A NOTE ON SOME GROWTH PROPERTIES OF WRONSKIANS BY MEANS OF L*-ORDER

${ }^{1}$ SANJIB KUMAR DATTA, ${ }^{2}$ BIBHAS CHANDRA GIRI
AND ${ }^{3}$ SANTONU SAVAPONDIT
${ }^{1}$ Department of Mathematics, University of Kalyani, Kalyani, Dist.-Nadia, Pin-741235, West Bengal, India.

(Former Address: Department of Mathematics, University of North
Bengal, Raja Rammohunpur, Dist.-Darjeeling, Pin-734013,
West Bengal, India.)
${ }^{2}$ Department of Mathematics, Jadavpur University, Kolkata, Pin-700032, West Bengal, India.
${ }^{3}$ Department of Mathematics, Sikkim Manipal Institute of Technology, Majitar, Pin - 737136, Sikkim, India.

Abstract

The aim of this paper is to study the comparative growth properties of composite entire or meromorphic functions and wronskians generated by one of the factors using L^{*}-order .

AMS Subject Classification: 30D35, 30D30 Key words and phrases: Entire function, meromorphic function, wronskian, growth property, L*-order.

1 Introduction, Definitions and Notations.

Somasundaram and Thamizharasi [7] introduced the notion of L-order and Ltype for entire functions where $L \equiv L(r)$ is a positive continuous function increasing slowly i.e., $L(a r) \sim L(r)$ as $r \rightarrow \infty$ for every positive constant a.

The L^{*}-order and the L^{*}-type of a meromorphic function are the more generalised concepts of L-order and L-type respectively. The following definitions are well known.

Definition 1 The L^{*}-order $\rho_{f}^{L^{*}}$ and L^{*}-lower order $\lambda_{f}^{L^{*}}$ of a meromorphic function f are defined as

$$
\rho_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log \left[r e^{L(r)}\right]} \text { and } \lambda_{f}^{L^{*}}=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log \left[r e^{L(r)}\right]}
$$

If f is entire, one can easily verify that

$$
\rho_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log \left[r e^{L(r)}\right]} \text { and } \lambda_{f}^{L^{*}}=\liminf _{r \rightarrow \infty} \frac{\log { }^{[2]} M(r, f)}{\log \left[r e^{L(r)}\right]}
$$

where

$$
\log ^{[k]} x=\log \left(\log { }^{[k-1]} x\right) \text { for } k=1,2,3, \ldots \text { and } \log ^{[0]} x=x
$$

Definition 2 The hyper L^{*}-order $\bar{\rho}_{f}^{L^{*}}$ and hyper L^{*}-lower order $\bar{\lambda}_{f}^{L^{*}}$ of a meromorphic function f are defined as

$$
\bar{\rho}_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log \left[r e^{L(r)}\right]} \text { and } \bar{\lambda}_{f}^{L^{*}}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log \left[r e^{L(r)}\right]}
$$

If f is entire then

$$
\bar{\rho}_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log \left[r e^{L(r)}\right]} \text { and } \bar{\lambda}_{f}^{L^{*}}=\liminf _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log \left[r e^{L(r)}\right]} .
$$

Definition 3 [6]Let f be a meromorphic function of L^{*}-order zero. Then the quantities $\rho_{f}^{*}, \lambda_{f}^{*}$ and $\bar{\rho}_{f}^{*}, \bar{\lambda}_{f}^{*}$ are defined in the following way

$$
\begin{gathered}
\rho_{f}^{*}=\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log ^{[2]} r}, \quad \lambda_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log ^{[2]} r} \\
\text { and } \bar{\rho}_{f}^{*}=\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log ^{[2]} r}, \bar{\lambda}_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f)}{\log ^{[2]} r} .
\end{gathered}
$$

If f is entire then clearly

$$
\begin{aligned}
\rho_{f}^{*} & =\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log ^{[2]} r}, \quad \lambda_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f)}{\log ^{[2]} r}, \\
\text { and } \bar{\rho}_{f}^{*} & =\limsup _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log ^{[2]} r}, \quad \bar{\lambda}_{f}^{*}=\liminf _{r \rightarrow \infty} \frac{\log ^{[3]} M(r, f)}{\log ^{[2]} r}
\end{aligned}
$$

Definition 4 The L^{*}-type $\sigma_{f}^{L^{*}}$ of a meromorphic function f is defined as

$$
\sigma_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[r e^{L(r)}\right]^{\rho_{f}^{L^{*}}}}, \quad 0<\rho_{f}^{L^{*}}<\infty
$$

When f is entire then

$$
\sigma_{f}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{\log M(r, f)}{\left[r e^{L(r)}\right]^{\rho_{f}^{L^{*}}}}, \quad 0<\rho_{f}^{L^{*}}<\infty
$$

Definition 5 A meromorphic function $a \equiv a(z)$ is called small with respect to f if

$$
T(r, a)=S(r, f)
$$

Definition 6 Let $a_{1}, a_{2}, \ldots \ldots a_{k}$ be linearly independent meromorphic functions and small with respect to f. We denote by $W(f)=W\left(a_{1}, a_{2}, \ldots \ldots a_{k} ; f\right)$ the Wronskian determinant of $a_{1}, a_{2}, \ldots \ldots a_{k}, f$. i.e.,

$$
W(f)=\left|\begin{array}{ccccccc}
a_{1} & a_{2} & . & . & . & a_{k} & f \\
a_{1}^{\prime} & a_{2}^{\prime} & \cdot & \cdot & \cdot & a_{k}^{\prime} & f^{\prime} \\
\cdot & & & & & & \cdot \\
\cdot & & & & & \cdot \\
\cdot & & & & & . \\
a_{1}^{(k)} & a_{2}^{(k)} & . & . & . & a_{k}^{(k)} & f^{(k)}
\end{array}\right|
$$

Definition 7 If $a \in \mathbb{C} \cup\{\infty\}$ the quantity

$$
\delta(a, f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, a, f)}{T(r, f)}=\liminf _{r \rightarrow \infty} \frac{m(r, a, f)}{T(r, f)}
$$

is called the Nevanlinna's deficiency of the value of ' a '.
From the second fundamental theorem it follows that the set of values of $a \in \mathbb{C} \cup\{\infty\}$ for which $\delta(a, f)>0$ is countable and $\sum_{a \neq \infty} \delta(a, f)+\delta(\infty, f) \leq 2$. If in particular $\sum_{a \neq \infty} \delta(a, f)+\delta(\infty, f)=2$, we say that f has the maximum deficiency sum.

