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Abstract:

In this chapter we investigate effect of Magnetic field on convective Heat and Mass Transfer
flow of a viscous electrically conducting fluid through a Porous Medium in a rectangular cavity
with radiation and dissipative effects. The equations governing the flow, heat and mass transfer
are solved by employing Galerkine finite element analysis with 3 noded triangular elements. The
temperature and Concentration distributions are analyzed for different values of governing
parameters. The rate of Heat and Mass transfer evaluated numerically for a different parametric
values.
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1. INTRODUCTION:

The combination of temperature and concentration gradients in the fluid will lead to buoyancy-
driven flows. This has an importance influence on the solidification process in a binary system.
When heat and mass transfer occurs simultaneously, it leads to a complex fluid motion called
double-diffusive convection. Ostrach [7] and Viskanta et. al., [13] reported complete reviews on
the subject. Bejan [4] reported a fundamental study of scale analysis relative to heat and mass
transfer within cavities submitted to horizontal combined and pure temperature and
concentration gradients. Kamotani et. al., [5] considered an experimental study of natural
convection in shallow enclosures with horizontal temperature and concentration
gradients.Acharya and Goldstein [1] studied numerically two-dimensional natural convection of
air in an externally heated vertical or inclined square box containing uniformly distributed
internal energy sources. Verschoor et. al., [12] have studied the effect of viscous dissipation and
radiation on unsteady magneto hydrodynamic free convection flow fast vertical plate in porous
medium. Badruddin et. al., [3] have investigated the radiation and viscous dissipation on
convective heat transfer in porous cavity. Recently Padmavathi [8] Nagaradhika [6] and
Sreenivas [11] have analyzed the connective heat transfer through a porous medium in a
rectangular cavity with heat sources and dissipation under varied conditions. Ranga Reddy [9]
has discussed the natural convective Heat and Mass transfer in Porous Rectangular Cavity with a
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differentially heated side walls using Brinkman model. Reddaih et. al., [10] have analyzed the
effect of viscous dissipation on convective heat and mass transfer flow of a viscous fluid in a
duct of rectangular cross section by employing Galerkin finite element analysis.

2. FORMULATION OF THE PROBLEM

We consider the mixed convective heat and mass transfer flow of a viscous incompressible fluid
in a saturated porous medium confined in the rectangular duct (Fig. 1) whose base length is a and
height b. The heat flux on the base and top walls is maintained constant. The Cartesian
coordinate system O (x,y) is chosen with origin on the central axis of the duct and its base
parallel to x-axis.

We assume that

i) The convective fluid and the porous medium are everywhere in local thermodynamic
equilibrium.

i) There is no phase change of the fluid in the medium.

iii) The properties of the fluid and of the porous medium are homogeneous and
isotrophic.

iv) The porous medium is assumed to be closely packed so that Darcy’s momentum law
is adequate in the porous medium.

V) The Boussinesq approximation is applicable.

Under these assumption the governing equations are given by
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where u’ and v’ are Darcy velocities along 6(x, y) direction. T’, C, p’ and g’ are the temperature,
Concentration, pressure and acceleration due to gravity, T, ,Cc and T, ,Cy are the temperature
and Concentration on the cold and warm side walls respectively. p’, p, v, and B are the density,
coefficients of viscosity, kinematic viscosity and thermal expansion of he fluid, k is the
permeability of the porous medium, K is the thermal conductivity, C, is the specific heat at
constant pressure , Q is the strength of the heat source,ky; is the cross diffusivity , p* is the
volume coefficient of expansion with mass fraction concentration and q, is the radiative heat
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flux. o is the electrically conductivity, p. is the magnetic permeability of the medium and Hy is
the strength of the magnetic field.

The boundary conditions are

u=v=0 on the boundary of the duct
T =T,,C=C, on the side wall to the left
T =Ty, C=Cy, on the side wall to the right (2.7)
aT’ ac _
Py =0, > =0 on the top (y = 0) and bottom
u=v=_0 walls (y = O)which are insulated.
Invoking Rosseland approximation for radiation
g = b o
)

Expanding T* in Taylor’s series about Te and neglecting higher order terms
T4 =4127 -31¢
We now introduce the following non-dimensional variables

X' = ax; ; y' = by ; c=Dbla
u=()u vV = (v p’ = (vpla®)p
T=To+0(Th-Te) C'=Co+¢(Th To) (2.8)
The governing equations in the non-dimensional form are
_ (Ko
u= ( zjax 2.9)
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In view of the equation of continuity we introduce the stream function y as
w . v (2.13)
oy OX

