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1 Introduction, De�nitions and Notations.

Let f be an entire function de�ned in the open complex plane C: The max-

imum term �(r; f) of f =

1X
n=0

anz
n on jzj = r is de�ned by �(r; f) =

max
n�0

(janj rn):
To start our paper we just recall the following de�nitions :

De�nition 1 The order �f and lower order �f of an entire function f are
de�ned as

�f = lim sup
r!1

log[2]M(r; f)

log r
and �f = lim inf

r!1

log[2]M(r; f)

log r
;

where log[k] x = log(log[k�1] x) for k = 1; 2; 3; ::: and log[0] x = x:

De�nition 2 The p�th order �pf and lower p-th order �
p
f of an entire func-

tion f are de�ned as

�pf = lim sup
r!1

log[p+1]M(r; f)

log r
and �pf = lim infr!1

log[p+1]M(r; f)

log r
:

De�nition 3 The p�th type �pf of an entire function f is de�ned as

�pf = lim sup
r!1

log[p�1]M(r; f)

r�
p
f

; 0 < �pf <1:

Since for 0 � r < R; �(r; f) � M(r; f) � R
R�r�(R; f) fcf:[7]g it is easy

to see that

�pf = lim sup
r!1

log[p+1] �(r; f)

log r
and �pf = lim infr!1

log[p+1] �(r; f)

log r
:

In 1997 Lahiri and Banerjee [3] showed that how iteration can be made
for any two entire functions f and g. According to them [3] the iteration of
f with respect to g is de�ned as follows :

f1(z) = f(z)

f2(z) = f(g(z)) = f(g1(z))

f3(z) = f(g(f(z))) = f(g2(z)) = f(g(f1(z)))

:::::::: ::::::: ::::::::

fn(z) = f(g(f:::::(f(z) or g(z))::::::::)); according as n is odd or even;
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and the iteration of g with respect to f is as follows :

g1(z) = g(z)

g2(z) = g(f(z)) = g(f1(z))

g3(z) = g(f(g(z))) = g(f2(z)) = g(f(g1(z)))

:::::::: ::::::: ::::::::

gn(z) = g(f(g:::::(g(z) or f(z))::::::::)); according as n is odd or even:

De�nition 4 Let a1; a2; :::::ak be linearly independent entire functions and
small with respect to f . We denote by L(f) = W (a1; a2; :::::ak; f) the wron-
skian determinant of a1; a2; :::::ak; f i.e.,

L(f) =

������������

a1 a2 :: :: ak f
a
0
1 a

0
2 :: :: a

0
k f

0

:: :: :: :: :: ::
:: :: :: :: :: ::
:: :: :: :: :: ::

a
(k)
1 a

(k)
2 :: :: a

(k)
k f (k)

������������
.

De�nition 5 Let `a�be a complex number, �nite or in�nite. The Nevanlinna
de�ciency and Valiron de�ciency of `a�with respect to an entire function f
are de�ned as

�(a; f) = 1� lim sup
r!1

N(r; a; f)

T (r; f)
= lim inf

r!1

m(r; a; f)

T (r; f)

and

�(a; f) = 1� lim inf
r!1

N(r; a; f)

T (r; f)
= lim sup

r!1

m(r; a; f)

T (r; f)
:

From the second fundamental theorem it follows that the set of values
of a 2 C[f1g for which �(a; f) > 0 is countable and

P
a 6=1

�(a; f)+�(1; f) � 2

(cf. [[2]; p:43]): If in particular,
P
a 6=1

�(a; f) + �(1; f) = 2; we say that f has

the maximum de�ciency sum.

In the paper we would like to establish some new results based on the
comparative growth properties related to the iteration of maximum terms of
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composite entire functions and wronskians generated by one of the factors.
We do not explain the standard notations and de�nitions in the theory of
entire functions as those are available in [8].

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([1]) Let f and g be two entire functions. Then for all su¢ ciently
large values of r,

M(
1

8
M(

r

2
; g)� jg(0)j ; f) �M(r; f � g) �M(M(r; g); f) :

Lemma 2 ([2]) Let f be an entire function and 0 � r < R <1: Then

T (r; f) � log+M (r; f) � R + r

R� rT (R; f) :

Lemma 3 ([6])Let f and g be two entire functions. Then for all r > 0,

T (r; f � g) � 1

3
logM

�
1

8
M
�r
4
; g
�
+ o (1) ; f

�
:

Lemma 4 ([4]) Let f be a transcendental entire function having the maxi-
mum de�ciency sum. Then

lim
r!1

T (r; L(f))

T (r; f)
= 1 + k � k�(1; f):

Lemma 5 Let f be a transcendental entire function with the maximum de-
�ciency sum, then the p-th order and lower p-th order of L(f) are same.