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.
Lemma 1 [4]If f and g be two entire functions then for all sufficiently large values of r,

$$
M(r, f \circ g) \geq M\left(\frac{1}{8} M\left(\frac{r}{2}, g\right)-|g(0)|, f\right)
$$

Lemma 2 [1]Let f be meromorphic and g be entire then for all suffiently large values of r,

$$
T(r, f o g) \leq\{1+o(1)\} \frac{T(r, g)}{\log M(r, g)} T(M(r, g), f)
$$

Lemma 3 [3]Let f be meromorphic and g be entire and suppose that $0<\mu \leq$ $\rho_{g} \leq \infty$. Then for a sequence of values of r tending to infinity,

$$
T(r, f o g) \geq T\left(\exp \left(r^{\mu}\right), f\right)
$$

Lemma 4 [5]Let f be a transcendental meromorphic function having the maximum deficiency sum. Then

$$
\lim _{r \rightarrow \infty} \frac{T(r, W(f))}{T(r, f)}=1+k-k \delta(\infty, f)
$$

Lemma 5 Let f be a transcendental meromorphic function with the maximum deficiency sum then the L^{*}-order and L^{*}-lower order of $W(f)$ are same as those of f and the L^{*}-type of $W(f)$ is $\{1+k-k \delta(\infty, f)\}$ times that of f.
Proof. By Lemma 4

$$
\lim _{r \rightarrow \infty} \frac{T(r, W(f))}{T(r, f)} \text { exists and is equal to } 1
$$

So

$$
\begin{aligned}
\rho_{W(f)}^{L^{*}} & =\limsup _{r \rightarrow \infty} \frac{\log T(r, W(f))}{\log \left[r e^{L(r)}\right]} \\
& =\limsup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log \left[r e^{L(r)}\right]} \cdot \lim _{r \rightarrow \infty} \frac{\log T(r, W(f))}{\log T(r, f)} \\
& =\rho_{f}^{L^{*}} \cdot 1=\rho_{f}^{L^{*}}
\end{aligned}
$$

Also, $\quad \lambda_{W(f)}^{L^{*}}=\liminf _{r \rightarrow \infty} \frac{\log T(r, W(f))}{\log \left[r e^{L(r)}\right]}$

$$
\begin{aligned}
& =\liminf _{r \rightarrow \infty} \frac{\log T(r, f)}{\log \left[r e^{L(r)}\right]} \cdot \lim _{r \rightarrow \infty} \frac{\log T(r, W(f))}{\log T(r, f)} \\
& =\quad \lambda_{f}^{L^{*}} \cdot 1=\lambda_{f}^{L^{*}}
\end{aligned}
$$

Further, $\quad \sigma_{W(f)}^{L^{*}}=\limsup _{r \rightarrow \infty} \frac{T(r, W(f))}{\left[r e^{L(r)}\right]^{\rho_{W(f)}^{L *}}}$
$=\lim _{r \rightarrow \infty} \frac{T(r, W(f))}{T(r, f)} \cdot \limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[r e^{L(r)}\right]^{\rho_{W(f)}^{L^{*}}}}$
$=\{1+k-k \delta(\infty, f)\} \cdot \limsup _{r \rightarrow \infty} \frac{T(r, f)}{\left[r e^{L(r)}\right]^{\rho_{f}^{L^{*}}}}$
$=\{1+k-k \delta(\infty, f)\} \cdot \sigma_{f}^{L^{*}}$.

This proves the lemma.
Lemma 6 Let f be a transcendental meromorphic function having the maximum deficiency sum then the L^{*}-hyper order (L^{*}-hyper lower order) of $W(f)$ and f are equal.

The proof of Lemma 6 is omitted as it can be carried out in the line of Lemma 5.

Lemma 7 Let f be meromorphic and g be transcendental entire such that

$$
\rho_{f}=0 \text { and } \rho_{g}^{L^{*}}<\infty \text { then } \rho_{f o g}^{L^{*}} \leq \rho_{f}^{*} \cdot \rho_{g}^{L^{*}} \text {. }
$$

Proof. In view of Lemma 2 and the inequality

$$
T(r, g) \leq \log ^{+} M(r, g)
$$

we get that

$$
\begin{aligned}
\rho_{f o g}^{L^{*}} & =\underset{r \rightarrow \infty}{\limsup } \frac{\log T(r, f o g)}{\log \left[r e^{L(r)}\right]} \\
& \leq \underset{r \rightarrow \infty}{\limsup } \frac{\log T(M(r, g), f)+o(1)}{\log \left[r e^{L(r)}\right]} \\
& \leq \underset{r \rightarrow \infty}{\limsup } \frac{\log T(M(r, g), f)}{\log { }^{[2]} M(r, g)} \limsup _{r \rightarrow \infty} \frac{\log { }^{[2]} M(r, g)}{\log \left[r e^{L(r)}\right]} \\
& =\rho_{f}^{*} \rho_{g}^{L^{*}} .
\end{aligned}
$$

This proves the lemma.

3 Theorems.

In this section we present the main results of the paper.
Theorem 1 Let f be transcendental meromorphic and g be entire satisfying the following conditions (i) $\rho_{f}^{L^{*}}$ and $\rho_{g}^{L^{*}}$ are both finite, (ii) $\rho_{f}^{L^{*}}$ is positive and (iii) $\sum_{a \neq \infty} \delta(a, f)+\delta(\infty, f)=2$.Then for each $\alpha \in(-\infty, \infty)$,

$$
\liminf _{r \rightarrow \infty} \frac{\{\log T(r, f o g)\}^{1+\alpha}}{\log T\left\{\exp \left(r^{p^{\prime}}\right), W(f)\right\}}=0 \text { if } p^{\prime}>(1+\alpha) \rho_{g}^{L^{*}}
$$

Proof. If $1+\alpha \leq 0$. Then the theorem is trivial. So we take $1+\alpha>0$. Since $T(r, g) \leq \log ^{+} M(r, g)$ by Lemma 2 we get for all sufficiently large values of r,

$$
T(r, f o g) \leq\{1+o(1)\} T\{M(r, g), f\}
$$

i.e. $\quad \log T(r, f o g) \leq \log \{1+o(1)\}+\log T(M(r, g), f)$

$$
\text { i.e., } \begin{align*}
& \log T(r, f o g) \\
& \leq o(1)+\left(\rho_{f}^{L^{*}}+\epsilon\right) \log \left\{M(r, g) e^{L(M(r, g)}\right\} \\
&= o(1)+\left(\rho_{f}^{L^{*}}+\epsilon\right)\{\log M(r, g)+L(M(r, g))\} \\
& \leq o(1)+\left(\rho_{f}^{L^{*}}+\epsilon\right)\left[r e^{L(r)}\right]^{\left(\rho_{g .}^{L^{*}}+\epsilon\right)}+\left(\rho_{f}^{L^{*}}+\epsilon\right) L(M(r, g)) \\
&= {\left[r e^{L(r)}\right]^{\left(\rho_{g .}^{L^{*}}+\epsilon\right)}\left\{\left(\rho_{f}^{L^{*}}+\epsilon\right)+o(1)\right\}+\left(\rho_{f}^{L^{*}}+\epsilon\right) L(M(r, g)) } \\
& \text { i.e., }\{\log T(r, f o g)\}^{1+\alpha} \\
& \leq \quad\left[\left\{r e^{L(r)}\right\}^{\left(\rho_{g .}^{L_{.}^{*}}+\epsilon\right)}\left\{\left(\rho_{f}^{L^{*}}+\epsilon\right)+o(1)\right\}+\left(\rho_{f}^{L^{*}}+\epsilon\right) L(M(r, g))\right]^{1+\alpha} . \tag{1}
\end{align*}
$$

