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Abstract 

Econometric models are based on a set of assumptions. These assumptions are based 

either on underlying theory that is being modeled or on any statistical evidence, or more 

commonly on both. One of the important assumptions regarding distributional pattern is 

that the data should follow the normal distribution. Wolak, (1989) provides formula to 

determine the weights of weighted mixture distribution, which is very complicated. This 

paper contributes in determining critical values for making a decision in case of testing 

such restricted models whatever the number of restricted parameters. 
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Introduction 
In making decision it is essential to setup model which is based on some assumptions of 

the related field. Applications of model are numerous and occur in almost every field, 

including engineering, physical science, economics, management, life science. In such 

disciplines researcher or decision maker often used tools of statistical inference 

techniques. 

 

Econometric models are based on a set of assumptions. These assumptions are based 

either on underlying theory that is being modeled or on any statistical evidence, or more 

commonly on both. One of the important assumptions regarding distributional pattern is 

that the data should follow the normal distribution. Suppose we are not certain that the 

data are in fact distributed normally. Then what is the solution? We solve this problem by 

the non-parametric density estimation. The nonparametric approach is quite different. 

The idea is to rid oneself of the need to specify in advance a particular functional form. 

(see for example, John F. (2004)).  

 

During the past 25 years the theoretical development of nonparametric probability 

density estimation has been rapid. Several different approaches have received extensive 

treatment: kernel methods (Rosenblatt 1956, Przen 1962, Watson and Leadbetter 1963, 

Cacoullos 1966, and Epanechnikow 1969), orthogonal series methods (Kronmal and 

Tarter 1968, Watson 1969, Wahba 1971, and Brunk 1978), penalized-likelihood methods 

(Good and Graskins 1971) etc. See Tapia and Thompson (1978) for recent and more 

complete bibliography.  
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Econometric testing problems are based on prior information about the sign of some or 

all of the unknown parameters. Such parameter information is important to improve the 

quality of inference. The density estimation performs magic, in the sense that it permits 

statistical inference more flexible in very general circumstance. Another issue related to 

estimation and testing is the determination of weights of the sampling distribution of test 

statistics when parameters are restricted. The distribution of these test statistics under  

restricted alternatives follows weighted mixture of chi-square, t, F etc. In some cases, 

estimation can be very tedious or complicated.  

 

Wolak, (1989) provides formula to determine these weights up to seven restricted 

parameters. In such a situation, among the other estimation technique Kernel density 

(KD) estimation technique provides the solution to determine the critical value of the 

distribution whatever the number of restricted parameters. In this study, a newly proposed 

algorithm of kernel density estimation is used in determination of critical value of the test 

statistics. 

 

Methods and materials 

 

The Basics of Kernel Density Estimation 

It is remarkable that the histogram stood as the only non parametric density estimator 

until the 1950s, when substantial and simultaneous progress was made in density 

estimation and in spectral density estimation. In a little-known paper, Fix and Hodges 

(1951) introduced the basic algorithm of nonparametric density estimation. They 

addressed the problem of statistical discrimination when the parametric form of the 

sampling density was not known. During the following decade, several general 

algorithms and alternative theoretical modes of analysis were introduced by Cencov 

(1962). There followed a second wave of important and primarily theoretical papers by 

Watson and Leadbetter (1963), Loftsgaarden and Quesenberry (1965), Schwartz (1967), 

Epanechnikov (1969), Tarter and Kronmal (1970), and Wahba (1971). The natural 

multivariate generalization was introduced by Cacoullos (1966). Finally, in the 1970s 

came the first papers focusing on the practical application of these methods by Scott et al. 

(1978) and Silverman (1978b). Then and later multivariate applications awaited the 

computing revolution.  