Eliminating p from the equation (2.9) and (2.10) and making use of (2.11) the equations
in terms of y and O are

@M )a"’ f;"’)— Ra(Z 20,2 N Yy (2.19)
2 2
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3
G- gﬁ(ThV—;TC)a (Grashof number) P=pc,/Ky  (Prandtl number)
T, -T. K :
o = Qa’/Ky (Heat source parameter) Ra = M (Rayleigh Number)
14
N, = ﬂKg (Radiation parameter) Sc=— (Schmidt Number)
46° T, D
* _ 4
N=2 Cn=Ce) (Buoyancy ratio) Ec :[ a (Eckert number)
BT =Te) HKK AT
n 2
y= ﬂz—AT (Density ratio) K= KDL (Chemical reaction parameter)
0 1
The boundary conditions are
a—l/lzo,a—(’”=00n x=0&1 (2.17)
OX oy
6=1 ¢$=1 on x=0 (2.18)

0=0¢=0 on x=1
3. FINITE ELEMENT ANALYSIS AND SOLUTION OF THE PROBLEM:

The region is divided into a finite number of three node triangular elements, in each of which the
element equation is derived using Galerkin weighted residual method. In each element f; the
approximate solution for an unknown f in the variational formulation is expressed as a linear
combination of shape function. (N;)k:1,2,3, which are linear polynomials in x and y. This

approximate solution of the unknown f coincides with actual values at each node of the element.
The variational formulation results in a 3 x 3 matrix equation (stiffness matrix) for the unknown
local nodal values of the given element. These stiffness matrices are assembled in terms of global
nodal values using inter element continuity and boundary conditions resulting in global matrix
equation.

In each case there are r distinct global nodes in the finite element domain and f, (p =
1,2,...... 1) is the global nodal values of any unknown f defined over the domain then

f=28: Zr:fp Dy,

i=1 p=1

where the first summation denotes summation over s elements and the second one represents
summation over the independent global nodes and

@' =Ny, if pisone of the local nodes say k of the element e;

= 0, otherwise.

fo’ s are determined from the global matrix equation. Based on these lines we now make a finite
element analysis of the given problem governed by (2.14)- (2.16) subjected to the conditions
(2.17) — (2.18).
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Lety', 6" and ¢' be the approximate values of y ,0 and ¢ in an element 6.

y' =N{ yg +N; wr+ N3 ys (3.1a)
0 =N} 6 +N) 65+ N} 6} (3.1b)
$=Nigi +Nj g+ N3 ¢} (3.1c)
Substituting the approximate value ', ' and ¢' for y ,0 and ¢ respectively in (2.13), the error
2 i 2 i i i i 2 2
S R R B 62)
3N; ) ox? oy? y ox  ox oy oy X
e -0, aﬁ'_s{aw' %_6_w'a_¢'j_,<¢
OX oy oy oOx ox oy
(3.3)

Under Galerkin method this error is made orthogonal over the domain of e; to the
respective shape functions (weight functions) where
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i i i i i i 2 2
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Using Green’s theorem we reduce the surface integral (3.4) & (3.5) without affecting
terms and obtain

i i i i i i i 2 2
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where T} is the boundary of e;. o _
Substituting L.H.S. of (3.1a) - (3.1c) for y', 6' and ¢' in (3.6) & (3.7) we get

3 B e ’h |t b LR LA CAREN

1 ei ei
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-[ni 9+ 20, lar = (L m, k=123) (3.8)
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where

Q. =Q, +Q, +Q.,,Q, ’s being the values of Q, on the sides s = (1,2,3) of the element
ei. The sign of Q, ’s depends on the direction of the outward normal w.r.t the element.

Choosing different N, ’s as weight functions and following the same procedure we obtain
matrix equations for three unknowns (Q‘p) viz.,

(a})(0;) =(Q) (3.10)

where (a},) is a3 x 3 matrix, (6;),(Q,) are column matrices.

Repeating the above process with each of s elements, we obtain sets of such matrix
equations. Introducing the global coordinates and global values for &, and making use of inter

element continuity and boundary conditions relevant to the problem the above stiffness matrices
are assembled to obtain a global matrix equation. This global matrix is r x r square matrix if there
are r distinct global nodes in the domain of flow considered.

Similarly substituting v',0'and ¢' in (2.12) and defining the error

ay/ 0?

