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Abstract: This paper is concerned with suitable formulation in order to estimate box-counting dimension, 

correlation dimension and information dimension in nonlinear discrete systems. We consider the Ricker nonlinear 

population model:  𝑓 𝑥 = 𝑥 𝑒𝑟(1−
𝑥

𝑘
)
, where r is the control parameter and k is the carrying capacity, and our method 

reveals that the values of these dimensions are respectively 0.531004…., 0.506938… and 0.749124…... Our method 

can be extended to higher dimensions for estimate of various fractal dimensions. 
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1.  Introduction: 

     The study of various fractal dimensions is an emerging research topic in nonlinear dynamical systems. The 

dimensionality of an attractor gives us an estimate of the number of active degrees of freedom for the concerned 

system and the geometric objects with dimensionalities that are not integers play a fundamental role  in the 

dynamics of chaotic systems . 

      One answer for quantifying chaos lies in a desire to be able to specify quantitatively whether or not a system‟s 

apparently erratic behavior is indeed chaotic. We would like to have some definite, quantitative way of recognizing 

chaos and sorting out “true” chaos from just noisy behavior or erratic behavior due to complexity, (that is, due to a 

large number of degrees of freedom).  Secondly, some of these quantifiers can give us an estimate of the number of 

active degrees of freedom for the system. A third reason for quantifying chaotic behavior is that we might  

anticipate, based on our previous results with the  universality of the  scenarios  connecting regular behavior to 

chaotic behavior, that there  are analogous universal  features, both  qualitative and quantitative, that describe a 

system‟s behavior and changes of its behavior within  its  chaotic regime as parameters of the system are changed . 
Another category of quantifiers focuses on the geometric aspects of the attractors. In practice, we let the trajectories 

run for a  long time and collect a long time series of data. Now, the geometric question is about how this series of 

points  is distributed in state space, and this geometry provides important  clues about the nature of the trajectory 

dynamics. Different dimensions show up in yet another aspect of nonlinear dynamics. As we know, many nonlinear 

systems show sensitivity to initial conditions in the sense that trajectories that are initially nearby in state space may 

evolve, for dissipative systems, to very different attractors. In some cases, the attractors may be chaotic attractors. 

As we also know, the set of initial conditions that gives rise to trajectories ending on a particular attractor constitutes 

the basin of attractor for that attractor. For many nonlinear systems, the boundaries of these basins of attractors are 

rather complex geometric objects, best characterized with fractal dimensions. We now evolve some suitable 

formulae in order to estimate various desired dimensions [ 1,2,4,7,8] 

2.  The Main Results:         

2.1   Box-counting dimension, [4,5,8,12] :  

Let F be any non empty bounded subset of Rn and let )(FN  be the smallest number of sets (or boxes or cells) of 

diameter at most   which can cover F. The lower and upper box counting dimensions of F respectively are given 

by  
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 If these are equal, we refer to the common value as the box counting dimension (or simply Box-dimension) of F. 

Then we write   
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We assume that  > 0 is sufficiently small to ensure that - log  and similar quantities are strictly positive. To avoid 

problems with „log 0‟ and „log ∞‟, we generally consider box dimension only for non-empty bounded sets  

2.1.1 The method for Calculation of box-counting dimension 

        Let us develop a suitable mechanism for evaluating box dimension of our population model.  The Box-counting 

dimension is also conveniently defined by the formula, 

]/1log[/)](log[lim
0

ssND
s

 , 

where N(s)  is the number of boxes covering the attractor  with the scaling s (  that is , “s” represents size of the box)  

when the number of iteration tends to infinity and the scaling „s‟ tends to zero. For calculation purpose we first of all 

find the attracting region and then divide that attracting region with some suitable scaling„s‟. Then we iterate the 

relation for some fixed number of iterations and count the number of boxes. We calculate the number of boxes for 

different scaling and put it in log-log graph of N(s) versus (1/s). If it reveals a straight line then the slope of that 
straight line will give the required dimension.  In computation the number of boxes N(s) we mean the total number 

of boxes visited by infinite number of iterations. However in practical process we can iterate up to some finite 

number of iterations. So by computation we may never get the exact value of N(s).  

       When repeating the same procedure using smaller sizes s we expect to find that the count N(s) scales like a 

power of s, bD
ssN


)( , where  Db is the  box-counting dimension . The attractor is usually computed using a 

great deal iterations of the model. After each such iteration which is needed to get sufficiently close  to the attractor, 

we check if the  current point is in a box that we have not yet visited in which case we increase our count by 1. After 

we have visited all boxes that cover the attractor we stop the iteration, repeat the whole procedure for a different size 

s and finally compute Db from the power law as the slope of the graph of log (N(s)) versus log (1/s). 

