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Abstract: 

 In this chapter we investigate effect of Magnetic field on convective Heat and Mass Transfer 

flow of a viscous electrically conducting fluid through a Porous Medium in a rectangular cavity 

with radiation and dissipative effects. The equations governing the flow, heat and mass transfer 

are solved by employing Galerkine finite element analysis with 3 noded triangular elements. The 

temperature and Concentration distributions are analyzed for different values of governing 

parameters. The rate of Heat and Mass transfer evaluated numerically for a different parametric 

values. 

Keywords: porous medium, Dissipative viscous fluid, Rectangular duct. 

 *Corresponding author : S Naga Leela Kumari 

 

1. INTRODUCTION: 

The combination of temperature and concentration gradients in the fluid will lead to buoyancy-

driven flows. This has an importance influence on the solidification process in a binary system. 

When heat and mass transfer occurs simultaneously, it leads to a complex fluid motion called 

double-diffusive convection. Ostrach [7] and Viskanta et. al., [13] reported complete reviews on 

the subject. Bejan [4] reported a fundamental study of scale analysis relative to heat and mass 

transfer within cavities submitted to horizontal combined and pure temperature and 

concentration gradients. Kamotani et. al., [5] considered an experimental study of natural 

convection in shallow enclosures with horizontal temperature and concentration 

gradients.Acharya and Goldstein [1] studied numerically two-dimensional natural convection of 

air in an externally heated vertical or inclined square box containing uniformly distributed 

internal energy sources. Verschoor et. al., [12] have studied the effect of viscous dissipation and 

radiation on unsteady magneto hydrodynamic free convection flow fast vertical plate in porous 

medium. Badruddin et. al., [3] have investigated the radiation and viscous dissipation on 

convective heat transfer in porous cavity. Recently Padmavathi [8] Nagaradhika [6] and 

Sreenivas [11] have analyzed the connective heat transfer through a porous medium in a 

rectangular cavity with heat sources and dissipation under varied conditions. Ranga Reddy [9] 

has discussed the natural convective Heat and Mass transfer in Porous Rectangular Cavity with a 
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differentially heated side walls using Brinkman model. Reddaih et. al., [10] have analyzed the 

effect of viscous dissipation on convective heat and mass transfer flow of a viscous fluid in a 

duct of rectangular cross section by employing Galerkin finite element analysis.  

2. FORMULATION OF THE PROBLEM 

We consider the mixed convective heat and mass transfer flow of a viscous incompressible fluid 

in a saturated porous medium confined in the rectangular duct (Fig. 1) whose base length is a and 

height b. The heat flux on the base and top walls is maintained constant. The Cartesian 

coordinate system O (x,y) is chosen with origin on the central axis of the duct and its base 

parallel to x-axis.  

We assume that 

i) The convective fluid and the porous medium are everywhere in local thermodynamic 

equilibrium. 

ii) There is no phase change of the fluid in the medium. 

iii) The properties of the fluid and of the porous medium are homogeneous and 

isotrophic. 

iv) The porous medium is assumed to be closely packed so that Darcy’s momentum law 

is adequate in the porous medium. 

v) The Boussinesq approximation is applicable. 

Under these assumption the governing equations are given by 
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where u and v are Darcy velocities along (x, y) direction. T, C, p and g are the temperature, 

Concentration, pressure and acceleration due to gravity, Tc ,Cc and Th ,Ch are the temperature 

and Concentration on the cold and warm side walls respectively. , , , and  are the density, 

coefficients of viscosity, kinematic viscosity and thermal expansion of he fluid, k is the 

permeability of the porous medium, K1 is the thermal conductivity, Cp is the specific heat at 

constant pressure , Q is the strength of the heat source,k11 is the cross diffusivity , * is the 

volume coefficient of expansion with mass fraction concentration and qr is the radiative heat 
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flux.  is the electrically conductivity, e is the magnetic permeability of the medium and H0 is 

the strength of the magnetic field. 