= (1+M?2 3 6y‘// Ra ( +N%) (3.11)

and following the Galerkln method we obtain
jEstdQ 0 (3.12)

Using Green’s theorem (3.8) reduces to

P - AN AN
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In obtaining (3.13) the Green’s theorem is applied w.r.t derivatives of y without affecting
0 terms.
Using (3.1) and (3.2) in (3.13) we have
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- Nﬂ{L nx+lny}m + [ Nio'do, =1 (3.14)
r X oy r

In the problem under consideration, for computational purpose, we choose uniform mesh of 10
triangular element (Fig. ii). The domain has vertices whose global coordinates are (0,0), (1,0)
and (1,c) in the non-dimensional form. Let ey, e;.....e10 be the ten elements and let 64, 0y, .....010

be the global values of 6 and 1, yo,...... W10 be the global values of v at the ten global nodes of
the domain (Fig. ii).

4. SHAPE FUNCTIONS AND STIFFNESS MATRICES

Range functions in n ; i = element, j = node.
1]

n=1-3x n —3x—3—y
11 1,2 C
n= _3y n _—1+ﬂ
21 C 2,2 C
n _1—3x+3—y n=2-3X
C 31
n :—1+3x—ﬂ Sng_%y
n= _3 n =—-2+3X
41 C 4,2
n= —3x+3—y n=2-3x
4 C 51
n :—1+3x—3—y n :3_y
5,2 53 C
n=2-3x n :3x—3—y
6,1 6,2
n :1+—y n= _3y
6,3 71 C
3y
n =-2+3X n=1-3x+—
7,2 7,3 C
3y
n=3-3X n=-1+3x——
81 8,2 C
n :3x—3—y n :—1+3—y
9,2 C 9,3 C

Substituting the above shape functions in (3.8), (3.9) & (3.14) w.r.t each element and integrating
over the respective triangular domain we obtain the element in the form (3.8). The 3x3 matrix
equations are assembled using connectivity conditions to obtain a 8x8 matrix equations for the
global nodes yp,6, and ¢p.

The global matrix equation for 0 is

A Xy =B, (4.1)
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The global matrix equation for ¢ is

AX,=B, (4.2)
The global matrix equation for v is
A X, =B (4.3)

Where As A4, As are not given due to space constraints.

5. NUMERICAL RESULTS AND DISCUSSIONS:

Figs 1-4 represent 6 with radiation parameter Ni. It is found that the actual temperature

experiences an enhancement with increase in the radiation parameter N; at all the levels. It is

found that in the degenerating chemical reaction case the actual temperature reduces at y=2—3h

and x=§ levels while in the generating case it reduces with increase in |k|. The effect of

chemical reaction on 6 is shown in figs. (5-8). It is found that in the degenerating chemical
reaction case the actual temperature reduces at y=2—3h and «x =§ levels while in the generating

case it reduces with increase in |k| (figs. 6&8). At y:%& x=% levels the actual temperature

reduces with |k| while it reduces with k<1.5 and for k>2.5, it reduces at x=% and at yzg it

enhances in the region (0.333< x<0.663) and reduces within the region (0.729<x<0.921) (fig.
5&7). From figs(9-12) we find that higher the radiative heat flux larger the actual concentration
at all horizontal and vertical levels.

The effect of chemical reaction on C is exhibited in figs.( 13-16). It is found that in the

degenerating reaction case the actual concentration at yzg level enhances with k<1.5 and
reduces with k>2.5 while at y= 2—3h it enhances with all values of k (figs. 13&14). At the vertical

levels x =% and % the actual concentration reduces with k<1.5 and enhances with higher k>2.5.

In the generating case the actual concentration enhances with |k|<1.5 and reduces with higher
|k|>2.5 at both horizontal levels. The actual concentration reduces with |k| at x=% level and

enhances it at x =§ level (figs.15&16).

6. TABLES:

From table.1 we find that higher the radiative heats flux lesser the Nusselt number at all three
quadrants. Higher the radiative heat flux lesser the Sherwood number at the first and middle
quadrants and enhances at the upper quadrant (table. 2).
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Table-1

Nusselt Number (Nu) at x = 1 at different levels

| I i v
Nu; 2.1612316 2.11454 2.0711624 2.041476
Nu, 2.0812544 | 2.0574208 | 2.0303218 2.00400504
Nus 2.001277332 | 2.0003017 | 1.9894812 1.996653424
N; -0.5 -0.8 1 2
Table -2
Sherwood number (Sh) at x = 1 at different levels
I I 1] v
Sh; 12.18088 11.87376 | 11.71532 11.64928
Sh, 4.754888 4.50434 4.359728 4.300824
Shs -2.67112 -2.86508 -2.99588 -3.04764
N; -0.5 -0.8 1 2
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