Again we have for a sequence of r tending to infinity and for $\epsilon(>0)$,

$$
\begin{align*}
\log T\left\{\exp \left(r^{p^{\prime}}\right), W(f)\right\} & \geq\left(\rho_{W(f)}^{L^{*}}-\epsilon\right) \log \left[\exp \left(r^{p^{\prime}}\right) \exp \left\{L\left(\exp \left(r^{p^{\prime}}\right)\right)\right\}\right] \\
& =\left(\rho_{f}^{L^{*}}-\epsilon\right)\left[r^{p^{\prime}}+L\left(\exp \left(r^{p^{\prime}}\right)\right)\right] \tag{2}
\end{align*}
$$

So from (1) and (2) we get that

$$
\begin{aligned}
& \frac{\{\log T(r, f o g)\}^{1+\alpha}}{\log T\left\{\exp \left(r^{p^{\prime}}\right), W(f)\right\}} \\
\leq & \frac{\left[\left\{r e^{L(r)}\right\}^{\left(\rho_{g .}^{L^{*}}+\epsilon\right)}\left(\rho_{f}^{L^{*}}+\epsilon+o(1)\right)+\left(\rho_{f}^{L^{*}}+\epsilon\right) L(M(r, g))\right]^{1+\alpha}}{\left(\rho_{f}^{L^{*}}-\epsilon\right)\left[r^{p^{\prime}}+L\left\{\exp \left(r^{p^{\prime}}\right)\right\}\right]}
\end{aligned}
$$

Let

$$
\begin{gathered}
\left\{e^{L(r)}\right\}^{\left(\rho_{g .}^{L^{*}}+\epsilon\right)}\left\{\rho_{f}^{L^{*}}+\epsilon+o(1)\right\}=k_{1},\left(\rho_{f}^{L^{*}}+\epsilon\right) L(M(r, g))=k_{2} \\
\rho_{f}^{L^{*}}-\epsilon=k_{3} \text { and }\left(\rho_{f}^{L^{*}}-\epsilon\right) L\left(\exp \left(r^{p^{\prime}}\right)\right)=k_{4}
\end{gathered}
$$

Then

$$
\begin{aligned}
\frac{\{\log T(r, f o g)\}^{1+\alpha}}{\log T\left\{\exp \left(r^{p^{\prime}}\right), W(f)\right\}} & \leq \frac{\left\{r^{\left(\rho_{g}^{L^{*}}+\epsilon\right)} k_{1}+k_{2}\right\}^{1+\alpha}}{k_{3} r^{p^{\prime}}+k_{4}} \\
& =\frac{r^{\left(\rho_{g .}^{L^{*}}+\epsilon\right)(1+\alpha)}\left\{k_{1}+\frac{k_{2}}{r^{\left(\rho_{g}^{L^{*}}+\epsilon\right)}}\right\}^{1+\alpha}}{k_{3} r^{p^{\prime}}+k_{4}}
\end{aligned}
$$

where k_{1}, k_{2}, k_{3} and k_{4} are finite.

$$
\text { Since } \quad\left(\rho_{g}^{L^{*}}+\epsilon\right)(1+\alpha)<p^{\prime}
$$

$$
\text { therefore } \quad \liminf _{r \rightarrow \infty} \frac{\{\log T(r, f o g)\}^{1+\alpha}}{\log T\left\{\exp \left(r^{p^{\prime}}\right), W(f)\right\}}=0
$$

where we choose $\epsilon(>0)$ such that

$$
0<\epsilon<\min \left\{\rho_{f}^{L^{*}}, \frac{p^{\prime}}{1+\alpha}-\rho_{g}^{L^{*}}\right\}
$$

which proves the theorem.
Theorem 2 If f be meromorphic and g be transcendental entire such that $\rho_{g .}^{L^{*}}<\infty, \rho_{\text {fog }}^{L^{*}}=\infty$ and $\sum_{a \neq \infty} \delta(a, g)+\delta(\infty, g)=2$. Then for every $A>0$

$$
\limsup _{r \rightarrow \infty} \frac{\log T(r, f o g)}{\log T\left(r^{A}, W(g)\right)}=\infty
$$

Proof. If possible let there exists a constant β such that for all sufficiently large values of r we have

$$
\begin{equation*}
\log T(r, f o g) \leq \beta \log T\left(r^{A}, W(g)\right) \tag{3}
\end{equation*}
$$

In view of Lemma 5 for all sufficiently large values of r we get that

$$
\begin{align*}
\log T\left(r^{A}, W(g)\right) & \leq\left(\rho_{W(g)}^{L^{*}}+\epsilon\right) \log \left[r^{A} \exp \left\{L\left(r^{A}\right)\right\}\right] \\
\text { i.e. } \log T\left(r^{A}, W(g)\right) & \leq\left(\rho_{g}^{L^{*}}+\epsilon\right)\left\{A \log r+L\left(r^{A}\right)\right\} . \tag{4}
\end{align*}
$$

Now combining (3) and(4) we obtain for all sufficiently large values of r

$$
\log T(r, f o g) \leq \beta\left(\rho_{g}^{L^{*}}+\epsilon\right)\left\{A \log r+L\left(r^{A}\right)\right\}
$$

which implies that $\frac{\log T(r, f o g)}{\log \left[r e^{L(r)}\right]} \leq \frac{\beta\left(\rho_{g}^{L^{*}}+\epsilon\right)\left\{A \log r+L\left(r^{A}\right)\right\}}{\log \left[r e^{L(r)}\right]}$

$$
=\beta\left(\rho_{g}^{L^{*}}+\epsilon\right) \frac{\left\{A \log r+L\left(r^{A}\right)\right\}}{\log \left[r e^{L(r)}\right]} .
$$

Therefore $\quad \frac{\log T(r, f o g)}{\log \left[r e^{L(r)}\right]} \leq \beta \cdot A \cdot\left(\rho_{g}^{L^{*}}+\epsilon\right)$

$$
\text { i.e, } \quad \rho_{\text {fog }}^{L^{*}} \leq \beta \cdot A \cdot\left(\rho_{g}^{L^{*}}+\epsilon\right)
$$

which contradicts the condition $\rho_{\text {fog }}^{L^{*}}=\infty$. So for a sequence of values of r tending to infinity, it follows that $\log T(r, f o g)>\beta \log T\left(r^{A}, W(g)\right)$ from which the theorem follows.

