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1 Introduction, Definitions and Notations.
Somasundaram and Thamizharasi [7] introduced the notion of L-order and L-

type for entire functions where L = L(r) is a positive continuous function in-
creasing slowly i.e., L(ar) ~ L(r) as r — oo for every positive constant a.
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The L*-order and the L*-type of a meromorphic function are the more gen-
eralised concepts of L-order and L-type respectively. The following definitions
are well known.

Definition 1 The L*-order pJI?* and L*-lower order )\? of a meromorphic func-
tion f are defined as

. logT
p? :limsupiog (r. f)

* logT
and /\? = liminfL(r’f)
r—o00 log [TGL(T)] :

r—oo log [rel(M]”

If f is entire, one can easily verify that

. log!? M
p? = limsupiog (r, f)

. log!? M
and )\Je = liminfw
r—oo  log [rel(m)]

r—oo log [reL(’”)]
where

log® 2 = log(log* Y 2) for k=1,2,3,... and log!” z = z.

. —_L*
Definition 2 The hyper L*-order ﬁJI? and hyper L*-lower order \; of a
meromorphic function f are defined as

. log!? T(r, f) —L* log!? T(r, f)
_L* 1 5 — T s
Pr = h?isolclp log [reX(")] and A hrrgg)lf log [rel(M] -
If f is entire then
. logl®! M(r, f) ~L* logl® M (r, f)
ﬁ? = limsup———>"> and A; = liminf————-"2~

r—oo log [rel ()] r—oc log [rel(M]

Definition 3 [6/Let f be a meromorphic function of L*-order zero. Then the
quantities p}, )\; and ﬁ},j; are defined in the following way

: logT(r,f) v . . logT(r, [)
P =limsup————= , A} =liminf———"—=
Pr = e log® r PR 1og®
log®' T — log® T
and p; = lim supiOg (. f) , Ay =lim inf 28\ J) (r, f)
f (2] f (2]
r—00 log™ r r—oo  Jog“r
If f is entire then clearly
log?! Af lool?l pr
P = 1i1rnsup70g (r, /) DY — liminf—8_ 2\ ) (r. f) ,
f log!? s (2]
r—00 ogr log™ r
logt® M - log?®l M
and pi = limsupiog (r f) , A — liminf &2 J) (r, /)
f (2] f (2]
r—00 log“' r T—00 log™ r
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Definition 4 The L*-type JJLC* of a meromorphic function f is defined as

T(r,f)

L* . L*
o = limsup -, 0< < 00.
f r—00 [TeL(T)] pJL‘I Py
When f is entire then
. log M .
UJLc = limsupo'gi(r’{*), 0< pJLc < 00.

r—o0 [reL(r)]pf

Definition 5 A meromorphic function a = a(z) is called small with respect to

fif
T(r,a) = S(r, f).

Definition 6 Let aq,as,...... ay, be linearly independent meromorphic functions
and small with respect to f. We denote by W(f) = W(aq,az,...... ay; f) the
Wronskian determinant of ay,as, ...... ag, f. i.e.,

a1 as . . . ag f

ay ay . . . a, f

W(f) =
I k k :
ag) ag) Lo a,g) f(k)

Definition 7 Ifa € CU {0} the quantity

o) =1 o = T

18 called the Nevanlinna’s deficiency of the value of ‘a’.
From the second fundamental theorem it follows that the set of values of
a € CU{oo} for which § (a, f) > 0 is countable and Z d(a, f)+9d (o0, f) <2.
aF#oo
If in particular Zé(a, f) +0(o0,f) = 2, we say that f has the mazimum
aF#oo

deficiency sum.
2 Lemmas.
In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [J/If f and g be two entire functions then for all sufficiently large
values of T,

M fog) = M (31 (5,9) - o) £ ).
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Lemma 2 [1/Let f be meromorphic and g be entire then for all suffiently large
values of T,

T(r, fog) < {1+ o(1)} %T (M(r,g), ).

Lemma 3 [3/Let f be meromorphic and g be entire and suppose that 0 < p <
pg < 00. Then for a sequence of values of r tending to infinity,

T(r, fog) = T (exp (r*), f) .-

Lemma 4 [5/Let f be a transcendental meromorphic function having the maz-
imum deficiency sum. Then

i T W)

Jim 0 7) =1+k—ké(oco,f).

