financial market trends. Estimation and prediction may be viewed as types 

of classification. When someone estimates your age or guesses the number of marbles in a 

jar, these are actually classification problems. Before the use of current data mining 

techniques, classification was frequently performed by simply applying knowledge of the 

data. Statistical classification is a procedure in which individual items are placed into 

groups based on quantitative information on one or more characteristics inherent in the 

items (referred to as traits, variables, characters, etc) and based on a training set of 

previously labeled items. We still do not have single classifier that can reliably outperform 

all others on a given data set. The accuracy of a particular parametric classifier on a given 

data set will clearly depend on the relationship between the classifier and the data (C. M. 

Van Der Walt and E. Barnard) [2]. By developing statistical classification methods we can 

asses the performance of the assignment rule, the relative sizes of the classes can be 

measured formally the differences between classes can also be tested (D. J. Hand) [3].  

 

Classification techniques cannot usually provide an error-free method of assignment (R. 

A. Johnson and D. W. Wichern) [4]. This is because there may not be a clear distinction 

between the measured characteristics of the populations. A good classification procedure 

should result in few misclassifications. The classification techniques (Fisher’s Linear 

Classification, Quadratic Classification, and Neural Network Classification) have been 

proposed as a solution to this type of problem when the size of samples is small.  

 



International Journal of Advanced Scientific and Technical Research   Issue 3 volume 1, January-February 2013  

Available online on   http://www.rspublication.com/ijst/index.html                                              ISSN 2249-9954 

 Page 338 
 

Bootstrap methods are considered in the application of statistical process control because 

they can deal with unknown distributions and are easy to calculate using a personal 

computer. Bootstrap technique was invented by Bradley Efron [5] and further developed 

by Efron and Tibshirani [6]. “Bootstrap” means that one available sample gives rise to 

many others by re-sampling. Efron (1981, 1982) [7,8] developed Bootstrap with 

inferential purposes. Efron (1983) [9] and Efron and Tibshirani (1997) [10] studied the 

leave-one-out bootstrap methods for small sample classification. Their methods improved 

error estimation by bootstrap re-sampling with training set separated from test set. Their 

findings with small samples are encouraging. We are thus motivated to investigate 

whether Bootstrap re-sampling improves a simple and straightforward method of 

estimating misclassification error.  

 

In our analysis, we investigate the performances of classification techniques and observed 

that, most of the techniques may not give few misclassifications under small samples. 

Small samples behave as large samples under Bootstrap approach. So, if the sample size is 

small, we apply classification techniques through the effect of Bootstrap approach and 

make a comparative study with the usual techniques of small samples. Here we also 

investigate that Bootstrap based classification techniques used in this analysis performs 

better than the usual techniques of small samples.   

 

The rest of the paper is organized as: section 2 discusses the Bootstrap methods. Section 3 

discusses the classification techniques considered in this study. Section 4 discusses the 

data sets used in this study. Results and discussion are presented in section 5. Finally, 

section 6 we achieve a conclusion about the paper.   

 

BOOTSTRAP METHODS 

The Bootstrap is a computer intensive re-sampling technique introduced by Efron [5] 

where theoretical statistics are difficult to obtain (J. G. Dias and J. K. Vermunt) [11]. The 

ability to do a lot of computation extremely fast has led to the use of techniques that 

provide “new” sets of data by re-sampling numbers generated from a single data set (B. 

Efron and R. J. Tibshirani) [6]. The bootstrap method is a powerful tool for estimating the 

sampling distribution of a given statistic. The bootstrap estimate of the sampling 

distribution is generally better than the normal approximation based on the central limit 

theorem (Bickel, P. J., and Freedman; Singh, K.) [12,13], even if the statistic is not 

standardized (Beran, R. J.; Liu, R., and Singh, K.) [14,15]. Let 1 2, ,..., nX X X  be an iid

sample following the distribution F  with mean,   and variance 2 .  The standard 

bootstrap procedure is to draw with replacement a random sample of size n from

1 2, ,..., nX X X .  Denote the bootstrap sample by 
* * *

1 2, ,..., nX X X  and denote their mean and 

standard deviation by *

nX  and *

nS . Suppose nF  indicate the empirical distribution of

1 2, ,..., nX X X , then the sampling distribution of  *

nX nX  under nF  is the bootstrap 

approximation of the sampling distribution of   nX   under F . Its approximation error is 

shown to be negligible by the proposition derived by Bickel and Freedman [12] and Singh 

[13]. The bootstrap technique provides the mean B̂  of all the bootstrap estimators
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 , where i̂  is the estimate using the i
th
 bootstrap sample and B  is the number 

of bootstraps. 