Corollary 1 Under the assumption of Theorem 2

$$
\limsup _{r \rightarrow \infty} \frac{T(r, f o g)}{T\left(r^{A}, W(g)\right)}=\infty
$$

Proof. By Theorem 2 we obtain for all sufficiently large values of r and for $K>1$,

$$
\begin{aligned}
\log T(r, f o g) & >K \log T\left(r^{A}, W(g)\right) \\
\text { i.e. } T(r, f o g) & >\left\{T\left(r^{A}, W(g)\right)\right\}^{K}
\end{aligned}
$$

from which the corollary follows.
Remark 1 If we take $\rho_{f}^{L^{*}}<\infty$ and $\sum_{a \neq \infty} \delta(a, f)+\delta(\infty, f)=2$ instead of $\rho_{g}^{L^{*}}<$ ∞ and $\sum_{a \neq \infty} \delta(a, g)+\delta(\infty, g)=2$ respectively then Theorem 2 and Corollary 1 remains valid with $W(g)$ replaced by $W(f)$ in the denominator.

Theorem 3 Let f and g be two entire functions with $\lambda_{f}^{L^{*}}>0$ and $\rho_{f}^{L^{*}}<\lambda_{g}^{L^{*}}$. Also let f be transcendental with $\sum_{a \neq \infty} \delta(a, f)+\delta(\infty, f)=2$. Then

$$
\lim _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f o g)}{\log M(r, W(f))}=\infty
$$

Proof. In view of Lemma 1, we have for all sufficiently large values of r,

$$
\begin{align*}
M(r, f o g) & \geq M\left(\frac{1}{16} M\left(\frac{r}{2}, g\right), f\right) \\
\text { i.e. } \quad \log ^{[2]} M(r, f o g) \geq & \log ^{[2]} M\left(\frac{1}{16} M\left(\frac{r}{2}, g\right), f\right) \\
\text { i.e. } \quad \log ^{[2]} M(r, f o g) \geq & \left(\lambda_{f}^{L^{*}}-\epsilon\right) \log \left(\frac{1}{16} M\left(\frac{r}{2}, g\right) e^{L\left(\frac{1}{16} M\left(\frac{r}{2}, g\right)\right)}\right) \\
\text { i.e. } \quad \log ^{[2]} M(r, f o g) \geq & \left(\lambda_{f}^{L^{*}}-\epsilon\right) \log \frac{1}{16}+\left(\lambda_{f}^{L^{*}}-\epsilon\right) \log M\left(\frac{r}{2}, g\right) \\
& +\left(\lambda_{f}^{L^{*}}-\epsilon\right) L\left(\frac{1}{16} M\left(\frac{r}{2}, g\right)\right) \\
\text { i.e. } \quad \log ^{[2]} M(r, f o g) \geq & O(1)+\left(\lambda_{f}^{L^{*}}-\epsilon\right)\left(\frac{r}{2} e^{L\left(\frac{r}{2}\right)}\right)^{\lambda_{g}^{L^{*}}-\epsilon} \\
& +\left(\lambda_{f}^{L^{*}}-\epsilon\right) L\left(\frac{1}{16} M\left(\frac{r}{2}, g\right)\right) . \tag{5}
\end{align*}
$$

Again for all sufficiently large values of r we get by Lemma 5 that

$$
\begin{equation*}
\log M(r, W(f)) \leq\left(r e^{L(r)}\right)^{\rho_{W(f)}^{L^{*}}+\epsilon}=\left(r e^{L(r)}\right)^{\rho_{f}^{L^{*}}+\epsilon} \tag{6}
\end{equation*}
$$

Now combining (5) and (6) it follows from all sufficiently large values of r,

$$
\begin{align*}
& \frac{\log ^{[2]} M(r, f o g)}{\log M(r, W(f))} \\
\geq & \frac{O(1)+\left(\lambda_{f}^{L^{*}}-\epsilon\right)\left[\frac{r}{2} e^{L\left(\frac{r}{2}\right)}\right]^{\lambda_{g}^{L^{*}}-\epsilon}+\left(\lambda_{f}^{L^{*}}-\epsilon\right) L\left(\frac{1}{16} M\left(\frac{r}{2}, g\right)\right)}{\left[r e^{L(r)}\right]^{\rho_{f}^{L^{*}}+\epsilon}} \tag{7}
\end{align*}
$$

Since $\rho_{f}^{L^{*}}<\lambda_{g}^{L^{*}}$ we can choose $\epsilon(>0)$ in such a way that

$$
\begin{equation*}
\rho_{f}^{L^{*}}+\epsilon<\lambda_{g}^{L^{*}}-\epsilon \tag{8}
\end{equation*}
$$

Thus from (7) and (8) we obtain that

$$
\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} M(r, f o g)}{\log M(r, W(f))}=\infty
$$

from which the theorem follows.
Theorem 4 If f be a transcendental meromorphic function and g be entire with $0<\lambda_{f}^{L^{*}} \leq \rho_{f}^{L^{*}}<\infty, \rho_{g}^{L^{*}}<\infty$ and $\sum_{a \neq \infty} \delta(a, f)+\delta(\infty, f)=2$. Then

$$
\lim _{r \rightarrow \infty} \frac{T(r, f o g) T(r, W(f))}{T\left[\exp \left(r^{p^{\prime}}\right), W(f)\right]}=0 \text { if } p^{\prime}>\rho_{g}^{L^{*}}
$$

Proof. Since $T(r, g) \leq \log ^{+} M(r, g)$, for all sufficiently large values of r we get from Lemma 2

$$
T(r, f o g) \leq\{1+o(1)\} T(M(r, g), f)
$$

$$
\text { i.e., } \quad T(r, f o g)
$$

$$
\begin{align*}
\leq & \{1+o(1)\} \exp \left(\left(\rho_{f}^{L^{*}}+\epsilon\right)\left(\left(r e^{L(r)}\right)^{\rho_{g}^{L^{*}}+\epsilon}+L(M(r, g))\right)\right) \\
= & \{1+o(1)\} \exp \left(\left(\rho_{f}^{L^{*}}+\epsilon\right)\left(r e^{L(r)}\right)^{\rho_{g}^{L^{*}}+\epsilon}\right) \\
& . \exp \left(\left(\rho_{f}^{L^{*}}+\epsilon\right) L(M(r, g))\right) . \tag{9}
\end{align*}
$$