Lemma 5 Let f be a transcendental meromorphic function with the mazimum
deficiency sum then the L*-order and L*-lower order of W (f) are same as those
of f and the L*-type of W(f) is {1+ k — kd (0o, f)} times that of f.

Proof. By Lemma 4

exists and is equal to 1.
o T(r f) 4

. . logT(r,W(f))
L _ b
So Pw) = hflisogp log [rel ()]
. logT'(r, f) .. logT(r,W(f))
Tl log [rel (] rooe log T(r, f)

= p}“*.l = p]’—?*.

. . og T'(r, W(f))
Also, Mo = mi e eTe]

r—oc log [rel(")] r=c0 logT(r, f)

L* ;1 _ \L*
AL =0

Further O_L* = lim SHPLVV(J?)
) W (f) o
r—00 [reL(T)] W (f)
= tim L0V g TS
r—00 7—1(7"7 f) r—00 [reL(T)} Pw (5)

T(r,f)

{1+ k—kd (o0, f)} Jimsup —
r—00 [reL(r)]pf

{1+k—kd (oo, f)} .ok
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This proves the lemma. =

Lemma 6 Let f be a transcendental meromorphic function having the maxi-
mum deficiency sum then the L*-hyper order (L*-hyper lower order) of W(f)
and [ are equal.

The proof of Lemma 6 is omitted as it can be carried out in the line of Lemma
.

Lemma 7 Let f be meromorphic and g be transcendental entire such that
ps =0 and pg* < 0o then p%g < p}.pg*.
Proof. In view of Lemma 2 and the inequality
T(r,g) <log" M(r,g)
we get that

. . log T'(r, fog)
L _ )
Piog = hiris;p log [reX ()]

o 1oaT(M(rg).f) + o)
ey log [rel ()]
log T(M(r.9), f),. log®l M(r, g)

< limsu im su
o 7"—>oop 1Og[2} ]\4(’]"7 g) r—»oop log [’I"EL(T)]

IN

= Py

This proves the lemma. ®

3 Theorems.

In this section we present the main results of the paper.

Theorem 1 Let f be transcendental meromorphic and g be entire satisfying
the following conditions (z)pJLc and p_g* are both finite, (u)pJLc is positive and
(444) Z d(a, f)+ 6 (oo, f) = 2.Then for each o € (—o0,0),

a#oo

... {logT(r, fog)}'+
o e T fexp (), W ()]

=0ifp > (1 +a)pl .

Proof. If 1 + a < 0. Then the theorem is trivial. So we take 1 + o > 0. Since
T(r,g) <log™ M(r,g) by Lemma 2 we get for all sufficiently large values of r,

T(r, fog) < {1 +o(1)}T{M(r,g), f}

ie.  logT(r, fog) <log{l+o(1)} +logT(M(r,g), f)
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ie., log T'(r, fog)
< o(1) + (pf + ) log {M(r,g)et M0}
= o()+ (pf +e){log M(r,g) + L(M(r,g))}
. Pk +e) .
< o(1) + (pJLc +e) {reL(T)] ’ + (pJI? +e)L(M(r,g))

= [rer] 0 10+ oV} + (0} + LM 9))

i.e., {logT(r, fog)}**®
(oL +e) e
< [{rew)} " F o)+ (of + LM, g>>] (1)
Again we have for a sequence of r tending to infinity and for € (> 0),
(p‘e;(f) —¢)log [exp(rp’) exp {L (exp (7’”/)> }]
(p%* —€) [7"’, +L (exp (7"’,)” . (2)
So from (1) and (2) we get that

{log T'(r, fog)}' ™
log T' {exp(r?"), W(f)}

. 14+«
{{,«eL(r)}(% e (p%" +e+0(1) + (p}" + ) L(M(r, g))}

Y

logT {exp(rp’), W(f)}

<
- (pf" —O)r?" + L {exp(rt')}]
Let
(L +e) ¢ . .
{erb™ ol ek o)} = ki, (o + OL(M(r,9)) = e,
p? —e=kyand (p]Lc —€)L (exp (rp’)) = ky.
Then | AosT@ fogte i Ok 4 ky)ite
log T {exp(r¥"), W(f)} — ksre’ + kg
* 14+«
(P +e)(1+a) _ky
_ r Py {kl + 7-(P§'3+5) }
]CgT‘p, + k4

where ki, ko, k3 and k4 are finite.