The boundary conditions are 

 u = v = 0   on the boundary of the duct 

 T = Tc ,C=Cc   on the side wall to the left 

 T = Th ,C=Ch   on the side wall to the right                      (2.7) 

 0
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Invoking Rosseland approximation for radiation  
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Expanding T
4
 in Taylor’s series about Te and neglecting higher order terms  

              434 34 ee TTTT   

We now introduce the following non-dimensional variables 

 x =  ax; ; y = by  ; c = b/a 

 u = (/a) u ; v = (/a)v ; p = (
2
/a

2
)p 

 T = T0 +  (Th – Tc) C = C0 +  (Th – Tc)                        (2.8) 

The governing equations in the non-dimensional form are 
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In view of the equation of continuity we introduce the stream function  as 
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Eliminating p from the equation (2.9) and (2.10) and making use of (2.11) the equations 

in terms of  and  are 
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The boundary conditions are  

 1&00,0 
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3. FINITE ELEMENT ANALYSIS AND SOLUTION OF THE PROBLEM: 

The region is divided into a finite number of three node triangular elements, in each of which the 

element equation is derived using Galerkin weighted residual method. In each element fi the 

approximate solution for an unknown f in the variational formulation is expressed as a linear 

combination of shape function.   ,3,2,1kN i

k  which are linear polynomials in x and y. This 

approximate solution of the unknown f coincides with actual values at each node of the element. 

The variational formulation results in a 3 x 3 matrix equation (stiffness matrix) for the unknown 

local nodal values of the given element. These stiffness matrices are assembled in terms of global 

nodal values using inter element continuity and boundary conditions resulting in global matrix 

equation. 

 In each case there are r distinct global nodes in the finite element domain and fp (p = 

1,2,……r) is the global nodal values of any unknown f defined over the domain then 
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where the first summation denotes summation over s elements and the second one represents 

summation over the independent global nodes and  

 ,i

N

i

p N  if   p is one of the local nodes say k of the element  ei 

       = 0, otherwise. 

fp’ s are determined from the global matrix equation.  Based  on these lines we now make a finite 

element analysis of the given problem governed by (2.14)- (2.16) subjected to the conditions 

(2.17) – (2.18). 
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Let 
i
 , 

i
  and 

i  
be the approximate values of  ,  and  in an element i. 

 iiiiiii NNN 332211                                                        (3.1a) 

 iiiiiii NNN 332211                                                        (3.1b) 

 iiiiii NNN 332211                                                       (3.1c) 

Substituting the approximate value 
i
 , 

i
   and 

i  
for  ,  and 

 
respectively in (2.13), the error 
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 Under Galerkin method this error is made orthogonal over the domain of ei to the 

respective shape functions (weight functions) where 
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Using Green’s theorem we reduce the surface integral (3.4) & (3.5) without affecting  

terms and obtain 
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where I is the boundary of ei. 

Substituting L.H.S. of (3.1a) - (3.1c) for 
i
 , 

i
  and 

i
  in (3.6) & (3.7) we get 
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ei. The sign of i

kQ ’s depends on the direction of the outward normal w.r.t the element. 

Choosing different i
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matrix equations for three unknowns ( i

pQ ) viz., 

 )())(( i
k

i
p

i
p Qa           (3.10) 

where )( i

pka  is a 3 x 3 matrix, )(),( i

k

i

p Q  are column matrices. 

 Repeating the above process with each of s elements, we obtain sets of such matrix 

equations. Introducing the global coordinates and global values for 
i

p and making use of inter 

element continuity and boundary conditions relevant to the problem the above stiffness matrices 

are assembled to obtain a global matrix equation. This global matrix is r x r square matrix if there 

are r distinct global nodes in the domain of flow considered. 
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and following the Galerkin method we obtain 
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Using Green’s theorem (3.8) reduces to 
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In obtaining (3.13) the Green’s theorem is applied w.r.t derivatives of  without affecting 

 terms. 

Using (3.1) and (3.2) in (3.13) we have 
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In the problem under consideration, for computational purpose, we choose uniform mesh of 10 

triangular element (Fig. ii). The domain has vertices whose global coordinates are (0,0), (1,0) 

and (1,c) in the non-dimensional form. Let   e1, e2…..e10 be the ten elements and let 1, 2, …..10 

be the global values of  and 1, 2,……10 be the global values of  at the ten global nodes of 

the domain (Fig. ii). 

4. SHAPE FUNCTIONS AND STIFFNESS MATRICES   
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Substituting the above shape functions in (3.8), (3.9) & (3.14) w.r.t each element and integrating 

over the respective triangular domain we obtain the element in the form (3.8). The 3x3 matrix 

equations are assembled using connectivity conditions to obtain a 8x8 matrix equations for the 

global nodes p,p and p. 