       However, it is not so easy to count N(s) directly, all we can expect is a count N(s,n) which depends on the 

number n of iterations performed. [Here, N(s, n) is the count of boxes of linear size s that contain one or more 

iterates from an orbit on our model computed for a length of n]. Given a table of values of  N(s,n)  if we can find a 

relation, then we can  extrapolate  from our count  N (s , n ) to arrive at an estimate for )],([lim)( nsNsN
n 

 , which 

is needed for the dimension  calculation . These issues were addressed  in 1983 in a paper by  Peter Grassberger [5  

].  His tabulated data suggested a behavior  

N(s, n)   N(s) - const. s-a n-b                                                                                                                                    (1.1) 

for large number n of iterations. Throughout our calculation ,we  take   s = 2-8 , 2-9,…2-20,  as  the size of the boxes . 

The calculation is done at the accumulation point,  r = 2.69236885439051 
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The program is run for 4000000 iterations with 3 different initial values of  x = 10m-6+0.01 where m=1,2,3 .For each 

initial value the N(n, s) is calculated and then taken the average. Thus N(n, s) used in our calculation is the average 

of three N(n, s) calculated for three initial values.   If equation (1.1) is well fitted in our case then 

N(n1,s) – N(n2,s)= N(s) – const. s-a .n1
-b - N(s) +  const. s-a .n2

-b. 

                          =  const.s-a (n2
-b- n1

-b).    

 If n1 is large enough than n2, we can neglect n1
-b with respect to n2

-b.  

So, we can say  

N(n1,s) – N(n2,s)    ≈  const.s-a ( n2
-b).                                                                                                                       (1.2) 

If we fix n2 in (2) then log(N(n1,s) – N(n2,s)) vs. log(n1)  ,where n1 is very large compared to n2 , be a straight line 

parallel to the abscissa. 

     We vary n1 from 3000000 to 4000000 with an increment of 100 .We set n2 as 100 and s=2-20 ,  log(N(n1, s) – 

N(100, s)) as Y-axis and log(n1) as X-axis, then log(N(n1, s) – N(100, s)) vs. log(n1) graph is as follows: 

 

 

Fig 1: Graph of   log(N(n1,s) – N(100,s)) as Y-axis and log(n1) as X-axis 

    Again if we take n1 large enough compared to n2 but fix both of them and vary “s” then we have 

N(n1, s) – N(n2, s)= N(s) – const.n1
-b s-a  - N(s) + const.n2

-b s-a  

                          ≈  const.s-a(n2
-b)                                                                                                                           (1.3)  

If we plot log(N(n1,s) – N(n2,s)) vs.log(1/s) then we will have a straight line whose slope should be  “a”. 

We have taken log(N(4000000,s) – N(100,s)) vs log(1/s) i.e. log(1/s) in the X-axis and log(N(4000000,s)  

– N(100, s)) in the Y-axis  and s=2-8,2-9,….2-20. The graph is as follows: 

14.95 15.05 15.1 15.15 15.2
X

2

4

6

8

10

12

14

Y



International Journal of Advanced Scientific and Technical Research          Issue 3 volume 1, January-February 2013  

Available online on   http://www.rspublication.com/ijst/index.html                                                     ISSN 2249-9954 

 Page 235 
 

 

Fig 2:  log(1/s) in the X-axis and log(N(4000000,s) – N(100,s)) in the Y-axis 

From the graph we can see that the plotted points  more or less follow a straight line path .So, we can now say that 

equation (1.1) can be used in our case also. The straight line when fitted by least square method gives the slope i.e. 

the value of “a” as 0.597345.  Again, from equation (1.3 )  putting n1=4000000 and n2=100  we have  

N(4000000,s) – N(100,s) ≈  const.s-a(100-b)    [i.e. we have neglected 4000000-b] 

Again putting n1=4000000 and n2=200 we have 

N(4000000,s) – N(200,s) ≈  const.s-a(200-b) 

N(4000000, s) –  N(100, s) 

N(4000000, s) –  N(200, s) 
=  

1

2
 
−𝑏

 

Therefore 
𝑙𝑜𝑔  

N (4000000 ,s) – N (100 ,s) 

N (4000000 ,s) – N (200 ,s) 
 

log ⁡(2)
= b, which should be equal for all values of s, but in real data the value may be a 

little bit different.  So we have taken 

b =
 

𝑙𝑜𝑔  
N (4000000 ,s) – N (100 ,s) 

N (4000000 ,s) – N (200 ,s) 
 

log ⁡(2)𝑠

13
 ,where s = 2

-8
,2

-9
,….2

-20 
 (13 values of “s”). 