Since (P +e(1+a)<yp
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. {logT(r, fog)}+
therefore lim inf 7
r—00 log T {eXp (Tp ) 5 W(f)}

where we choose € (> 0) such that

* p, *
0<e<min{p§ ,7—p§ }

=0

14+«
which proves the theorem. m

Theorem 2 If f be meromorphic and g be transcendental entire such that
pg < oo,p]%;g =00 and Z d(a,g)+0(c0,g9) =2. Then for every A >0
a#o0

lim sup—log T(r, fog) =00
rooo log T(r4, W(g)) '

Proof. If possible let there exists a constant § such that for all sufficiently large
values of r we have

log T(r, fog) < Blog T(r", W (9)). (3)
In view of Lemma 5 for all sufficiently large values of r we get that
log T(r*, W(g)) < (pli(y +€) log [r*exp {L(+")}]
ie. logT(r*,W(g)) < (p& +e){Alogr+L(r*)}. (4)
Now combining (3) and(4) we obtain for all sufficiently large values of r

log T(r, fog) < B(pk™ +€) {Alogr + L(r*)}

logT(r, fog) _ Blog +€){Alogr+ L(r")}

log [rel(] = log [rel(7)]

{Alogr + L(r*)}
log [rel ("]

which implies that

Blpk" +e¢)

log T'(r, fog)
log [rel ()]
ie, pffl;g < BA(PS* + 6)7

which contradicts the condition pJLc;g = 00. So for a sequence of values of r
tending to infinity, it follows that log T'(r, fog) > Blog T(r*, W(g)) from which
the theorem follows. m

Therefore < B.A.(pg* +¢)

Corollary 1 Under the assumption of Theorem 2

lim su 771(7“7 fog)
e, T(r A, W (g))

= Q.
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Proof. By Theorem 2 we obtain for all sufficiently large values of r and for
K>1,

logT(r, fog) > KlogT(r*,W(g))
iLe. T(r fog) > {T(r*,W(g)*

from which the corollary follows. =

Remark 1 If we take p]%* < oo and Z d (a, f)+9 (o0, f) = 2 instead ofpé* <
a#oo
oo and Z 0 (a,g) + 6 (00, g) = 2 respectively then Theorem 2 and Corollary 1

aF#oo
remains valid with W (g) replaced by W (f) in the denominator.

Theorem 3 Let f and g be two entire functions with )\J%* >0 and p?* < )\gL*.

Also let f be transcendental with Z 0 (a, f)+0 (00, f) =2. Then
aF#oo

1 log™ M(r, fog)
r=olog M (r, W(/))

Proof. In view of Lemma 1, we have for all sufficiently large values of r,

M(r, fog) > M <116M (g,g) ,f>

ie.  log? M(r, fog) > log? M (116 M (g 9). f)

ie. logP M(r.fog) > (M —e)log (116 2 (L.9) eL(szvf(;f;)))

ie.  log® M(r, fog) > (Aff - e) log %6 n (A]%* - e) log M (g g)
(5 =) (55 (59)

ie. log” M(r fog) = O(1)+ (N —e) (;eL(z))AgL*f

05 (i Ge). o

Again for all sufficiently large values of r we get by Lemma 5 that

e e
logM(r,W(f)) < (TeL(r))pW(f) _ (TeL(y-)>Pf - (6)

ISSN 2249-9954
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Now combining (5) and (6) it follows from all sufficiently large values of r,

log®? M(r, fog)
log M (r, W (f))

o)+ (A" —e) [%eL(%)rg*_é + (A =€) L(M (5.9))

> - (7)
[TeL(f’)}pJ% te
Since pJLc* < )\5* we can choose € (> 0) in such a way that
pJLc* +e< )\5* —e. (8)

Thus from (7) and (8) we obtain that

lim inf—lOgm M(r, fog) _ 00
r—oo log M(r, W(f)) ’

from which the theorem follows. m

Theorem 4 If f be a transcendental meromorphic function and g be entire with
0< )\}Lc §pJLc < o0, py” < oo and Zd(a,f)+5(oo,f) = 2. Then
a#oo

i (1 Fo0) T W (1)
5 T fexp () W)

=0ifp >p§*.