Again by Lemma 5 for all sufficiently large values of r,

$$
\begin{equation*}
T(r, W(f)) \leq\left(r e^{L(r)}\right)^{\rho_{W(f)}^{L^{*}}+\epsilon}=\left(r e^{L(r)}\right)^{\rho_{f}^{L^{*}}+\epsilon} \tag{10}
\end{equation*}
$$

Now combining (9) and (10) it follows for all sufficiently large values of r,

$$
\begin{align*}
& T(r, f o g) T(r, W(f)) \\
\leq & \{1+o(1)\} \exp \left(\left(\rho_{f}^{L^{*}}+\epsilon\right)\left(r e^{L(r)}\right)^{\rho_{g}^{L^{*}}+\epsilon}\right) \\
& . \exp \left(\left(\rho_{f}^{L^{*}}+\epsilon\right) M(r, g)\right)\left(r e^{L(r)}\right)^{\rho_{f}^{L^{*}}+\epsilon} \tag{11}
\end{align*}
$$

Also in view of Lemma 5, we have for all sufficiently large values of r that

$$
\begin{align*}
& \log T\left[\exp \left(r^{p^{\prime}}\right), W(f)\right] \geq\left(\lambda_{W(f)}^{L^{*}}-\epsilon\right) \log \left[\exp \left(r^{p^{\prime}}\right) \exp \left\{L\left(\exp \left(r^{p^{\prime}}\right)\right)\right\}\right] \\
& \text { i.e., } T\left\{\exp \left(r^{p^{\prime}}\right), W(f)\right\} \\
& \geq {\left[\exp \left(r^{p^{\prime}}\right) \exp \left\{L\left(\exp \left(r^{p^{\prime}}\right)\right)\right\}\right]^{\lambda_{W(f)}^{L^{*}}-\epsilon} } \\
&= \exp \left[\left(\lambda_{W(f)}^{L^{*}}-\epsilon\right) r^{p^{\prime}}\right]\left[\exp \left\{L\left(\exp \left(r^{p^{\prime}}\right)\right)\right\}\right]_{W(f)}^{\lambda_{W}^{L^{*}}-\epsilon} \\
&= \exp \left[\left(\lambda_{f}^{L^{*}}-\epsilon\right) r^{p^{\prime}}\right]\left[\exp \left\{L\left(\exp \left(r^{p^{\prime}}\right)\right)\right\}\right]_{W(f)}^{\lambda^{L^{*}}-\epsilon} \tag{12}
\end{align*}
$$

From (11) and (12) it follows for all sufficiently large values of r,

$$
\begin{align*}
& \frac{T(r, f o g) T(r, W(f))}{T\left\{\exp \left(r^{p^{\prime}}\right), W(f)\right\}} \\
\leq & \frac{\exp \left[\left(\rho_{f}^{L^{*}}+\epsilon\right)\left(r e^{L(r)}\right)^{\rho_{g}^{L^{*}}+\epsilon}\right] \exp \left[\left(\rho_{f}^{L^{*}}+\epsilon\right) M(r, g)\right]}{\exp \left(\left(\lambda_{f}^{L^{*}}-\epsilon\right) r^{p^{\prime}}\right)\left[\exp \left\{L\left(\exp \left(r^{p^{\prime}}\right)\right)\right\}\right]^{\lambda_{W(f)}^{L^{*}}-\epsilon}} \\
& .\{1+o(1)\}\left(r e^{L(r)}\right)^{\rho_{f}^{L^{*}}+\epsilon} . \tag{13}
\end{align*}
$$

As $p^{\prime}>\rho_{g}^{L^{*}}$, so we can choose $\epsilon(>0)$ such that

$$
\begin{equation*}
p^{\prime}>\rho_{g}^{L^{*}}+\epsilon \tag{14}
\end{equation*}
$$

Thus the theorem follows from (13) and (14).
Theorem 5 Let f be a transcendental meromorphic function and g be a transcendental entire function such that $0<\lambda_{f}^{L^{*}} \leq \rho_{f}^{L^{*}}<\infty$ and $\sum_{a \neq \infty} \delta(a, f)+$ $\delta(\infty, f)=2$. Then for every $A>0$

$$
\lim _{r \rightarrow \infty} \frac{\log T(r, f o g)}{\log T\left(r^{A}, W(f)\right)}=\infty
$$

If further $\rho_{g}^{L^{*}}<\infty$ and $\sum_{a \neq \infty} \delta(a, g)+\delta(\infty, g)=2$ then

$$
\lim _{r \rightarrow \infty} \frac{\log T(r, f o g)}{\log T\left(r^{A}, W(g)\right)}=\infty
$$

Proof. Since $\lambda_{f}^{L^{*}}>0, \lambda_{\text {fog }}^{L^{*}}=\infty\{c f .[2]\}$. So it follows that for arbitrary large N and for all sufficiently large values of r,

$$
\begin{equation*}
\log T(r, f o g)>A N \log \left[r e^{L(r)}\right] \tag{15}
\end{equation*}
$$

Again since $\rho_{f}^{L^{*}}<\infty$, for all sufficiently large values of r we get by Lemma 5 ,

$$
\begin{equation*}
\log T\left(r^{A}, W(f)\right)<\left(\rho_{f}^{L^{*}}+1\right) \log \left[r^{A} e^{L\left(r^{A}\right)}\right] \tag{16}
\end{equation*}
$$

Again now from (15) and (16) it follows for all sufficiently large values of r that

$$
\frac{\log T(r, f o g)}{\log T\left(r^{A}, W(f)\right)}>\frac{A N \log \left[r e^{L(r)}\right]}{\left(\rho_{f}^{L^{*}}+1\right) \log \left[r^{A} e^{L\left(r^{A}\right)}\right]}
$$

$$
\text { Hence } \quad \frac{\log T(r, f o g)}{\log T\left(r^{A}, W(f)\right)}>\frac{A N[\log r+L(r)]}{\left(\rho_{f}^{L^{*}}+1\right)\left[A \log r+L\left(r^{A}\right)\right]}
$$

$$
\text { and so } \lim _{r \rightarrow \infty} \frac{\log T(r, f o g)}{\log T\left(r^{A}, W(f)\right)}=\infty
$$