The value of “b”, we have got is 0.4572.  Next, we  calculate  the value of the constant . From (1.1) we have  

N(200,2-10) – N(100,2-10)=const.(2-10)-a (100-b- 200-b ). 

Therefore,  const =
   

 bba

NN


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2001002
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The value of the constant is 14.9157. 

Now we can calculate N(s)=N(n,s)+ const.s-a n-b , for different values of s, n .The following table represents the 

values of N(n,s)+ const. s-a  n-b,  first column for 1/s =28, next columns for 1/s =29,210,….,220.  The first row for 
n=1000000 , next n=1100000,1200000,…….,4000000.  Clearly in a particular column the values are almost same 

which verifies that it is independent of n and thus represents N(s).                                           
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Table: 1 

[Calculation of  N(s)=N(n,s)+ const.s
-a

 n
-b

 , for different values of s & n] 

 

2.1.2 Slope of the graph which gives box dimension 

The graph of log(N(s)) vs.log(1/s) is shown bellow. log(N(s)) is taken along the X-axis and log(1/ s) is taken along 

the Y-axis. The value of 1/s = 29,210,…….,218. 

 

 

Fig 3  log(N(s))  along the X-axis and log(1/ s)  along the Y-axis. 

The slope of the line fitted with the help of Least Square method is 0.531004 with a mean deviation of 0.0218148. 

Hence the Box- counting dimension is, Db = 0.531004… 

86.4063 96.119 142.693 204.895 291.875 427.196 612.87 890.752 1293.97 1894.38 2620.14

86.3747 96.0712 142.621 204.785 291.71 426.946 612.491 890.18 1293.1 1893.07 2618.16

86.3471 96.0295 142.557 204.69 291.565 426.727 612.16 889.679 1292.35 1891.93 2616.42

86.3227 95.9925 142.502 204.605 291.437 426.533 611.867 889.236 1291.67 1890.91 2614.88

86.3008 95.9594 142.452 204.529 291.322 426.36 611.605 888.839 1291.07 1890. 2613.51

86.2811 95.9296 142.406 204.461 291.219 426.204 611.369 888.482 1290.53 1889.18 2612.27

86.2632 95.9026 142.366 204.399 291.126 426.062 611.155 888.158 1290.04 1888.44 2611.15

86.2469 95.8779 142.328 204.343 291.04 425.933 610.959 887.862 1289.6 1887.77 2610.13

86.232 95.8553 142.294 204.291 290.962 425.814 610.779 887.59 1289.18 1887.14 2609.19

86.2182 95.8344 142.262 204.243 290.889 425.705 610.614 887.34 1288.81 1886.57 2608.32

86.2054 95.815 142.233 204.199 290.823 425.604 610.461 887.108 1288.45 1886.04 2607.52

86.1935 95.7971 142.206 204.158 290.76 425.509 610.318 886.892 1288.13 1885.55 2606.77

86.1824 95.7803 142.181 204.119 290.702 425.422 610.185 886.691 1287.82 1885.09 2606.07

86.172 95.7646 142.157 204.083 290.648 425.339 610.061 886.503 1287.54 1884.66 2605.42

86.1623 95.7499 142.134 204.05 290.597 425.262 609.944 886.326 1287.27 1884.25 2604.81

86.1531 95.736 142.114 204.018 290.549 425.189 609.834 886.16 1287.02 1883.87 2604.23

86.1445 95.7229 142.094 203.988 290.503 425.121 609.73 886.003 1286.78 1883.51 2603.69

86.1363 95.7105 142.075 203.96 290.461 425.056 609.632 885.855 1286.56 1883.17 2603.18

86.1286 95.6988 142.057 203.933 290.42 424.995 609.539 885.714 1286.35 1882.85 2602.69

86.1212 95.6877 142.04 203.907 290.382 424.936 609.451 885.581 1286.14 1882.54 2602.23

86.1142 95.6771 142.024 203.883 290.345 424.881 609.367 885.454 1285.95 1882.25 2601.79

86.1076 95.6671 142.009 203.86 290.31 424.828 609.288 885.333 1285.77 1881.98 2601.37

