CAUCHY-RIEMMAN SUBMANIFOLDS OF COMPLEX FINSLER MANIFOLDS

U. S. Negi and Ashish Semwal

Department of Mathematics, H.N.B. Garhwal University, Campus Badshahi Thaul, Tehri Garhwal – 249 199, Uttarakhand, India.

ABSTRACT:

Andreotti and Hill (1972) have studied complex characteristic coordinate and tangential Cauchy-Riemman equations. Bejancu (1987) has studied complex finsler spaces and C.R. structures. Further, Farinola (1988) has studied a characterization of the Kaehler condition on Finsler spaces also, Dragomir (1989) has studied Cauchy-rieman submanifolds of Kaehlerian Finsler Spaces. In this paper, we have studied Cauchy-Riemman submanifolds of complex Finsler manifolds and several theorem have been derived.

KEY WORDS: complex finsler manifolds chern (c.l.c), η – Einstein spaces, constant curvature.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 53C56, 53C60.

1. INTRODUCTION.

Let (M^{2n}, L, J) be a Kaehlerian Finsler space Dragomir and Ianus(1983), and $(\pi^{-1}TM^{2n}, g)$ its induced Riemannian bundle By a recent result Farnola(1988), the torsion tensor N_j^{ν} vanishes. Therefore we may apply Bejancu (1987) such as to conclude that $V(M^{2n}) = T(M^{2n}) \setminus 0$ admits a (naturally induced) Cauchy-Riemann (CR) structure H^{ν} , i.e., a complex subbundle II^{ν} of the complexified tangent bundle

$$T^{c}(V(M^{2n})) = T(V(M^{2n})) \otimes C$$

Such that i) H^v is involutive, ii) $H^v \cap \overline{H^v} = (0)$, and iii) *R $(H^v) = \ker(d\pi)$, where $\pi: V(M^{2n}) \to M^{2n}$ is the natural projection. On the other hand, let \tilde{J} be the lift of J (with respect to the nonlinear connection of the Cartan connection of (M^{2n}, L)) cf. our (3.4). Then \tilde{J} is naturally extended (by C-linearity) to

 $T^c(V(M^{2n}))$; let $T^{1,0}(V(M^{2n}))$ be the bundle of all eigenvalue $i = \sqrt{-1}$ of \widetilde{J} . leaving definitions momentarily aside, we formulate the following definition given by Dragomir (1989)

Definition (1.1): Let (M^{2n}, L, J) be a Kaehlerian Finsler space whose Cartan connection has an integrable $(R^i_{jk} = 0)$ associated nonlinear connection N on $V(M^{2n})$. Then $V(M^{2n})$ admits a Cauchy-Riemann *R (H^h) such that $*R(H^h) = N$ and

$$(1.1) T^{1,0}(V(M^{2n})) = H^h \oplus H^v.$$

Definition (1.2): Let M^m be an invariant, i.e.

$$j_u(\pi_u^{-1}TM^m) = \pi_u^{-1}TM^m, \qquad u \in V(M^m),$$

Submanifold of the complex v-space form $(M^{2n}(c), L, J)$, $n \ge 2$. Then M^m is a complex v-space form (with respect to the induced connection) of the same holomorphic v-sectional curvature c if and only if Q=0, i.e. then vertical second fundamental form vanishes.

Definition (1.3): Let M^m be an invariant totally-geodesic submanifold of the Kaehlerian Finsler space (M^{2n}, L, J) . Then M^m is h-minimal.

Definition (1.4): Let Mⁿ be a totally-real, i.e.

$$J_u(\pi_u^{-1}TM^n) = E(\psi)_u , \qquad u \in v(M^n),$$

Submanifold of the Kaehlerian Finsler space (M^{2n}, L, J) . If M^n has a v-flat normal connection (i.e. $S^{\perp} = 0$ then M^n is a Berwald-Cartan space.

Definition (1.5): Let M^n be a totally-real submanifold of the Kachlerian Finsler space (M^{2n}, L, J) , having an h-flat normal connection. Then the induced connection of M^n has a vanishing horizontal curvature tensor, i.e R=0.