Proof. Since T(r,g) <logt M(r,g), for all sufficiently large values of r we get
from Lemma 2

T(r, fog) <{1+o(1)} T(M(r,9g), f)
ie., T(r, fog)

{1+ o(1)} exp ((pﬁ* +e) ((reM)pﬁ*“ + L(M(r, g>>>>

{1+o0(1)}exp ((p%* + 6) (TeL(r))P_qL*+6>
L

cexp ((pf" +€) L(M(r,9)). (9)

IN

Again by Lemma 5 for all sufficiently large values of r,

T(r,W(f)) < (reL(T)>p€V*(f)+€ - (reL<r>)”?*+e, (10)
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Now combining (9) and (10) it follows for all sufficiently large values of r,
T(r, fog)T(r, W(f))
L* L 05*-&-6
< {l1+4o(1)}exp (pf +e> (re (T))

.exp ((p? + e) M(r, g)) (reL(T))pJ%*Jr6 . (11)

Also in view of Lemma 5, we have for all sufficiently large values of r that

log T [exp <r”/) ,W(f)} > ()\{jv*(f) — e) log [exp (rp/) exp {L(exp (7’”’))}]

e, T {exp (Tp’) ’W(f)} )
[exp () exp {1 (exp () )} )

P me - 6) rp'} {exp {L (exp (ﬂ)) H:wn—e

— exp [( =) ] [exp {L (exp (7)) HAWWE. .

From (11) and (12) it follows for all sufficiently large values of r,

T(r, fog)T(r, W(f))
T {exp (r7) , W(f)}

exp [(pf + 6) (reL(T))ng*“} exp [(pJLe + e) M (r, g)}

exp ((AJE - 6) rP’) [exp {L (exp (rp’))}]’\Lw*(f)*E

Y

L*+6
{1+ 0(1)} (reW))”f . (13)
Asp > pg*, so we can choose € (> 0) such that
/ L*
p>p, t+e (14)
Thus the theorem follows from (13) and (14). m

Theorem 5 Let f be a transcendental meromorphic function and g be a tran-
scendental entire function such that 0 < )\? < pJI?* < oo and Zé(a,f) +

a7#oo

0 (00, f) = 2. Then for every A >0

. _1ogT(r, fog)
r—oolog T'(r4, W(f))

= Q.
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If further pg* < 0o and Z d(a,g) + 6 (c0,g) =2 then
aF#oo

. logT(r, fog)
r—oclog T(r4, W(g))

Proof. Since )\‘?* > 0, )\%g = oo {cf.[2]}. So it follows that for arbitrary large

N and for all sufficiently large values of r,
logT(r, fog) > AN log [reL(T)} . (15)
Again since p]Lc* < 00, for all sufficiently large values of r we get by Lemma 5,
log T(r4, W (f)) < (pJI? + 1) log [rAeL(T'A)} . (16)

Again now from (15) and (16) it follows for all sufficiently large values of r that

logT(r, fog) _ _ ANlog[re"")]
10g T(TA, W(f)) (pfg* + 1) log [TAeL("'A)] .
log T'(r, fog) S AN [logr + L(r)]
log T(r4, W(f)) (pfff ¥ 1) [Alogr + L(r4)]
. logT(r, fog)
and SO T{I&m

Again since pg* < oo, for all sufficiently large values of r we get by Lemma 5,

Hence

= Q.

log T(r, W(g)) < (pg + 1) log [rAeL(TA)}
= (ol +1) [Alogr+ L(r)]. (17)
Now from (15) and (17) it follows for all sufficiently large values of r that
log T'(r, fog) - AN log [reL(T)]
log T'(r4, W(g)) (pk” +1) [Alogr + L(r4)]
AN [logr + L(r)]

- (Pﬁ* +1) [Alogr + L(r4)] (18)