Again since $\rho_{g}^{L^{*}}<\infty$, for all sufficiently large values of r we get by Lemma 5 ,

$$
\begin{align*}
\log T\left(r^{A}, W(g)\right) & <\left(\rho_{g}^{L^{*}}+1\right) \log \left[r^{A} e^{L\left(r^{A}\right)}\right] \\
& =\left(\rho_{g}^{L^{*}}+1\right)\left[A \log r+L\left(r^{A}\right)\right] \tag{17}
\end{align*}
$$

Now from (15) and (17) it follows for all sufficiently large values of r that

$$
\begin{align*}
\frac{\log T(r, f o g)}{\log T\left(r^{A}, W(g)\right)} & >\frac{A N \log \left[r e^{L(r)}\right]}{\left(\rho_{g}^{L^{*}}+1\right)\left[A \log r+L\left(r^{A}\right)\right]} \\
& =\frac{A N[\log r+L(r)]}{\left(\rho_{g}^{L^{*}}+1\right)\left[A \log r+L\left(r^{A}\right)\right]} \tag{18}
\end{align*}
$$

Thus the theorem follows from (18).
Theorem 6 Let f be a transcendental meromorphic function with $0<\lambda_{f}^{L^{*}} \leq$ $\rho_{f}^{L^{*}}<\infty$ and $\sum_{a \neq \infty} \delta(a, f)+\delta(\infty, f)=2$ and g be entire. Then

$$
\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T\left\{\exp \left(r^{\rho_{g}^{L^{*}}}\right), \text { fog }\right\}}{\log T\left(\exp \left(r^{\mu}\right), W(f)\right)}=\infty \text { where } 0<\mu<\rho_{g}^{L^{*}}
$$

Proof. Let $0<\mu^{\prime}<\rho_{g}^{L^{*}}$. Then in view of Lemma 3 we get for a sequence of values of r tending to infinity,

$$
\log T(r, f o g) \geq \log T\left(\exp \left(r^{\mu^{\prime}}\right), f\right)
$$

$$
\begin{array}{ll}
\text { i.e., } & \log T(r, f o g) \geq\left(\lambda_{f}^{L^{*}}-\epsilon\right) \log \left[\exp \left(r^{\mu^{\prime}}\right) \exp \left(L\left(e^{r^{\mu^{\prime}}}\right)\right)\right] \\
\text { i.e., } & \log { }^{[2]} T(r, f o g) \geq \log \left[\left(\lambda_{f}^{L^{*}}-\epsilon\right) \log \left\{\exp \left(r^{\mu^{\prime}}\right) \exp \left(L\left(e^{r^{\mu^{\prime}}}\right)\right)\right\}\right] \\
\text { i.e., } & \log { }^{[2]} T(r, f o g) \geq \log \left(\lambda_{f}^{L^{*}}-\epsilon\right)+\log { }^{[2]}\left[\exp \left(r^{\mu^{\prime}}\right) \exp \left(L\left(e^{r^{\mu^{\prime}}}\right)\right)\right] \\
\text { i.e., } & \log ^{[2]} T(r, f o g) \geq O(1)+\log \left[r^{\mu^{\prime}}+L\left(\exp \left(r^{\mu^{\prime}}\right)\right)\right] .
\end{array}
$$

So for a sequence of values of r tending to infinity,

$$
\begin{align*}
& \log ^{[2]} T\left\{\exp \left(r^{\rho_{g}^{L^{*}}}\right), \text { fog }\right\} \\
\geq & O(1)+\log \left[\exp \left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)+L\left\{\exp ^{[2]}\left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)\right\}\right] . \tag{19}
\end{align*}
$$

Again in view of Lemma 5, we obtain for all sufficiently large values of r that

$$
\begin{align*}
\log T\left(\exp \left(r^{\mu}\right), W(f)\right) & \leq\left(\rho_{W(f)}^{L^{*}}+\epsilon\right) \log \left\{\exp \left(r^{\mu}\right) \exp \left(L\left(\exp \left(r^{\mu}\right)\right)\right)\right\} \\
\text { i.e., } \log T\left(\exp \left(r^{\mu}\right), W(f)\right) & \leq\left(\rho_{f}^{L^{*}}+\epsilon\right)\left(r^{\mu}+L\left(\exp \left(r^{\mu}\right)\right) .\right. \tag{20}
\end{align*}
$$

Combining (19) and (20) it follows for a sequence of values of r tending to infinity that

$$
\begin{align*}
& \frac{\log ^{[2]} T\left\{\exp \left(r^{\rho_{g}^{L^{*}}}\right), f o g\right\}}{\log T\left(\exp \left(r^{\mu}\right), W(f)\right)} \\
& \geq \frac{O(1)+\log \left[\exp \left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)+L\left\{\exp ^{[2]}\left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)\right\}\right]}{\left(\rho_{f}^{L^{*}}+\epsilon\right)\left[r^{\mu}+L\left(\exp \left(r^{\mu}\right)\right)\right]} \\
& =\frac{O(1)+\log \left[\exp \left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)\left\{1+\frac{\log L\left(\exp ^{[2]}\left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)\right.}{\exp \left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)}\right\}\right]}{\left(\rho_{f}^{L^{*}}+\epsilon\right)\left(r^{\mu}\right)+\left(\rho_{f}^{L^{*}}+\epsilon\right) L\left(\exp \left(r^{\mu}\right)\right)} \\
& =\frac{O(1)+\log \left\{\exp \left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)\right\}+\log \left[1+\frac{\log L\left\{\exp ^{[2]}\left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)\right\}}{\exp \left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)}\right]}{\left(\rho_{f}^{L^{*}}+\epsilon\right) r^{\mu}+\left(\rho_{f}^{L^{*}}+\epsilon\right) L\left(\exp \left(r^{\mu}\right)\right)} \\
& =\frac{O(1)+r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}+\log \left[1+\frac{\log L\left\{\exp ^{[2]}\left(r^{\rho_{g}^{L^{*}}} \cdot \mu^{\prime}\right)\right\}}{\exp \left(r^{\rho_{g}^{*}} \cdot \mu^{\prime}\right)}\right]}{\left(\rho_{f}^{L^{*}}+\epsilon\right) r^{\mu}+\left(\rho_{f}^{L^{*}}+\epsilon\right) \log L\left(\exp \left(r^{\mu}\right)\right)} . \tag{21}
\end{align*}
$$

Since $\mu<\rho_{g}^{L^{*}}$ we get from (21) that

$$
\underset{r \rightarrow \infty}{\limsup } \frac{\log ^{[2]} T\left(\exp \left(r^{\rho_{g}^{L_{s}^{*}}}\right), \text { fog }\right)}{\log T\left(\exp \left(r^{\mu}\right), W(f)\right)}=\infty
$$