3. COMPLEX FINSLER STRUCTURES.

Let (M^{2n}, L) , $n \ge 1$, be a real 2n-dimensional Finsler space with the Lagrangian function L: $T(M^{2n})$ $[0, +\infty]$. Here $T(M^{2n}) \to M^{2n}$ denotes the tangent bundle over M^{2n} . Let $j: M^{2n} \to T(M^{2n})$ be the natural imbedding, i.e.

$$j(x) = 0 \in T_x(M^{2n}), \qquad x \in M^{2n}.$$

We put $V(M^{2n}) = T(M^{2n}) \setminus j(M^{2n}).$

Let $\pi\colon V(M^{2n})\to M^{2n}$ be the natural projection and $\pi^{-1}TM^{2n}\to V(M^{2n})$ the pullback bundle of $T(M^{2n})$ by π . A bundle morphism $J\colon \pi^{-1}TM^{2n}\to \pi^{-1}TM^{2n}$, $J^2=-I$ is said to ba a Finslerian almost complex structure on M^{2n} .

Let $u \in V(M^{2n})$; then $\pi_u^{-1}TM^{2n} = \{u\} \times T_x(M^{2n})$, $x = \pi(u)$, denotes the fiber over u in $\pi^{-1}TM^{2n}$. Any ordinary almost complex structure J: $T(M^{2n}) \to T(M^{2n})$, $J^2 = -1$, admits a natural lift to a Finslerian almost complex structure \bar{J} given by

$$J_n X = (u, J_x \hat{\pi} X), \quad x = \pi(u), \quad X \in \pi_u^{-1} T M^{2n}, u \in V(M^{2n}).$$

Here $\hat{\pi}$ denotes the projection onto the second factor of the product manifolds $V(M^{2n}) \times T(M^{2n})$.

Let (U, x^i) be a system of local coordinates on M^{2n} and let $(\pi^{-1}(U), x^i, y^i)$ be the naturally induced local coordinates on $V(M^{2n})$ The vertical lift is the bundle isomorphism $\gamma: \pi^{-1}TM^{2n} \to \ker \mathcal{L}d\pi)$ defined by

$$\gamma X_i = \dot{\partial}_i, \quad \dot{\partial}_i = \frac{\partial}{\partial v^i}.$$

Clearly, the definition of γ does not depend upon the choice of local coordinates.

Here
$$X_i(u) = \left(u, \frac{\partial}{\partial x^i} \, \boldsymbol{\bullet}_{\pi(u)}\right), \quad u \in \pi^{-1}(U), \quad 1 \leq i \leq 2n.$$

To make this construction precise, let us note that any tangent vector field X on M^{2n} admits a natural lift X to a cross-section of $\pi^{-1}TM^{2n}$ defined by

$$\bar{X}(u) = (u, X(\pi(u))), \quad u \in V(M^{2n}).$$

Note that X_i are the natural lifts of the (locally defined) tangent vector fields $\partial/\partial x^i$ Clearly $\{X_i\}_{1\leq i\leq 2n}$ form a (local) frame of $\pi^{-1}TM^{2n}$

Let

$$g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2.$$

We put

 $g_u(X,Y) = g_{ij}(u)X^iY^j$, $X = X^iX_i$, $Y = Y^iX_i$, $u \in \pi^{-1}(U)$,

for any cross-section X, Y in $\pi^{-1}TM^{2n}$. The definition of g_u does not depend upon the choice of local coordinates around $x=\pi(u), u\in M^{2n}$. Since (M^{2n},L) is a Finsler space, for each $u\in \pi^{-1}(U)$ the quadratic form $g_{ij}(u)\xi^i\xi^j$ is positive definite. Therefore $\pi^{-1}TM^{2n}$ turns into a Riemannian vector bundle with the Riemann (bundle) metric $g:u\to g_u$. Then $(\pi^{-1}TM^{2n},g)$ is called induced bundle of the Finsler manifold (M^{2n},L) . Cross-section in the induced bundle is referred to as Finsler vector fields on M^{2n} .

Let J be a Finslerian almost complex structure on M^{2n} . Since the induced bundle and the vertical bundle ker $(d\pi)(over\ V(M^{2n}))$ are isomorphic, ker $(d\pi)$ turns into a Riemannian bundle in a natural way, with the metric $g^v(Z,W)=g(\gamma^{-1}Z,\gamma^{-1}W)$ for any vertical tangent vector fields Z, W on (M^{2n}) . Moreover $ker(d\pi)$ is a complex vector bundle since each fiber $ker(d_u\pi)$ carries the complex structure j_u^v defined by

$$j_u^v = \gamma_u \circ J_u \circ \gamma_u^{-1}, \quad u \in V(M^{2n}).$$

Let $[J^v,J^v]$ be the torsion of the (1,1)-tensor fields J^v . This is $\ker(d\pi)$ -valued, since $\ker(d\pi)$ is involutive. Let $JX_i=J_i^j(x,y)X_j$. Then $J_i^iJ_k^j=-\delta_k^i$.