Thus the theorem follows from (18). m

Theorem 6 Let f be a transcendental meromorphic function with 0 < )\ch* <
p%* < o0 and Z&(a, f)+d(co, f) =2 and g be entire. Then
a#oo

log!? T {exp (7‘”5* fog}
lim sup

: — o0 where 0 B
PP og Tlexp (r), W(p)) 0 e S H S P
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Proof. Let 0 < p/ < pg‘*. Then in view of Lemma 3 we get for a sequence of
values of r tending to infinity,

logT(r, fog) > logT (exp (r"/) ,f)
ie., log T'(r, fog) > ()\JI? —¢€)log [exp (r“'> exp (L(e”“/)ﬂ
ie., log!@ T'(r, fog) > log [(/\]Lc* —¢)log {exp (r"/> exp (L(erul)> H
ie., log? T'(r, fog) > log()\?* — €) + log? [exp (r“l> exp (L(erul)ﬂ
ie., log!? T(r, fog) > O(1) + log [r“/ +L (exp (T‘M/)):| .
So for a sequence of values of r tending to infinity,
logm T {exp (7’”5*) ,fog}
> O(1)+log [exp (rpé* .u') +L {expp] (r"gL* .//) }] . (19)
Again in view of Lemma 5, we obtain for all sufficiently large values of r that
log T'(exp (r) , W(f)) < (piy(p) + €)log {exp (r*) exp (L(exp ()}
ie., logT(exp (r"),W(f)) < (pf +e)(r" + L(exp (r*)). (20)

Combining (19) and (20) it follows for a sequence of values of r tending to
infinity that

logm T {exp (7"‘)5*) jog}
log T(exp () , W(f))
O(1) + log [exp (7’”5* .u’) +L {exp[z] (r”é* .u’) }]
(pf" +€) [r + L(exp (r))]
O(1) +log lexp (r"ﬁ* .,u’) {1 + logLS::?igEj:j#D) }]
(b + () + (pf" +€)Llexp (r+))

L* ,
ooy ()} s 12

(pF" + et + (pf" + €)L(exp (r))

O(1) + 775 4/ + log [1 n logL{eXP[z] grpg” .y) }]

exp( r°9 .u’)

v

(p§" + )k + (pf" + €)log L(exp (1))
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Since p < pg* we get from (21) that

log!”! T'(exp (ij ) , fog)
lim sup = 00.

r—oo  logT(exp (r+), W(f))
This proves the theorem. m

Theorem 7 Let f be mtzonal and g be transcendenal meromorphic satisfying

0<)\fog<pfog<oo O<)\ <pg <ooanda§m6(ag)+6(oo ,g) = 2. Then

for any positive number A

7L*

pY log® T
fo% < liminf o[g] (r, fog)
Apg r=o log™ T(r4, W(g))
—L* .
Y [2] —L
S fog < hHl sup IO[g T(Ta ng) S picz;* '
AN, T r—ee 1ogPIT(rA W (g)) T AX;

Proof. From the definition of hyper L*-order and hyper L*-lower order and by
Lemma 6 we get for arbitrary positive € and for all sufficiently large values of r,

log? T(r, fog) > (Xfc:g ~ ) log [ret "] (22)
and 1og” T(r W (g) < (pfi(,) +e) log [rAet)]
i.€~, 10g[2] T(T’A’W(g)) S (ﬁf]’* + E) (AlOgT+L(TA)) ) (23)

Combining (22) and(23), we obtain for all sufficiently large values of r that

log” T(r, fog) (Rsoq =€) loglre*)
log[ ] T(r4,W(g)) (ﬁg* —l—e) (Alogr + L(r4))
(Xfag — €) (logr + L(r))
A(pL" +e€)logr + (py" +€) L(r4)
(X?;g - e) logr + (X]Lc;g — e) L(r)
A(pL" +e€)logr + (py" +€) L(r4)

Since € (> 0) is arbitrary, it follows from above that

7L*
log[Q] T(Ta ng) > )‘fog (24)
=2 log? T(r4, W (g)) ~ Apy”

Again for a sequence of values of r tending to infinity,

g T(r, fog) < ()\fog + e) log {reL(”)} . (25)
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Also in view of Lemma 6, we have for all sufficiently large values of r that
log! T(r4, Wi(g)) > (Xﬁ:(g) - 6) log [rAeL(TA)}
ie., log@ T4 Wi(g)) > (Xg* - e) (Alogr + L(r?)). (26)

Combining (25) and (26) we get for a sequence of values of r tending to infinity,

log? T'(r, fog) < (X]I;;(J + 6) log [re"]
og” T W(g)) — (X, —¢) (Alogr + L))
(X]Lc;g + e) (logr + L(r))
(Xj* - e) (Alogr + L(r4))
(X?oq + e) logr + (X?;g + e) L(r)
A (Xg* - e) logr + (Xj* - e) L(TA)-