The global matrix equation for  is 

 333 BXA            (4.1) 

C

y
xn

3
3

2,9




International Journal of Advanced Scientific and Technical Research          Issue 3 volume 1, January-February 2013          

Available online on   http://www.rspublication.com/ijst/index.html                                                    ISSN 2249-9954 

 Page 134 
 

The global matrix equation for  is 

 444 BXA            (4.2) 

The global matrix equation for  is 

 555 BXA           (4.3) 

 

 Where A3 ,A4, A5 are not given due to space constraints. 

 

 

 

5. NUMERICAL RESULTS AND DISCUSSIONS: 

 

 Figs 1-4 represent  with radiation parameter N1. It is found that the actual temperature 

experiences an enhancement with increase in the radiation parameter N1 at all the levels. It is 

found that in the degenerating chemical reaction case the actual temperature reduces at 
3

2h
y   

and  
3

2
x  levels while in the generating case it reduces with increase in |k|. The effect of 

chemical reaction on  is shown in figs. (5-8). It is found that in the degenerating chemical 

reaction case the actual temperature reduces at 
3

2h
y   and  

3

2
x  levels while in the generating 

case it reduces with increase in |k| (figs. 6&8). At 
3

h
y  & 

3

1
x   levels the actual temperature 

reduces with |k| while it reduces with k1.5 and for k2.5, it reduces at 
3

1
x  and at 

3

h
y   it 

enhances in the region (0.333 x0.663) and reduces within the region (0.729x0.921) (fig. 

5&7). From figs(9-12) we find that higher the radiative heat flux larger the actual concentration 

at all horizontal and vertical levels. 

The effect of chemical reaction on C is exhibited in figs.( 13-16). It is found that in the 

degenerating reaction case the actual concentration at 
4

h
y   level enhances with k1.5 and 

reduces with k2.5 while at 
3

2h
y  , it enhances with all values of k (figs. 13&14). At the vertical 

levels 
3

1
x  and 

3

2
 the actual concentration reduces with k1.5 and enhances with higher k2.5. 

In the generating case the actual concentration enhances with |k|1.5 and reduces with higher 

|k|2.5 at both horizontal levels. The actual concentration reduces with |k| at 
3

1
x  level and 

enhances it at 
3

2
x  level (figs.15&16). 

 

 6. TABLES: 

From table.1 we find that higher the radiative heats flux lesser the Nusselt number at all three 

quadrants. Higher the radiative heat flux lesser the Sherwood number at the first and middle 

quadrants and enhances at the upper quadrant (table. 2). 
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Fig. 5: Variation of  with k at 
3

h
y   level              Fig. 6: Variation of  with k at 

3

2h
y   level 

I II III IV V VI                      I          II III          IV         V VI              

k -0.5 -1.5 -2.5 0.5 1.5 2.5     k -0.5 -1.5 -2.5 0.5 1.5 2.5 
 

               

Fig. 7: Variation of  with  k at 
3

1
x   level  Fig. 8 : Variation of  with k at 

3

2
x   level 

I II III IV V VI               I          II         III      IV    V           VI 

K          -0.5 -1.5 -2.5 0.5 1.5 2.5          k          -0.5      -1.5       -2.5     0.5   1.5   2.5 

 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.33

3

0.39

9

0.46

5

0.53

1

0.59

7

0.66

3

0.72

9

0.79

5

0.86

1

0.92

7

0.99

3

x



I

II

III

IV

V

VI

 

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.666 0.732 0.798 0.864 0.93 0.996

x



I

II

III

IV

V

VI

 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 0.067 0.134 0.201 0.268 0.335

y



I

II

III

IV

V

VI

 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 0.066 0.132 0.198 0.264 0.33 0.396 0.462 0.528 0.594 0.66

y



I

II

III

IV

V

VI

 



International Journal of Advanced Scientific and Technical Research          Issue 3 volume 1, January-February 2013          

Available online on   http://www.rspublication.com/ijst/index.html                                                    ISSN 2249-9954 

 Page 137 
 

          

Fig. 9: Variation of C with N1 at 
3
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y   level                 Fig. 10: Variation of C with N1 at 

3
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y   level
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Fig.11: Variation of C with  N1 at 
3
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Fig. 13: Variation of C with k at 
3

h
y   level          Fig. 14: Variation of C with k at 

3

2h
y   level 
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Fig. 15 : Variation of C with  k at 
3

1
x   level  Fig. 16 : Variation of C with k at 
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Table – 1 

Nusselt Number (Nu) at x = 1 at different levels 

 

 

 

 

 

 

 

Table – 2 

Sherwood  number (Sh) at x = 1 at different levels 
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