We define $N_j^{\nu}(X_i, X_j) = N_{ij}^K X_k$ where:

$$(2.1) N_{jk}^i = J_j^m \frac{\partial J_k^i}{\partial y^m} - J_k^m \frac{\partial J_j^i}{\partial y^m} + J_i^m \frac{\partial J_k^m}{\partial y^j} - J_m^i \frac{\partial J_j^m}{\partial y^k}.$$

Clearly the definition of N_j^{ν} does not depend upon the choice of local coordinates. i.e.

$$(2.2) \gamma N_i^{\nu}(X,Y) = [J^{\nu},J^{\nu}](\gamma X,\gamma Y)$$

for any Finsler vector fields X, Y on M^{2n} . Bejancu (1987) given by if $N_j^v = 0$. then J may be called a complex Finsler structure. Nevertheless, this concept is not entirely satisfactory since, in this sense, the natural life of any (not necessarily integrable) almost complex structure on M^{2n} is a complex Finsler structure, by (2.1).

A differentiable 2n-distribution $N: u \mapsto N_u$ on $V(M^{2n})$ is called a nonlinear connection on $V(M^{2n})$ if each N_u is a direct summand to the vertical space $ker(d_u\pi)$ in $T_u(V(M^{2n}))$, $u \in V(M^{2n})$. In classical tensor notation N might be represented by the *Pfaffian* system:

$$(2.3) dy^i + N_i^i dx^j = 0.$$

Here $N_j^i \in C^{\infty}(\pi^{-1}(U))$ are the coefficients of the nonlinear connection; that is, if $u \in \pi^{-1}(U)$, then N_u is spanned by the tangent vectors

$$\frac{\delta}{\delta x^i} = \partial_i - N_i^j \dot{\partial}_j, \quad \partial_i = \frac{\partial}{\partial x^i}.$$

Let N be a nonlinear connection on $V(M^{2n})$. We shall the bundle epimorphism $L: T(V(M^{2n})) \to \pi^{-1}TM^{2n}$, defined by

$$L_u Z = (u, (d_u \pi) z), \quad Z \in T_u (V(M^{2n})), \quad u \in V(M^{2n}).$$

Clearly, the restriction of L_u to N_u is a \mathbb{R} -linear isomorphism $N_u \approx \pi_u^{-1} T M^{2n}$. Let β_u denote its inverse. The resulting bundle isomorphism $\beta \colon \pi^{-1} T M^{2n} \to N$ is referred to as the horizontal lift (with respect to the nonlinear connection N). If J is a Finslerian almost complex structure on M^{2n} then we may put $J^h = \beta \circ J \circ L$ such as to define a complex structure on the bundle $N \to V(M^{2n})$.

We shall need the Dombrowski mapping, i.e. the bundle morphism $G: T(V(M^{2n})) \to \pi^{-1}TM^{2n}$, $GZ = \gamma^{-1}Z_{\nu}$,

Where Z_v denotes the vertical part of Z with repect to the direct to the sum decomposition

$$T_u(V(M^{2n})) = N_u \oplus ker(d_u \pi), \quad u \in V(M^{2n}).$$

With any Finslerian almost complex structure J one may associate an almost complex structure \tilde{J} on $V(M^{2n})$ defined by:

$$(2.4) \tilde{J} = \beta \circ J \circ L + \gamma \circ J \circ G.$$

Note that the restriction of J_u to N_u , respectively to $ker(d_u\pi)$, coincides with J_u^h , respectively with J_u^v , for any $u \in V(M^{2n})$.

Let (M^{2n}, L) be a Finsler manifold and $(\pi^{-1}TM^{2n}, g)$ its induced bundle. Let N be a fixed nonlinear connection on $V(M^{2n})$. The Sasaki metric \tilde{g} is given by:

(2.5)
$$\tilde{g}(Z,W) = g(LZ,LW) + g(GZ,GW).$$

Thus $V(M^{2n})$ turns naturally into a (noncompact) Riemannian manifolds. Moreover, $(V(M^{2n}), \tilde{g}, \tilde{f})$ is well known to be almost Hermitian.