 

The bootstrap handles cases where a standard distribution cannot be assumed. The control 

limit is estimated by re-sampling the observed data to estimate the distribution of the 

observed variable.  For many problems in statistics, we are interested in the distribution of 

values from a random sample of the population. If the underlying distribution from which 

the values are drawn is known, we can use developed theory to generate the sampling 

distribution. Efron [5] suggested the use of bootstrapping when there is little or no 

significant information about the underlying distribution. The idea behind the bootstrap is 

very simple, namely that (in the absence of any other information), the sample itself offers 

the best guide of the sampling distribution. By re-sampling with replacement from the 

original sample, we can create a bootstrap sample, and use the empirical distribution of 

our estimator in a large number of such bootstrapped samples to construct confidence 

intervals and tests for significance. 

 

CLASSIFICATIION TECHNIQUES  

Data mining is a process to mine and organize data in useful and coherent collections (J. 

Han and M. Kamber; B. A. Aski and H. A. Torshizi) [16,17]. The aim of data mining is 

description and prediction. There are many strategies in data mining which can be led to 

the prediction. One of them is classification. Classification maps data into predefined 

groups or classes. It is often referred to as supervised learning because the classes are 

determined before examining the data (M. H. Dunham) [1].  

 

Fisher’s Linear Classification 

Fisher-LDA considers maximizing the following objective: 

 
T

B

T

W

w S w
J w

w S w
  

where BS  is the “between classes scatter matrix” and WS  is the “within classes scatter 

matrix”. Note that due to the fact that scatter matrices are proportional to the covariance 

matrices we could have defined J  using covariance matrices the proportionality constant 

would have no effect on the solution (M. Welling) [18]. The scatter matrices are: 
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where, x is the overall mean of the data cases. Often you will see that for 2 classes BS  is 

defined as   1 2 1 2

T

BS        . This is the scatter of class 1 with respect to the scatter 

of class 2 and hence corresponds to computing the scatter relative to a different vector. By 

using the general transformation rule for scatter matrices: 

 2
TT

vS S Nvv Nv x        

with   
T

i ii
S x x     we can deduce that the difference is only a constant shift 

not depending on any relative distances between points. A study concerned with this 

function maximally separates the two populations and used to classify new observations. 
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Quadratic Classification 

A quadratic discriminant analysis is a general extension of a linear discriminant analysis 

that assumes the same variance-covariance matrix of different classes (K. M. Lee, T. J. 

Herrman, S. R. Bean, D. S. Jackson and J. Lingenfelser) [19]. The individual variance-

covariance matrix of each class is used as a classification criterion in a quadratic 

discriminant analysis. Among several alternative classification rules used to discriminate 

among classes, the Bayes rule was used to compute the posterior probability to assign an 

observation x  to a single class  G . According to this rule, given prior probabilities

andi jp p , the observation x belongs to class iG , if 

    / . / .i i j jP x G p P x G p for i j   

where,    / and /i jP x G P x G are the probability densities. A quadratic discriminant 

assigns the observation x to class iG when the discriminant score  iD x , a measure of the 

generalized squared distance between x and class G, is minimized. 

          
1

0.5 0.5log | logi i i i ii
D x x x p 

       

where, i is the mean of class i , and i is the population variance-covariance matrix of 

class iG . The posterior probability for each of the possible classifications is then obtained 

using the computed discriminant score  iD x . An observation x is assigned to the class 

with the largest posterior probability. In a linear discriminant analysis, the notation i  is 

replaced with due to the same variance-covariance matrix assumption 

        10.5 logi i i iD x x x p      

 

Neural Network Classification 

Artificial neural networks are sometimes called semi-parametric or non-parametric 

technique; are aggregations of perceptions (S. Dreiseitl, L. O. Machado) [20]. For multi-

layer feed forward networks, the output is  

 0

1

1 H
N O

O
e

  



 and this output is again taken as  01| , , ,P x     

Here, HO  is a vector of perceptron outputs, each with its own   parameters (determined 

based on the data set, usually by maximum-likelihood estimation); these perceptrons are 

usually called hidden neurons. Due to the nonlinearity in these hidden neurons, the output 

NO of an artificial neural network is a nonlinear function of the inputs. 

 

DATA USED IN THIS STUDY  

This study considers a secondary data set called Salmon data (Growth-Ring Diameters) 

contains one state from United States of America and Canada (Consider first 12 and very 

last 12 observations in this study). Each population consist two variables. Also considers a 

data set used for discriminating owners from non-owners of riding mowers. Both the data 

sets were collected from K. A. Jensen and B. Van Alen of the States of Alaska Department 

of Fish and Game. Data are given in the book entitled “Applied Multivariate Statistical 

Analysis”; 5
th

 Edition, written by Richard A. Johnson and Dean W. Wichern [4]. A 

simulated data set also use in this study, one is generated from Uniform distribution over 

the range 0 and 1 and other one from F  distribution of size 24. 
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RESULTS AND DISCUSSION   

In this section, we apply three classification techniques namely Fisher’s simple linear 

classification, Quadratic classification and Neural Network classification. We first apply 

these techniques to the original data set (initial sample) and also apply these techniques 

under Bootstrap approach. The results are given in the following subsequent tables.  