This proves the theorem.
Theorem 7 Let f be rational and g be transcendenal meromorphic satisfying $0<\bar{\lambda}_{\text {fog }}^{L^{*}} \leq \bar{\rho}_{\text {fog }}^{L^{*}}<\infty, 0<\bar{\lambda}_{g}^{L^{*}}<\bar{\rho}_{g}^{L^{*}}<\infty$ and $\sum_{a \neq \infty} \delta(a, g)+\delta(\infty, g)=2$. Then for any positive number A

$$
\begin{aligned}
\frac{\bar{\lambda}_{f o g}^{L^{*}}}{A \bar{\rho}_{g}^{L^{*}}} & \leq \liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} \\
& \leq \frac{\bar{\lambda}_{f o g}^{L^{*}}}{A \bar{\lambda}_{g}^{L^{*}}} \leq \limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} \leq \frac{\bar{\rho}_{f o g}^{L^{*}}}{A \bar{\lambda}_{g}^{L^{*}}}
\end{aligned}
$$

Proof. From the definition of hyper L^{*}-order and hyper L^{*}-lower order and by Lemma 6 we get for arbitrary positive ϵ and for all sufficiently large values of r,

$$
\begin{align*}
& \log ^{[2]} T(r, f o g) \tag{22}
\end{align*} \geq\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right) \log \left[r e^{L(r)}\right] .
$$

Combining (22) and(23), we obtain for all sufficiently large values of r that

$$
\begin{aligned}
\frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} & \geq \frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right) \log \left(r e^{L(r)}\right)}{\left(\bar{\rho}_{g}^{L^{*}}+\epsilon\right)\left(A \log r+L\left(r^{A}\right)\right)} \\
& =\frac{\left(\bar{\lambda}_{\text {fog }}^{*^{*}}-\epsilon\right)(\log r+L(r))}{A\left(\bar{\rho}_{g}^{L^{*}}+\epsilon\right) \log r+\left(\bar{\rho}_{g}^{L^{*}}+\epsilon\right) L\left(r^{A}\right)} \\
& =\frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right) \log r+\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right) L(r)}{A\left(\bar{\rho}_{g}^{L^{*}}+\epsilon\right) \log r+\left(\bar{\rho}_{g}^{L^{*}}+\epsilon\right) L\left(r^{A}\right)} .
\end{aligned}
$$

Since $\epsilon(>0)$ is arbitrary, it follows from above that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} \geq \frac{\bar{\lambda}_{f o g}^{L^{*}}}{A \bar{\rho}_{g}^{L^{*}}} . \tag{24}
\end{equation*}
$$

Again for a sequence of values of r tending to infinity,

$$
\begin{equation*}
\log ^{[2]} T(r, f o g) \leq\left(\bar{\lambda}_{f o g}^{L^{*}}+\epsilon\right) \log \left[r e^{L(r)}\right] \tag{25}
\end{equation*}
$$

Also in view of Lemma 6, we have for all sufficiently large values of r that

$$
\begin{gather*}
\log ^{[2]} T\left(r^{A}, W(g)\right) \geq\left(\bar{\lambda}_{W(g)}^{L^{*}}-\epsilon\right) \log \left[r^{A} e^{L\left(r^{A}\right)}\right] \\
\text { i.e., } \quad \log ^{[2]} T\left(r^{A}, W(g)\right) \geq\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right)\left(A \log r+L\left(r^{A}\right)\right) . \tag{26}
\end{gather*}
$$

Combining (25) and (26) we get for a sequence of values of r tending to infinity,

$$
\begin{aligned}
\frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} & \leq \frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}+\epsilon\right) \log \left[r e^{L(r)}\right]}{\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right)\left(A \log r+L\left(r^{A}\right)\right)} \\
& =\frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}+\epsilon\right)(\log r+L(r))}{\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right)\left(A \log r+L\left(r^{A}\right)\right)} \\
& =\frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}+\epsilon\right) \log r+\left(\bar{\lambda}_{\text {fog }}^{L^{*}}+\epsilon\right) L(r)}{A\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right) \log r+\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right) L\left(r^{A}\right)}
\end{aligned}
$$

As $\epsilon(>0)$ is arbitrary it follows from above that

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} \leq \frac{\bar{\lambda}_{\text {fog }}^{L^{*}}}{A \bar{\lambda}_{g}^{L^{*}}} \tag{27}
\end{equation*}
$$

Also for a sequence of values of r tending to infinity and by Lemma 6,

$$
\begin{align*}
& \quad \log ^{[2]} T\left(r^{A}, W(g)\right) \leq\left(\bar{\lambda}_{W(g)}^{L^{*}}+\epsilon\right) \log \left[r^{A} e^{L\left(r^{A}\right)}\right] \\
& \text { i.e., } \quad \log ^{[2]} T\left(r^{A}, W(g)\right) \leq\left(\bar{\lambda}_{g}^{L^{*}}+\epsilon\right) \log \left[r^{A} e^{L\left(r^{A}\right)}\right] \tag{28}
\end{align*}
$$

Combining (22) and (28) we have for a sequence of values of r tending to infinity

$$
\begin{aligned}
\frac{\log { }^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} & \geq \frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right) \log \left[r e^{L(r)}\right]}{\left(\bar{\lambda}_{g}^{L^{*}}+\epsilon\right)\left(\log r^{A} e^{L\left(r^{A}\right)}\right)} \\
& =\frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right)(\log r+L(r))}{\left(\bar{\lambda}_{g}^{L^{*}}+\epsilon\right)\left(A \log r+L\left(r^{A}\right)\right.} \\
& =\frac{\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right) \log r+\left(\bar{\lambda}_{\text {fog }}^{L^{*}}-\epsilon\right) L(r)}{A\left(\bar{\lambda}_{g}^{L^{*}}+\epsilon\right) \log r+\left(\bar{\lambda}_{g}^{L^{*}}+\epsilon\right) L\left(r^{A}\right)}
\end{aligned}
$$

Since $\epsilon(>0)$ is arbitrary, it follows from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} \geq \frac{\bar{\lambda}_{\text {fog }}^{L^{*}}}{A \bar{\lambda}_{g}^{L^{*}}} . \tag{29}
\end{equation*}
$$

Also for all sufficiently large values of r,

$$
\begin{equation*}
\log ^{[2]} T(r, f o g) \leq\left(\bar{\rho}_{f o g}^{L^{*}}+\epsilon\right) \log \left[r e^{L(r)}\right] \tag{30}
\end{equation*}
$$