We shall need the torsion $N_I^h(X_i, X_i) = A_{ij}^k X_k$ where:

$$(2.6) A_{ij}^k = J_j^m \frac{\delta J_k^i}{\delta x^m} - J_k^m \frac{\delta J_j^i}{\delta x^m} + J_m^i \frac{\delta J_k^m}{\delta x^j} - J_i^m \frac{\delta J_j^m}{\delta x^k}.$$

Clearly the definition of N_J^h does not depend upon the choice of local coordinates. Therefore we have

$$(2.7) N_I^h(X,Y) = L[J^h, J^h](\beta X, \beta Y)$$

For any Finsler vector fields X, Y on M^{2n} .

3. KAEHLERIAN FINSLER MANIFOLDS.

Let (M^{2n}, L) be a Finsler manifold endowed with the Finslerian almost complex structure J. Then (M^{2n}, L, J) is said to be an almost Hermitian Finsler manifold if g(J, X, J, Y) = g(X, Y), for any Finsler vector fields X, Y on $V(M^{2n})$. Let ∇ be a connection in the induced bundle $(\pi^{-1}TM^{2n}, g)$. It is said to be metrical if $\nabla_g = 0$, respectively almost complex if $\nabla J = 0$. A tangent vector field Z on $V(M^{2n})$ is horizontal (with respect to ∇) if $\nabla_z v = 0$. Here v denotes the Liouville vector field, i.e. the cross section in the induced bundle defined by

$$v(u) = (u, u), u \in V(M^{2n}).$$

Let N be the distribution of all horizontal tangent vectors on (M^{2n}) ; it is referred to as the horizontal distribution of ∇ . Then ∇ is regular if its horizontal distribution N is a nonlinear connection on $V(M^{2n})$. A pair (∇, N) consisting of a connection in $\pi^{-1}TM^{2n}$ and a nonlinear connection on $V(M^{2n})$ is called a Finsler connection on M^{2n} . Here we have any regular connection in $\pi^{-1}TM^{2n}$ gives raise to a Finsler connection on M^{2n} .

Let (∇,N) be a Finsler connection; then two concept of torsion tensor fields are usually associated with (∇,N) , namely

$$\tilde{T}(Z, W) = \nabla_{z} L W - \nabla_{w} L Z - L[Z, W],$$

$$\tilde{T}_{1}(Z, W) = \nabla_{z} G W - \nabla_{w} G Z - G[Z, W],$$

For any tangent vector fields Z, W on $V(M^{2n})$. Let also \tilde{R} denote the curvature 2-form of ∇ . Several fragments of \tilde{T} , \tilde{T}_1 and \tilde{R} are usually derived by means of the bundle morphisms i.e.

$$T(X,Y) = \tilde{T}(\beta X, \beta Y), \qquad C(X,Y) = \tilde{T}(\gamma X, \beta Y),$$

$$R^{1}(X,Y) = \tilde{T}_{1}(\beta X, \beta Y), \qquad P^{1}(X,Y) = \tilde{T}_{1}(\gamma X, \beta Y),$$

$$S^{1}(X,Y) = \tilde{T}_{1}(\gamma X, \gamma Y), \qquad R(X,Y)Z = \tilde{R}(\beta X, \beta Y)Z,$$

$$P(X,Y)Z = \tilde{R}(\gamma X, \beta Y)Z, \qquad S(X,Y)Z = \tilde{R}(\gamma X, \gamma Y)Z.$$

We may define no 'vertical' component of \tilde{T} since clearly $\tilde{T}(\gamma X, \gamma Y) = 0$. For any Finsler vector fields X, Y on M^{2n} .

Therefore we have,

$$(3.1) \gamma R^1(X,Y) = [\beta X, \beta Y],$$

i.e. R^1 is the obstruction towards the integrability on N. In spite of being defined in terms of ∇ the torsion R^1 depends essentially on N only, as easily seen in local coordinates, i.e.

$$R_{jk}^{i} = \frac{\delta N_{j}^{i}}{\delta x^{k}} - \frac{\delta N_{k}^{i}}{\delta x^{j}},$$

Where $R^1(X_i, X_i) = R_{ii}^k X_k$.

The fundamental theorem of Finsler geometry asserts that there exists a unique regular connection ∇ in the induced bundle $(\pi^{-1}TM^{2n},g)$ of the given Finsler manifolds (M^{2n},L) .