Kernel density estimates (KDEs) at their simplest can be thought of as an alternative to 

the histogram. They typically provide a smoother representation of the data and, unlike 

the histogram, their appearance does not depend on a choice of starting point. In this 

sense KDEs alleviate problems with the histogram that have been perceived by some 

archaeologists (Whallon, 1987). In addition to the visual advantage of being a smooth 

curve, the kernel estimate has an advantage over the histogram in terms of bias. The bias 

of a histogram estimator with bin width h  is of order h , whereas centering the kernel 

each data point and using a symmetric kernel zeroes this term and as such produces a 

leading bias term for the kernel estimate of order 2h . (see for example,  Sheather (2004)). 

 

The smoothness of the KDE means that it is aesthetically more pleasing than the 

histogram. It also facilities the presentation of several data sets in a single figure, and 
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makes it easier to compare data sets. This has been argued and illustrated in Baxter and 

Beardah (1995b) 

    

 It does, however, suffer from a slight drawback when applied to data from long tailed 

distributions. Because the window width is fixed across the entire sample, there is a 

tendency for spurious noise to appear in the tails of the estimates; if the estimates are 

smoothed sufficiently to deal with this, then essential detail in the main part of the 

distribution is masked. An example of this behavior is given by disregarding the fact that 

the suicide data are naturally non-negative and estimating their density treating them as 

observations on   , .  

 

Some elementary properties of kernel estimates follow at once from the definition. 

Provided the kernel K  is everywhere non negative and satisfies the condition-in other 

words is a probability density function-it will follow at once from the definition that f̂  

will itself be a probability density. Furthermore, f̂  will inherit all the continuity and 

differentiability properties of the kernel K , so that if for example K  is the normal 

density function, then f̂  will be a smooth curve having derivatives of all orders. There 

are arguments for sometimes using kernels which take negative as well as positive values. 

If such a kernel is used, then the estimate may itself be negative in places. However, for 

most practical purposes nonnegative kernels are used. 

 

Data used here obtained from different distribution by simulation process to measure the 

performance of usual method and proposed method in determination of critical values. A 

total of 1000 observations were generated by 20000 times simulation process.  

 

Density estimation is completely computer intensive. Applications of the techniques 

presented in this thesis require some programming in statistical computing packages that 

make density estimation easier than others. The entire programs used to generate the 

results in this paper are written in R version 2.9.0 along with the “np” package. (Hayfield 

T. and Racine J. S. (2008)). 
 

Likelihood based test with restricted and unrestricted parameter space 

There are three most commonly used test procedure that are based on the likelihood 

function usually named Likelihood Ratio (LR), Lagrange’s Multiplier (LM) and Wald 

test. In this study such tests are considered in case of restricted and unrestricted parameter 

space. For example, if nXX ,,1  is a random sample from a population with pdf or pmf 

 /xf  (  may be a vector), the likelihood function is defined as  

                         .,,,
1

21 



n

i

in xfxfxLxxxL    

Now in case of unrestricted parameter space, we have the form of hypothesis is 

ooH  :  and for restricted parameter space, coH  :  where .Rc  For a 

particular case the unrestricted means 00 :  H  and for restricted case it means 

00 :  H  or   could be a p-dimensional vector. 
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Thus the usual likelihood based test under restricted and unrestricted parameter space has 

the following functional form  

 

    ,~
logˆlog2  LR  where  ~log  is the restricted log-likelihood and  ̂log  is 

unrestricted log-likelihood. LM=         ,ˆ' 0

1

0  sIs


 where  0s  and  0I  is 

score and information matrix respectively. The Wald test statistics has the following form 

      .ˆˆ'ˆ
00   IW . In the restricted case, the distributions of these tests 

follow asymptotically chi-square distribution for large sample case. But in small sample 

case, we do not know the distribution of these test statistics. Our density estimation 

technique provides the pattern of the density of the distribution. On the other hand, for 

restricted parameter case, the distribution of these test statistics follows weighted mixture 

of chi-square and the determination of weights is very complicated. Wolak (1989) 

provides formula for the determination of these weights at most seven restricted 

parameters. 