From (26) and (30) we obtain for all sufficiently large values of r,

$$
\begin{aligned}
\frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} & \leq \frac{\left(\bar{\rho}_{\text {fog }}^{L^{*}}+\epsilon\right) \log \left(r e^{L(r)}\right)}{\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right) \log \left(r^{A} e^{L\left(r^{A}\right)}\right)} \\
\text { i.e., } \frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} & \leq \frac{\left(\bar{\rho}_{\text {fog }}^{L^{*}}+\epsilon\right)(\log r+L(r))}{\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right)\left(\log r^{A}+L\left(r^{A}\right)\right)} \\
\text { i.e., } \frac{\log ^{[2]} T(r, f o g)}{\log ^{[2]} T\left(r^{A}, W(g)\right)} & \leq \frac{\left(\bar{\rho}_{\text {fog }}^{L^{*}}+\epsilon\right) \log r+\left(\bar{\rho}_{\text {fog }}^{L^{*}}+\epsilon\right) L(r)}{A\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right) \log r+\left(\bar{\lambda}_{g}^{L^{*}}-\epsilon\right) L\left(r^{A}\right)} .
\end{aligned}
$$

Since $\epsilon(>0)$ is arbitrary it follows from above that

$$
\begin{equation*}
\limsup _{r \rightarrow \infty} \frac{\log ^{[2]} T(r, \text { fog })}{\log ^{[2]} T\left(r^{A}, W(g)\right)} \leq \frac{\bar{\rho}_{\text {fog }}^{L^{*}}}{A \bar{\lambda}_{g}^{L^{*}}} \tag{31}
\end{equation*}
$$

Thus the theorem follows from $(24),(27),(29)$ and (31).
Theorem 8 Let f be meromorphic and g be transcendental entire such that $(i) 0<\rho_{g}^{L^{*}}<\infty,(i i) \sigma_{g}^{L^{*}}>0,(i i i) 0<\rho_{\text {fog }}^{L^{*}}<\infty,(i v) \sigma_{\text {fog }}^{L^{*}}<\infty,(v) \rho_{f}^{*}<1$ and (vi) $\sum_{a \neq \infty} \delta(a, g)+\delta(\infty, g)=2$. Then

$$
\liminf _{r \rightarrow \infty} \frac{\log T(r, f o g)}{\log T(r, W(g))}=0
$$

Proof. From the definition of L^{*}-type we have for arbitrary positive ϵ and for all sufficiently large values of r,

$$
\begin{equation*}
\log T(r, f o g) \leq\left(\sigma_{f o g}^{L^{*}}+\epsilon\right)\left(r e^{L(r)}\right)^{\rho_{f o g}^{L^{*}}} \tag{32}
\end{equation*}
$$

Again in view of Lemma 5, we get for a sequence of values of r tending to infinity that

$$
\begin{align*}
T(r, W(g)) & \geq\left(\sigma_{W(g)}^{L^{*}}-\epsilon\right)\left(r e^{L(r)}\right)^{\rho_{W(g)}^{L^{*}}} \\
\text { i.e., } T(r, W(g)) & \geq\left[\{1+k-k \delta(\infty, g)\} \sigma_{g}^{L^{*}}-\epsilon\right]\left(r e^{L(r)}\right)^{\rho_{g}^{L^{*}}} \tag{33}
\end{align*}
$$

Since $\rho_{\text {fog }}^{L^{*}}<\infty$, it follows that $\rho_{f}^{L^{*}}=0\{c f .[2]\}$. So in view of Lemma 7, from (32) and (33) we obtain for a sequence of values of r tending to infinity,

$$
\frac{T(r, f o g)}{T(r, W(g))} \leq \frac{\left(\sigma_{\text {fog }}^{L^{*}}+\epsilon\right)\left(r e^{L(r)}\right)^{\rho_{\text {fog }}^{L^{*}}}}{\left[\{1+k-k \delta(\infty, g)\} \sigma_{g}^{L^{*}}-\epsilon\right]\left(r e^{L(r)}\right)^{\rho_{g}^{L^{*}}}}
$$

$$
\begin{aligned}
\text { i.e., } \begin{aligned}
& \frac{T(r, f o g)}{T(r, W(g))} \leq \frac{\left(\sigma_{\text {fog }}^{L^{*}}+\epsilon\right)\left(r e^{L(r)}\right)^{\rho_{f}^{*} \cdot \rho_{g}^{L^{*}}}}{\left[\{1+k-k \delta(\infty, g)\} \sigma_{g}^{L^{*}}-\epsilon\right]\left(r e^{L(r)}\right)^{\rho_{g}^{L^{*}}}} \\
&=\frac{\left(\sigma_{\text {fog }}^{L^{*}}+\epsilon\right)\left(r e^{L(r)}\right)^{\left(\rho_{f}^{*}-1\right) \cdot \rho_{g}^{L^{*}}}}{\left[\{1+k-k \delta(\infty, g)\} \sigma_{g}^{L^{*}}-\epsilon\right]} \\
& \text { i.e., } \quad \frac{T(r, f o g)}{T(r, W(g))} \leq \frac{\left(\sigma_{\text {fog }}^{L^{*}}+\epsilon\right) r^{\left(\rho_{f}^{*}-1\right) \cdot \rho_{g}^{L^{*}}}\left(e^{L(r)}\right)^{\left(\rho_{f}^{*}-1\right) \cdot \rho_{g}^{L^{*}}}}{\left[\{1+k-k \delta(\infty, g)\} \sigma_{g}^{L^{*}}-\epsilon\right]}
\end{aligned} .
\end{aligned}
$$

Since $\epsilon(>0)$ is arbitrary in view of condition (v) it follows that

$$
\liminf _{r \rightarrow \infty} \frac{\log T(r, f o g)}{\log T(r, W(g))}=0
$$

This proves the theorem.

References

[1] Bergweiller, W.: On the Nevanlinna Characteristic of a composite function, Complex Variables, Vol. 10 (1988), pp. 225-236.
[2] Bergweiller, W.: Order and lower order of composite meromorphic functions, Michigan Math. J. Vol. 36 (1989), pp. 135-146.
[3] Bergweiler, W.: On the growth rate of composite meromorphic functions, Complex Variables, Vol. 14 (1990), pp. 187-196.
[4] Clunie, J.: The composition of entire and meromorphic functions, Mathematical essays dedicated to A.J.Macintyre, Ohio University Press, (1970), pp. 75-92.
[5] Lahiri, I. and Banerjee, A.: Value distribution of a wronskian, Portugalie Mathematica, Vol. 61, Fasc. 2 (2004), Nova Série, pp. 161-175.
[6] Liao, L. and Yang, C.C.: On the growth of composite entire functions, Yokohama Math. J., Vol. 46(1999), pp. 97-107.
[7] Somasundaram, D. and Thamizharasi, R.: A note on the entire functions of L-bounded index and L-type, Indian J. Pure and Appl. Math., Vol. 19, No. 3 (March 1988), pp. 284-293.