Proof. By Lemma 4, lim
r!1

log[p] T (r;L(f))

log[p] T (r;f)
exists and is equal to 1.

So

�pL(f) = lim sup
r!1

log[p] T (r; f)

log r
: lim
r!1

log[p] T (r; L(f))

log[p] T (r; f)

= �pf :1 = �
p
f :

In a similar manner, �pL(f) = �
p
f .
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Lemma 6 Let f and g be two entire functions both with non zero �nite p-th
order. Then for all su¢ ciently large values of r,

log[(n�1)p+1] �(r; fn) �
�
(�pf + �) logM(r; g) +O(1) when n is even

(�pg + �) logM(r; f) +O(1) when n is odd.

�
Proof. First let us consider n be even. Now in view of the second part of
Lemma 1 and the inequality �(r; f) � M(r; f) we obtain for all su¢ ciently
large values of r;

�(r; fn) � M(r; fn) �M(M(r; gn�1); f)
i:e:; log[p+1] �(r; fn) � log[p+1]M(M(r; gn�1); f)

� (�pf + �) logM(r; gn�1):

On calculation one can easily verify that for all su¢ ciently large values of r,

log[(n�1)p+1] �(r; fn) � (�pf + �) logM(r; g) +O(1):

Similarly it can be easily shown that for odd n

log[(n�1)p+1] �(r; fn) � (�pg + �) logM(r; f) +O(1):

This proves the lemma.

Lemma 7 Let f and g be two entire functions both with non zero �nite p-th
order. Then for a sequence of values of r tending to in�nity,

log[(n�1)p+1] �(r; fn) �
�
(�pf + �) logM(r; g) +O(1) when n is even

(�pg + �) logM(r; f) +O(1) when n is odd.

�
The proof of Lemma 7 is omited because it can be carried out in the line

of Lemma 6:

Lemma 8 Let f and g be two entire functions with non zero �nite lower
p-th order �pf and �

p
g respectively. Then for all su¢ ciently large values of r,

log[(n�1)p+1] �(r; fn) �
�
(�pf � �) logM( r2n ; g) +O(1) when n is even
(�pg � �) logM( r2n ; f) +O(1) when n is odd.

�
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Proof. Putting R = 2r in the inequality

�(r; f) �M(r; f) � R

R� r�(R; f)fcf:[7]g

we get that
�(r; f) �M(r; f) � 2�(2r; f): (1)

Now we consider the case when n is even. Then using the second part of
Lemma 1 and the second part of the inequality (1) we get for all su¢ ciently
large values of r,

�(r; fn) � 1

2
M(

r

2
; fn)

=
1

2
M(

r

2
; f(gn�1)

� 1

2
M(

1

32
M(

r

4
; gn�1); f)

i:e:; log[p+1] �(r; fn) � (�pf � �) logM(
r

22
; gn�1) +O(1)

i:e:; log[p+2] �(r; fn) � log[2]M(
r

22
; gn�1) +O(1)

� log[2]M(
1

16
M(

r

23
; fn�2); g) +O(1):

Finaly on calculation we obtain that

log[(n�1)p+1] �(r; fn) � (�pf � �) logM(
r

2n
; g) +O(1):

Similarly for odd n it follows for all su¢ ciently large values of r;

log[(n�1)p+1] �(r; fn) � (�pg � �) logM(
r

2n
; f) +O(1):

This proves the lemma.

Lemma 9 Let f and g be two entire functions with non zero �nite p-th order
�pf and �

p
g respectively. Then for a sequence of values of r tending to in�nity,

log[(n�1)p+1] �(r; fn) �
�
(�pf � �) logM( r2n ; g) +O(1) when n is even
(�pg � �) logM( r2n ; f) +O(1) when n is odd.

�
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The proof of Lemma 9 is omitted because it can be carried out in the line
of Lemma 8.