 

There are many excellent references that complement and expand on this subject. In 

density estimation, the classic tests of Tapia and Thompson (1978), Wertz (1978), and 

Thompson and Tapia (1990) first indicated the power of the nonparametric approach for 

univariate and bivariate data. Silverman (1986) has provided a further look at 

applications in these settings. 

 

Critical value determination of restricted alternative by kernel density 

 

Let us consider the form of regression model as follows 

                                xfy  

In matrix notation   'Xy , where  ',, 321    

In this setting, we might be interested in testing the hypothesis 

 0:0 H  against 0:1 H . From the earlier discussion, it is noticed that the 

distribution of the test statistic for testing this restricted parameter follows weighted  

mixture of 2  or F distribution. For example, the test statistics LRln2  has asymptotic 

distribution under ,0H  is given by      



p

i

irr RccPipWcLRP
0

2 ,,ln2   

which is a probability mixture of independent chi-squared distributions, with different 

degrees of freedom. The weights   piipW ,,0,,  , represent the asymptotic probability 

of the event that under 0H  any  i elements are strictly positive. It is suggested to 

determine the weights at   level of significance such that the positive value c satisfying 

   cLRPr ln2  asymptotically under 0H  can be found by solving (Wu and King 

(1994))    cPipW ir

p

i




2

0

,  . In some cases it is very difficult to 

determine the weights when more than seven parameters are to be estimated or tested. 

Unless we determine the weights it is impossible to determine the critical values of the 
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test statistics. Which is a serious problem happened in most of the regression model in 

hypothesis testing. The Kernel Density (KD) estimation techniques provide flexible 

solution to this problem in determination of critical values. 

 

Proposed algorithm of kernel density approach in determining critical value for 

restricted alternatives:  

 

Proposed algorithm consists of the following steps: 

 

Step 1 Generate data from any known distribution or load data series from any specified 

field 

 

Step 2 Determine the standard deviation of data series and inter quartile range. 

 

Step 3 Calculate appropriate bandwidth or smoothing parameter (h) using standard 

deviation and inter quartile range in case of rule of thumb introduced by 

Silverman(1996). 

 

Step 4  Choose the appropriate kernel function usually (Gaussian Kernel) to determine 

density of the data series. 

 

Step 5 Kernel function depends on choice of starting location value 0x  and calculate 

distance from each point as a center point in the data set. 

 

Step 6 Centered at each data point is each point’s contribution in the overall density 

estimate namely 
 








 








h

xx
K

nh
i0

1
 

 

Step 7 Finally the density estimate is the sum of these scaled normal densities. 

 

Step 8 Now generate two sets of uniform random number  bU ,01  and  12 ,0 bU  of size 

N. 

 

Step 9 Calculate the number of points that fall within the area of the estimated density 

function and estimate the approximate proportion .'
1 N

NS   

 

Step 10 Determine the critical value (point) at which it gives the .05 probability value. 

 

 

Among the above steps,  steps 1-7 are used as density estimation procedure and rest of 

the 3 steps are used to determine critical values. 
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Results and Discussions 

 

The literature about three asymptotically equivalent test statistics is discussed in 

Likelihood based test with restricted and unrestricted parameter space situation. Here we 

are interested to determine the density estimation of three asymptotic test statistics such 

as the LR, LM and the Wald test.  It is known that they are the large sample test statistic. 

In some cases the distributional form of these test statistics in small sample are unknown. 

In that case we can obtain the density estimates of these test statistics. The results are in 

the following figures. It is observed from the figure 1 that the density of LR test statistics 

takes the skewed (positive) shape and long tail to the right indicates large values has less 

frequency than that of the small values occurs large at the begging of the zero values.         

  Also it is observed from the above figure 2 that the density of LR test statistics takes the 

skewed (positive) shape and long tail to the right indicates large values has less frequency 

than that of the small values occurs large at the begging of the zero values.                    