As e (> 0) is arbitrary it follows from above that

—L*
log” T(r, fog) _ Afos

lim inf . (27)
r—00 IOg[Q] T(’I’A W( )) AAj
Also for a sequence of values of r tending to infinity and by Lemma 6,
log!? T(r4, W(g)) < (Xﬁ:(g) + 6) log [rAeL(TA)}
e, log®? T W(g)) < (Xj* + 6) log [rAeL(TA)} . (28)

Combining (22) and (28) we have for a sequence of values of r tending to infinity

log™ T(r, fog) ~ _ (Rsoq = ) g [re"]
og” T, W(g)) — (X, +¢) (lograett )

(Xfc;g e) (log 7 + L(r
(%5 +e) (Alogr + L(rA)

(Nag =€) tog7+ (Xfug — ) L)
AN +e)togr+ (3 +€) Lr4).

Since € (> 0) is arbitrary, it follows from above that

[2] 3
lim sup IOg T(T7 fog) > fog

r—oo log? T(rd, W(g)) ~ AX,"

Page 568



INTERNATIONAL JOURNAL OF ADVANCED SCIENTIFIC AND TECHNICAL RESEARCH

(ISSUE 2, VOLUME 4- August 2012) 1SSN 2249-9954

Also for all sufficiently large values of r,
log!? T'(r, fog) < (ﬁJLc;g + e) log [reL(T)} . (30)

From (26) and (30) we obtain for all sufficiently large values of r,

log!? T(r, fog) - (ﬁﬁog + 6) log(re ("))

log? T(r4, W(g)) ~ (Xj* — e) log(rAeL(r))
. 1Og[z] T(r, fog) B (ﬁ%g + e) (logr + L(r))
g TEAW () T (K]~ ) (logrd + L(r4)
. 1Og[z] T(r, fog) (ﬁfcog + e) logr + (ﬁJLvog + e) L(r)
’ 2 — —L* ~L* ’
log® T(r4, W (g)) A ()\g - e) logr + ()\g - 6) L(r4)

Since € (> 0) is arbitrary it follows from above that

log!? T ot
lim Sup Og (T7 fog) < pfog

roo log® T(r4, W(g)) ~ AXL"

Thus the theorem follows from (24),(27),(29) and (31). m

(31)

Theorem 8 Let f be meromorphic and g be transcendental entire such that
(1)0 < ng* < 00, (i) 0_5* > 0, (497)0 < pJLc;g < 00, (iv)UJLc;g < o0, (v)p} <1 and
(vi) > 0(a,g) + 0(c0,g) = 2. Then
a#oo
.. logT(r, fog)
liminf —————~—
r—oo IOgT(Tv W(g))

Proof. From the definition of L*-type we have for arbitrary positive ¢ and for
all sufficiently large values of r,

=0.

L
* p (e}

log T(r, fog) < (aj’%og + 6) (reL(T)> o (32)

Again in view of Lemma 5, we get for a sequence of values of r tending to infinity
that

* P (o)
T(r,W(g)) > (Uﬁ/(g) — e) (reL(T))
L
. Py
e, T(rnW(g) > [{1+k=ki(oc,g)bol —¢| (reb)™ . (33)

Since pjlc’;g < 00, it follows that ijc* = 0{cf.[2]}. So in view of Lemma 7, from
(32) and (33) we obtain for a sequence of values of 7 tending to infinity,

T(r, fog) _ (chsg ) (et 7
T(r,Wi(g)) ~ {14k —ké(c0,9)} ok~ | (reL(r))Pé*
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* Pt
- T(r, fog) _ (Ufog + 6) (reL( )) ¥
T(r,W(g) — [{1+k — kd(00, g)} oL — ] (TeL(r))Pé

(oo ) (rer0) 77002
{1+ k —kd(c0,9)} ok — €

. R S TN e Y
T(r, fog) (OJL’og + 6) A C O R
T W(g) = {14k —ké(co,9)} k" — €]

Since € (> 0) is arbitrary in view of condition (v) it follows that

ie.,

S I,

This proves the theorem. m
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