 

Table1. Results for Salmon data (Growth-Ring Diameters) 

  Apparent Error Rate (APER) in % 

 

Fisher’s Simple 

Linear 

Classification 

Quadratic 

Classification 

Neural 

Network 

Classification 

Initial Sample 

(Without Bootstrap) 
50.00 49.00 50.00 

  

B
o

o
ts

tr
ap

 r
es

u
lt

s B (No. of 

Bootstrap) 
   

50 8.75 7.58 18.50 

100 7.79 6.91 21.58 

500 7.13 6.36 22.65 

1000 7.02 6.23 22.27 

15000 6.93 6.21 22.00 

From Table1, it is clear that, Fisher’s Linear Classification, Quadratic classification and 

Neural Network classification gives the apparent error rate for initial data sets are 50%, 

49% and 50% respectively, whereas under Bootstrap approach these classification 

techniques reduces this apparent error rate significantly and reaches to 6.93%, 6.21% and 

22% respectively. Also, we observe that apparent error rate decreases if the number of 

Bootstrap increases but after a certain number of Bootstrap the difference is negligible.  

 

Table2. Results for owners and non-owners of riding mowers 

  Apparent Error Rate (APER) in % 

 

Fisher’s Simple 

Linear 

Classification 

Quadratic 

Classification 

Neural 

Network 

Classification 

Initial Sample 

(Without Bootstrap) 
16.67 16.67 41.67 

  

B
o
o
ts

tr
ap

 r
es

u
lt

s B (No. of 

Bootstrap) 
   

50 10.16 9.83 31.50 

100 10.00 9.37 32.50 

500 9.86 9.36 34.80 

1000 9.78 9.30 34.62 

15000 9.74 9.24 34.24 

From Table2, it is clear that, Fisher’s Linear Classification, Quadratic classification and 

Neural Network classification gives the apparent error rate for initial data sets are 16.67%, 

16.67% and 41.67% respectively, whereas under Bootstrap approach these classification 

techniques reduces this apparent error rate significantly and reaches to 9.74%, 9.24% and 

34.24% respectively. Also, we observe that apparent error rate decreases if the number of 

Bootstrap increases but after a certain number of Bootstrap the difference is negligible.   
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Table3. Results for simulated data 

  Apparent Error Rate (APER) in % 

 

Fisher’s Simple 

Linear 

Classification 

Quadratic 

Classification 

Neural 

Network 

Classification 

Initial Sample 

(Without Bootstrap) 
25.00 16.70 25.00 

  

B
o
o
ts

tr
ap

 r
es

u
lt

s B (No. of 

Bootstrap) 
   

50 20.83 12.58 22.33 

100 20.33 12.75 21.83 

500 20.15 11.90 20.80 

1000 20.18 11.90 21.33 

15000 20.17 11.72 21.98 

From Table3, it is clear that, Fisher’s Linear Classification, Quadratic classification and 

Neural Network classification gives the apparent error rate for initial data sets are 25%, 

16.70% and 257% respectively, whereas under Bootstrap approach these classification 

techniques reduces this apparent error rate significantly and reaches to 20.17%, 11.72% 

and 21.98% respectively. Also, we observe that apparent error rate decreases if the number 

of Bootstrap increases but after a certain number of Bootstrap the difference is negligible. 

 

CONCLUSION 

From our analysis, we investigate that, in case of small samples classification techniques 

significantly reduce the classification errors under Bootstrap approach. Fisher’s Linear 

Classification gives the apparent error rate for initial data sets are 50%, 16.67% and 25% 

whereas, classification techniques under Bootstrap approach reduces this apparent error 

rate significantly at the level 6.93%, 9.74% and 20.17% respectively. We also investigate 

that, Quadratic Classification gives the apparent error rate for initial data sets are 49%, 

16.67% and 16.70% whereas, it reduces these apparent error rate significantly under 

Bootstrap approach at the level 6.21%, 9.24% and 11.72% respectively, also Neural 

Network Classification gives the apparent error rate for initial data sets are 50%, 41.67% 

and 25% whereas, it reduces these apparent error rate significantly under Bootstrap 

approach at the level 22%, 34.24% and 21.98% respectively. It is clear from our analysis 

that, classification techniques under Bootstrap approach performs better than the usual 

techniques of small samples. “Thus we may conclude that, in case of small samples, 

propose to apply classification techniques under Bootstrap approach for classifying 

objects”.  
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