   It is observed from the above figure 3 that the density of LR test statistics takes the 

skewed (positive) shape and long tail to the right indicates large values has less frequency 

than that of the small values occurs large at the begging of the zero values.  

   It is observed from the above figure 4 that the density of LR test statistics takes the 

skewed (positive) shape and long tail to the right indicates large values has less frequency 

than that of the small values occurs large at the begging of the zero values.                                   

 

Figure 1: Density plot of data on simulated LR test statistic (weighted mixture of chi-

square distribution). 

 

 
Comments: It is observed from the above figure that the density of LR test statistics 

takes the skewed (positive) shape and long tail to the right indicates large values has 

less frequency than that of the small values occurs large at the begging of the zero 

values.                    
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Figure 2: Density plot of data on simulated LM test statistic (weighted mixture of Chi-

square distribution) . 

 

 
 

Comments: It is observed from the above figure that the density of LR test statistics 

takes the skewed (positive) shape and long tail to the right indicates large values has 

less frequency than that of the small values occurs large at the begging of the zero 

values.                    

 

Figure 3: Density plot of data on simulated Wald test statistic (which follows weighted 

mixture of Chi-square distribution) 

 

 
 

Comments: It is observed from the above figure that the density of LR test statistics 

takes the skewed (positive) shape and long tail to the right indicates large values has 

less frequency than that of the small values occurs large at the begging of the zero 

values.                    
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Here, the following results for simulated Z values, demonstrate that how our proposed 

algorithm of kernel density estimation provides the approximated critical value to the true 

value. So this procedure could be applicable to any of the complicated problem such as in 

restricted alternative case, determination of weights is difficult through usual procedure. 

In such a situation our proposed algorithm provides flexible solution in determination of 

critical value for restricted alternatives accept Monte Carlo simulation techniques. 

 

The following table will demonstrate the true critical value and critical value obtained by 

the Monte-Carlo simulation using density estimation technique. 

 

Table 1 Critical value for standard normal distribution at 5% level of significance by 

density method. 

Distribution of 

the test statistic(z) 

Critical value at 5% level of significance 

Usual Method Proposed Method 

Standard Normal 1.6453 1.641 

 

And this is illustrated in figure 7 how the density estimation provides the 95% critical 

value.            

Figure 7: Density plot for standard normal and the critical value at 5% level of 

significance by simulation based on n=2000. 

 
 

The following table will demonstrate the true critical value obtained by usual method and 

critical value obtained by the Monte-Carlo simulation using density estimation technique. 

 

Table 2 Critical value for t at 5 % level of significance by density method 

Distribution of 

the test statistic(t) 

Critical value at 5% level of significance 

Usual Method Density Method 

t distribution 1.943 1.921 
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Figure 8: Density of t statistic and its critical value obtained by simulation with n=2000 

and d. f. = 6 

 
 

The following table will demonstrate the true critical value obtained by usual method and 

critical value obtained by the Monte-Carlo simulation using density estimation technique. 

 

 Table 3 Critical value for F optimum at 5 % level of significance by density method 

Distribution of 

the test statistic(F) 

Critical value at 5% level of significance 

Usual Method Density Method 

F distribution 2.063089 2.063062 

       

  

 Figure 9 Density of F statistics and its critical value obtained by simulation with 

n=1000. 
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Conclusion 

 

In conclusion we can say that once the determination of critical value of more than seven 

parameters is complicated in that case the use of our proposed algorithm of kernel density 

estimation provides the solution.  

 

We perform the application of density in several test statistics whose distributional form 

is unknown in case of small sample. Finally, we wish to close by mentioning some 

related areas for further research. Determination of critical value of the restricted 

parameter testing problem in non-linear model should be an issue for further research. 

The restriction could be the linear restrictions of a non-linear model or non-linear 

restrictions of a non-linear model. 
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