Such that (i) ∇ is metrical, (ii) T=0, $S^1=0$. It is referred to as the Cartan connection of (M^{2n}, L) . Then (M^{2n}, L, J) is called a Kaehlerian Finsler manifolds if its Cartan connection is almost complex given by Dragomir and Ianus (1982).

4. CAUCHY-RIEMANN STRUCTURE ON THE TANGENT BUNDLE

If N is an arbitrary C^{∞} -manifolds and $T^{c}(N) = T(N) \otimes C$ denotes the complexification of its tangent bundle, then a Cauchy-Riemann (CR) structure on N is a complex subbundle H of $T^{c}(N)$.

Such that (i) $H \cap \overline{H} = 0$ (ii) H is involutive . Here a bar denotes complex conjugation.

Let J be a Finslerian almost complex structure on M^{2n} . Let N be a nonlinear connection on $V(M^{2n})$. If $N_j^h=0$, we consider the C-vector subbundle H^h of $T^c(V(M^{2n}))$ defined by $\mapsto H_u^h$, where H_u^h consists of all complex tangent vectors $X \otimes 1 - J^h X \otimes i$, $i = \sqrt{-1}$, $X \in N_u$, $u \in V(M^{2n})$.

Suppose $R^1=0$. By (2.7) and (3.1), it follows that $[J^h,J^h]=0$. Consequently H^h is involutive. Also, by the definition of H^h , one has *R $(H_u)=N_u$, $u\in V(M^{2n})$. That is $V(M^{2n})$ turns into a CR manifold.

REFERENCES

- [1]. A. Andreotti and C.D. Hill, Complex characteristic coordinates and tangential Cauchy-Riemann equations, Ann, Scuola Norm. Sup. Pisa Sci. Fis Nat.26(1972),299-324.
- [2]. O. Amici and S.Dragomir, On the almost complex structures with a vanishing torsion tenson field, Rendiconti di Matem. Roma (3) 4(1984), 439-455.
- [3]. A . Bejancu, Complex Finsier spaces and C.R. structures, An St. Univ. lasi 33 (1987),69-83.
- [4]. A. Bejancu, Geometry Finsier subspaces, I An, St. Univ.lasi 31(1986), 69-83.
- [5]. A. Bejancu, Geometry of Finsler subspaces, II, Bul. Inst. Polit. Lasi 31(1985), 67-73.
- [6]. S.Dragomir and S, Lanus, On the holomorphic sectional curvature of Kachlerian Finsler spaces, Tensor 39 (1982),95-98.
- [7]. S. Dragomir and S. Lanus. On the holomorphic sectional curvature of Kachlerian Finsler Spaces. Rendiconti di Mate. Rome (4)3(1983),757-763.
- [8]. S. Dragomir and S. Lanus. On the geometry of the Finsierian almost complex spaces, Note di Matem. Lecce 3 (1983),159-171.
- [9]. S. Dragomir, p- Distributions on differentiable marifolds, An. St. Univ. Lasi 28(1982),55-58.
- [10]. S. Dragomir, Submanifolds of Finsler spaces. Confereze del seminario di Matem. Dell' Univ. di Bari 217(1986),1-15.
- [11]. A. Farnola, A characterization of the Kachler ponstion on Finaster spaces Boll G.M.I.(7) Univ.3(1988),59-65.

- [12]. Y.Lchijyo, Almost complex structures of tangent bundles and Finsler metrics, J. Math. Kyoto Univ.3(1967),419-452.
- [13]. M. Matsumoto, The induced and intrinsic Finsler connections of a hypersurface and Finslerian projective geometry, J.Math. Kyoto Univ. 25(1985).107-144.
- [14]. M. Matsumoto, Foundations of Finsler Geometry and Special, Kasheisha Press, Kyoto, 1986.
- [15]. H. Rund, The Differential Geometry of finsler Spaces, Springer, Berlin. 1959.
- [16]. K. yano and M. Kon, C.R. Submanifolds of Kaehlerian and Sasakian manifolds, in Progress in Mathematics vol. 30, ed. By J. Coates and S. Helgason, Birkhauser, Boston-Basal-Stuttgat, 1983.
- [17] U.S.Negi and Aparna Rawat, Some theorems on almost Kaehlerian spaces with recurrent and symmetric projective curvature tensors. ACTA Ciencia Indica, Vol. XXXVM, No 3(2009), pp. 947-951.