86.1012 95.6574 141.995 203.838 290.277 424.778 609.211 885.218 1285.6 1881.71 2600.97

86.0951 95.6483 141.981 203.817 290.245 424.73 609.139 885.108 1285.43 1881.46 2600.59

86.0893 95.6395 141.967 203.797 290.214 424.684 609.069 885.002 1285.27 1881.22 2600.22

86.0838 95.631 141.955 203.778 290.185 424.64 609.002 884.901 1285.12 1880.99 2599.87

86.0784 95.623 141.943 203.759 290.157 424.597 608.938 884.804 1284.97 1880.77 2599.54

86.0733 95.6152 141.931 203.742 290.131 424.557 608.877 884.711 1284.83 1880.55 2599.22

86.0684 95.6078 141.92 203.724 290.105 424.518 608.818 884.622 1284.69 1880.35 2598.91

86.0636 95.6006 141.909 203.708 290.08 424.48 608.761 884.536 1284.56 1880.15 2598.61

86.0591 95.5937 141.898 203.692 290.056 424.444 608.706 884.453 1284.44 1879.96 2598.32
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2.2 Correlation dimension [2,3,4,9,10]  

   Grassberger and Procaccia[5,6 ] introduced a dimension based on the behavior  of  a so- called correlation sum, 
(correlation integral). This dimension is called the Correlation Dimension Dc and has been widely used to 

characterize chaotic attractors. To define the correlation dimension, we first let a trajectory (on an attractor) evolve 

for a long time , and we collect as data the values of N trajectory points. Then for each point i on the trajectory, we 

ask for the relative number of trajectory points lying within the distance R of the point i  excluding the point i itself.  

Call this number as Ni ( R ).  Next, we define pi ( R ) to be the relative number of points within the distance R of the 

i th points: pi (R ) = Ni / ( N - 1) .  

[We divide by N – 1 because there are at most N – 1 other points in the neighborhood besides the point i ]  Finally, 

we compute the correlation sum: 

C (R) = 1/N   Rp

N

i

i
1

                                                                                                                                          (1.4) 

Here, C (R) is defined such that C( R) = 1 if all the data points fall within the distance R  of each other .  If R is 

smaller than the smallest distance between trajectory points, then  pi = 0 for all i, and C ( R ) = 0 . The relative 

number  pi itself can be written in more formal terms by introducing the Heaviside step function   : 

  (x) = 0       if  x < 0,   (x) = 1     if x   0 

Using this function, we can write  

 pi (R) = )(
1

1

,1







N

ijj

ji xxR
N

                                                                                                                     (1.5) 

In Equation (1.5), the Heaviside function contributes 1 to the sum  for each xj within the distance R  of the point xi ( 
excluding  j = i) ; otherwise, it contributes 0. In terms of the Heaviside function the correlation sum can be written  

C (R) =  
 

  
 




N

i

N

ijj

ji xxR
NN

1 ,1
1

1
                                                                                                          (1.6) 

Often, the limit N   is added to assure that we characterize the entire attractor. The correlation dimension Dc is 

then defined to be the number that satisfies  

 C ( R ) = cD

R
kR

0
lim


                                                                                                                                              (1.7) 

 Or after taking logarithms 

  Dc =  
R

RC

R
log

)(log

0
lim


                                                                                                                                                 (1.8) 

For convenience of interpretation, we use  logarithms to the base 10, though some  other workers prefer to use base 

2 logarithms. 

 Dc log R =log(C(R)) as R tends to 0                                                                                                                     ( 1.9 ) 

From (1.9), we can see that if log-log graph of R vs. C(R) gives a straight line then the slope gives   the correlation 

dimension as R tends to 0.  

          One obvious difficulty is here that in practical point of view it is difficult to take R tending to zero. As we can 

see that the graph is not a straight line over a large range of data, we have to find the region of R where it maintains 
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the scaling law i.e. where the graph is a straight line, which is called the scaling region. The slope of that region 

gives Dc i.e. the correlation dimension and we need not take R 0.  

Following the theory we have taken judiciously 56 different values of R and correspondingly, 56 different values of 

C(R) in the scaling region with the help of a computer program using the formula of C(R).Then we have plotted the 

points in the graph taking log(C(R)) in the y-axis and log(R) in the x-axis. We have seen that all the  points lies 

almost in  a  straight line  the slope of  which in the scaling region gives the correlation dimension Dc  as shown  

below: Our Computer provides the following points in order to draw the required  straight line . 