Lemma 10 ([5]) Let f be an entire function of �nite lower order. If there ex-
ists entire functions ai (i = 1; 2; � � � ; n; n � 1) satisfying T (r; ai) = o fT (r; f)g
and

nP
i=1

� (ai; f) = 1, then lim
r!1

T (r;f)
logM(r;f)

= 1
�
:

3 Theorems.

In this section we present the main results of the paper.

Theorem 1 Let f and g be two entire functions with (i) 0 < �pf < �
p
f <1;

(ii) 0 < �pg < �pg < 1; (iii) 0 < �pg < �pf < 1; (iv) 0 < �pg < 1 and
(v)

P
a 6=1

�(a; f) + �(1; f) = 2: Then

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))
= 0

when n is even and p � 1:

Proof. Let us consider n to be even, then from Lemma 6 and the inequality
(1) we obtain for all su¢ ciently large values of r

log[(n�1)p+1] �(r; fn) � (�pf + �) logM(r; g) +O(1)

� (�pf + �) log �(2r; g) +O(1)

� (�pf + �)(�
p
g + �)(2r)

(�pg+�) +O(1): (2)

Now it is well known that for an entire function f; T (r; f) � log+M(r; f):
So in view of inequality (1) and by Lemma 5 we get for all su¢ ciently large
values of r

log[p] T (
r

2
; L(f)) � log[p+1] �(r; L(f)) +O(1)

i:e:; log[p+1] �(r; L(f)) � (�pL(f) � �) log(
r

2
) +O(1)

i:e:; log[p] �(r; L(f)) � r(�
p
f��) +O(1): (3)
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Now from (2) and (3) we obtain for all su¢ ciently large values of r

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))
�
(�pf + �)(�

p
g + �)(2r)

(�pg+�) +O(1)

r(�
p
f��) +O(1)

:

Since �pg < �
p
f ; we can choose �(> 0) in such a way that

�
�pg + �

�
< (�pf � �)

and it follows from above that

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))
= 0:

This proves the theorem.

Remark 1 The condition �pg < �pf in Theorem 1 is essential as we see in
the following example.

Example 1 Let f = exp[p] z and g = exp[p](z2):
Then �pf = �

p
f = 1 and �

p
g = �

p
g = 2 and

P
a 6=1

�(a; f) + �(1; f) = 2:

Also fn = exp[2n�2]p z2 when n is even:
Taking a1 = 1

p
(p � 1) , a2 = ::: = ak = 0 in De�nition 7 we get that

L(f) =

���� a1 f
a01 f 0

���� = ���� 1
p

exp[p] z

0 p exp[p] z

���� = exp[p] z = f:
In view of the inequality �(r; f) �M(r; f) � 2�(2r; f) we obtain that

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))
� lim sup

r!1

log[(n�1)p+1]M(r; fn)

log[p]Mf1
2
( r
2
; L (f))g

:

When n is even then

log[(n�1)p+1]M(r; fn) = log
[(n�1)p+1]M(r; exp[2n�2]p z2) = exp[np�p�1] r2:

Also

log[p]Mf1
2
(
r

2
; L (f))g = log[p]M(r

2
; exp[p] z) +O(1) =

r

2
+O(1):

So

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))
= lim sup

r!1

exp[np�p�1] r2

r
2
+O(1)

=1;

which is contrary to Theorem 1:

                          INTERNATIONAL JOURNAL OF ADVANCED SCIENTIFIC AND TECHNICAL RESEARCH                                             

                   (ISSUE 2, VOLUME 4- August 2012)                                                                                       ISSN 2249-9954

Page 538 



In the line of Theorem 1 we may state the following theorem without
proof.

Theorem 2 Let f and g be two entire functions with (i) 0 < �pf < �
p
f <1;

(ii) 0 < �pg < �pg < 1; (iii) 0 < �pf < �pg < 1; (iv) 0 < �pf < 1 and
(v)

P
a 6=1

�(a; f) + �(1; f) = 2: Then

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(g))
= 0

when n is odd and p � 1:

Theorem 3 Let f and g be two entire functions with (i) 0 < �pf < �
p
f <1;

(ii) 0 < �pg < �
p
g < 1; (iii) 0 < �pg < 1 and (iv)

P
a 6=1

�(a; g) + �(1; g) = 2:

Then

lim inf
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(g))
� 2�

p
g :�pf :�

p
g

when n is even and p � 1:

Proof. Let us consider n to be even, then from Lemma 6 and the inequality
(1) we obtain for all su¢ ciently large values of r

log[(n�1)p+1] �(r; fn) � (�pf + �) logM(r; g) +O(1)

� (�pf + �) log �(2r; g) +O(1)

� (�pf + �)(�
p
g + �)(2r)

(�pg+�) +O(1): (4)

Now it is well known that for an entire function f; T (r; f) � log+M(r; f):
So in view of inequality (1) and by Lemma 5 we get for a sequence of values
of r tending to in�nity

log[p] T (
r

2
; L(g)) � log[p+1] �(r; L(g)) +O(1)

i:e:; log[p+1] �(r; L(g)) � (�pL(g) � �) log(
r

2
) +O(1)

i:e:; log[p] �(r; L(g)) � r(�
p
g��) +O(1): (5)
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Now from (4) and (5) we obtain for a sequence of values of r

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(g))
�
(�pf + �)(�

p
g + �)(2r)

(�pg+�) +O(1)

r(�
p
g��) +O(1)

:

Since �(> 0) is arbitrary it follows from above that

lim inf
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(g))
� 2�

p
g :�pf :�

p
g:

This proves the theorem.
In the line of Theorem 3 we may state the following theorem without

proof.

Theorem 4 Let f and g be two entire functions with (i) 0 < �pf < �
p
f <1;

(ii) 0 < �pg < �
p
g < 1; (iii) 0 < �

p
f < 1 and (iv)

P
a 6=1

�(a; g) + �(1; g) = 2:

Then

lim inf
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))
� 2�

p
f :�pg:�

p
f

when n is odd and p � 1:

Theorem 5 Let f and g be two entire functions with (i) 0 < �pf < �
p
f <1;

(ii) 0 < �pg < �
p
g < 1; (iii) 0 < �pg < 1 and (iv)

P
a 6=1

�(a; f) + �(1; f) = 2:

Also let there exist entire functions bi(i = 1; 2; :::n;n � 1) with T (r; bi) =
ofT (r; g)g as r !1 for i = 1; 2; :::; n and

nP
i=1

� (bi; g) = 1:Then

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))T (r; L(g))
= 0

when n is even and p � 1:

Proof. Let us consider n to be even, then from Lemma 6 and the inequality
(1) we obtain for all su¢ ciently large values of r

log[(n�1)p+1] �(r; fn) � (�pf + �) logM(r; g) +O(1): (6)
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Now it is well known that for an entire function f; T (r; f) � log+M(r; f):
So in view of inequality (1) and by Lemma 5 we get for all su¢ ciently large
values of r

log[p] T (
r

2
; L(f)) � log[p+1] �(r; L(f)) +O(1)

i:e:; log[p+1] �(r; L(f)) � (�pL(f) � �) log(
r

2
) +O(1)

i:e:; log[p] �(r; L(f)) � r(�
p
f��) +O(1): (7)

Now from (6) and (7) we obtain for all su¢ ciently large values of r

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))T (r; L(g))
�

(�pf + �) logM(r; g) +O(1)

[r(�
p
f��) +O(1)]T (r; L(g))

�
(�pf + �)

[r(�
p
f��) +O(1)]

:
logM(r; g)

T (r; g)
:
T (r; g)

T (r; L(g))
:

Since �(> 0) is arbitrary and by using Lemma 4 and Lemma 10 we get that

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(f))T (r; L(g))
� lim sup

r!1

�pf

[r�
p
f +O(1)]

: lim
r!1

logM(r; g)

T (r; g)
: lim
r!1

T (r; g)

T (r; L(g))

� 0:�:
1

1 + k � k�(1; f) = 0:

This proves the theorem.
In the line of Theorem 5 we may state the following theorem without

proof.

Theorem 6 Let f and g be two entire functions with (i) 0 < �pf < �
p
f <1;

(ii) 0 < �pg < �
p
g < 1; (iii) 0 < �pg < 1 and (iv)

P
a 6=1

�(a; f) + �(1; f) = 2:

Also let there exist entire functions bi(i = 1; 2; :::n;n � 1) with T (r; bi) =
ofT (r; g)g as r !1 for i = 1; 2; :::; n and

nP
i=1

� (bi; g) = 1:Then

lim sup
r!1

log[(n�1)p+1] �(r; fn)

log[p] �(r; L(g))T (r; L(f))
= 0

when n is odd and p � 1:
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