Table 2 

[Points in the scaling region for Correlation Dimension] 

{-12.203701,-4.18129455570234}, {-11.973442,.04803221948295}, {-11.743184,-3.91584811798623},{-

11.512925,-3.78686760077528}, {-11.282667,-3.65821155870166},{-11.052408,-3.53229910167620},-

10.822150,-3.40688900035910},  {-10.591891,-3.28285552847134}, {-10.361633,-3.15975343635797},{-

10.131374,-3.03513939986868}, {-9.901116,-2.91087091256956},    {-9.670857,-2.78902834746367},{-

9.440599,-2.66606518453294},    {-9.210340,-2.54621159161840},   {-8.980082,-2.42702186623428},{-
8.749823,-2.30927626581726},   {-8.519565,-2.19161686168172},   {-8.289306,-2.07120417720775},{-8.059048,-

1.95095302266108},   {-7.828789,-1.83241851616655},   {-7.598531,-1.71170903152327},{-7.368272,-

1.59521932296713},   {-7.138014,-1.48052771111899},   {-6.907755,-1.36647722166283},{-6.677497,-

1.25265353697497},   {-6.447238,-1.13540936302150},{   -6.216980,-1.01647265523083},{-5.986721,-

0.89913912015864},  {-5.756463,-0.77750073168521}   ,{-5.526204,-0.66256207861259},{-5.295946,-

0.55067879522417},    {-5.065687,-0.43998807728133},   {-4.835429,-0.33063111849391},{-4.605170,-

0.21555286315557},   {-4.374912,-0.09719636578439},    {-.144653,0.01916291152964},{-

3.914395,0.14346265087161},   {-3.684136,0.26080403674555},     {-3.453878,0.37179844692993},{-

3.223619,0.47899233865072},    {-2.993361,0.58243343009505},    {-2.763102,0.68836225289071},-

2.532844,0.79468841299204},     {-2.302585,0.91058595579679},    {-2.072327,1.02663256740167},{-

1.842068,1.13635155246955},   {-1.611810,1.25716889993497},    {-1.381551,1.37419218393186},{-
1.151293,1.48985052147819},    {-0.921034,1.59663881643950},    {-0.690776,1.70254494662926},{-

0.460517,1.82036547410696},   {-0.230259,1.94765077793873},     {0.000000,2.08096475757232} 

 

Fig 4 :  Graph of   log(R) -  log ( C (R) ) and the slope determines the correlation dimension. 

By applying the statistical methods as mentioned above, we have found that  

the coefficient of correlation,  rcc = 0.999839895096.  Again, by applying the least square method, we obtain the 
regression line as y= a + bx,  where  a= 3.427190895185 and   b = 0.5069380996583872. So, the  slope of the above 

straight line is almost  0.5069380996583872. which is regarded as the correlation dimension  with a mean deviation 

of  0.0242335635635499526 , [mean deviation can be used to provide an estimate of the  uncertainty to be 

associated with the average value] . Hence the Correlation Dimension   is  Dc = 0.5069380996583872…  
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2.3   Information dimension [ 2,3,6,8,11] : 

   The calculation of box-counting dimension is very elaborate in case of even simple one dimension. So we have to 
put larger effort in case of  higher dimensions, say , 2,3,4 dimensions. Further,  box counting dimension ignores how 

many points entered in one box. That is, we are not counting the weightage of the boxes. That is why a different 

dimension is necessary. Information dimension removes this to some extent.The information dimension can be 

calculated by the following formula: 

)(
1

1
lim)(

0

k

n

k

B
n

I
n

B  


 
  

Let, where 0        ,1)(  andBifI kkB  , otherwise.                                                                                                                     

Thus )(

0

k

n

k

BI 


 is the number of points from the finite orbit x0 , x1 ,x2,……. which fall in the set B . 

Let us consider partitioning the set F into boxes Bi of size   .  
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By the formula we can  set a computer algorithm to find the value. But just like the box counting dimension, it is 
difficult to get the sum up to N(s).  Further the process we have added  (by extrapolating)  we can get the value. 

Moreover,  to get the probability for each extrapolated box is very difficult. So in order to avoid the problem to some 

extent ,we have taken the no of iteration up to 100000000.  

 

 

 

Fig 5    I (  ) along the x- axis and  log2 ( )  along y- axis 
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The information dimension at the control parameter 2.69236885439050294 is given by 0.749124…. taking 

10000000 iterations. Hence Information Dimension is    DI = 0.749124…   

3.  Remarks: We infer that our methods can be extended to higher dimensions  for the determination of various 

fractal dimensions . 
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