Further Growth Estimations of Differential Monomials and Differential Polynomials in the Light of Zero Order and Weak Type

SANJIB KUMAR DATTA 1 , TANMAY BISWAS 2 AND MANAB BISWAS 3

¹Department of Mathematics , University of Kalyani , Kalyani , Dist-Nadia , Pin-741235 , West Bengal , India. ²Rajbari , Rabindrapalli , R. N. Tagore Road P.O. Krishnagar , Dist.- Nadia , PIN-741101 , West Bengal , India. ³Barabilla High School , P.O. Haptiagach , Dist-Uttar Dinajpur , Pin-733202 , West Bengal , India.

Abstract

In this paper we investigate the comparative growth of composite entire or meromorphic functions and differential monomials , differential polynomials generated by one of the factors which improves some earlier results .

AMS Subject Classification (2010): 30D35, 30D30.

Keywords and phrases : Entire and meromorphic function , differential monomial differential polynomial , composition , growth , entire function of order zero, type, weak type .

1 Introduction, Definitions and Notations.

For any two transcendental entire functions $\,f$ and $\,g$ defined in the open complex plane $\,\mathbb{C}\,$, Clunie [4] proved that

$$\lim_{r \to \infty} \frac{T(r,fog)}{T(r,f)} = \infty \text{ and } \lim_{r \to \infty} \frac{T(r,fog)}{T(r,g)} = \infty$$

Singh [15] proved some comparative growth properties of $\log T(r,fog)$ and T(r,f). He also raised the problem of investigating the comparative growth of $\log T(r,fog)$ and T(r,g) which he was unable to solve. However, some results on the comparative growth of $\log T(r,fog)$ and T(r,g) are proved in [11].

Let f be a non-constant mereomorphic function defined in the open complex plane $\mathbb C$. Also let n_{0j}, n_{1j}, n_{kj} ($k \ge 1$) be non-negetive integers such that for each j, $\sum\limits_{i = 0}^k n_{ij} \ge 1$. We call $M_j[f] = A_j$ (f) $^{n_{0j}}$ ($f^{(1)}$) $^{n_{1j}}$ ($f^{(k)}$) $^{n_{kj}}$ where $T(r, A_j) = S(r, f)$ to be a differential monomial generated by f. The numbers $\gamma_{M_j} = \sum\limits_{i = 0}^k n_{ij}$ and $\Gamma_{M_j} = \sum\limits_{i = 0}^k (i+1)n_{ij}$ are called i = 0

respectively the degree and weight of $M_j[f]$ {[8],[14]} . The expression $P[f] = \sum_{j=1}^{S} M_j[f]$ is called a differential polynomial generated by f . The numbers $\gamma_P = \max_{1 \le j \le s} \gamma_{M_j}$ and $1 \le j \le s$ Γ_{M_j} are called respectively the degree and weight of P[f] {[8] , [14]} . Also we $1 \le j \le s$

call the numbers $\frac{\gamma_P}{1}=\min_{1\leq j\leq s}\gamma_{M_j}$ and k (the order of the highest derivative of f) the lower

degree and the order of P[f] respectively . If $\underline{\gamma_P} = \gamma_P$, P[f] is called a homogeneous differential polynomial . In the paper we further investigate the question of Singh [15] mentioned earlier and prove some new results relating to the comparative growths of composite entire or meromorphic functions and differential monomials , differential polynomials generated by one of the factors . We do not explain the standard notations and definitions of the theory of entire and meromorphic functions because those are available in [18] and [9] . Throughout the paper we consider only the non-constant differential polynomials and we denote by $P_0[f]$ a differential polynomial not containing f i.e. , for which $n_{0j} = 0$ for j = 1, 2, ... s . We consider only those P[f], $P_0[f]$ singularities of whose individual terms do not cancel each other . We also denote by M[f] a differential monomial generated by a transcendental meromorphic function f.

The following definitions are well known.

Definition 1 The order ρ_f and lower order λ_f of a meromorphic function f are defined as

$$\rho_f = \limsup_{r \to \infty} \frac{\log T(r, f)}{\log r} \text{ and } \lambda_f = \liminf_{r \to \infty} \frac{\log T(r, f)}{\log r}.$$

If f is entire, one can easily verify that

$$\rho_f = \limsup_{r \to \infty} \frac{\log^{[2]} M(r, f)}{\log r} \quad and \quad \lambda_f = \liminf_{r \to \infty} \frac{\log^{[2]} M(r, f)}{\log r},$$

where $\log^{[k]} x = \log (\log^{[k-1]} x)$ for k = 1, 2, 3, ... and $\log^{[0]} x = x$.

If $\rho_f < \infty$ then f is of finite order . Also $\rho_f = 0$ means that f is of order zero . In this connection Datta and Biswas [6] gave the following definition .

Definition 2 [6] Let f be a meromorphic function of order zero. Then the quantities ρ_f^{**} and λ_f^{**} of f are defined by:

$$\rho_f^{**} = \limsup_{r \to \infty} \frac{T(r,f)}{\log r} \text{ and } \lambda_f^{**} = \liminf_{r \to \infty} \frac{T(r,f)}{\log r}.$$

If f is an entire function then clearly

$$\rho_f^{**} = \limsup_{r \to \infty} \frac{\log M(r, f)}{\log r} \text{ and } \lambda_f^{**} = \liminf_{r \to \infty} \frac{\log M(r, f)}{\log r}.$$

Definition 3 The type σ_f and lower type $\overline{\sigma}_f$ of a meromorphic function f are defined as

$$\sigma_{\!f} = \limsup_{r \, \to \, \infty} \frac{T(r,\!f)}{r^{\rho_f}} \quad \text{and} \quad \overline{\sigma}_{\!f} \ = \liminf_{r \, \to \, \infty} \frac{T(r,\!f)}{r^{\rho_f}} \,, \ \ 0 < \rho_{\!f} < \infty \,.$$

When f is entire, it can be easily verified that

$$\sigma_f = \limsup_{r \to \infty} \frac{\log M(r,f)}{r^{\rho_f}} \quad \text{and} \quad \overline{\sigma}_f = \liminf_{r \to \infty} \frac{\log M(r,f)}{r^{\rho_f}} \,, \quad 0 < \rho_f < \infty \,.$$

Datta and Jha [5] gave the definition of weak type of a meromorphic function of finite positive lower order in the following way:

Definition 4 [5] The weak type τ_f of a meromorphic function f of finite positive lower order λ_f is defined by

$$\tau_f = \liminf_{r \to \infty} \frac{T(r, f)}{r^{\lambda_f}} \cdot$$

For entire f,

$$\tau_f = \liminf_{r \to \infty} \frac{\log M(r, f)}{r^{\lambda_f}}, 0 < \lambda_f < \infty.$$

Similarly one can define the growth indicator $\bar{\tau}_f$ of a meromorphic function f of finite positive lower order λ_f as

$$\bar{\tau_f} = \limsup_{r \to \infty} \frac{T(r, f)}{r^{\lambda_f}}$$

When f is entire, it can be easily verified that

$$\overline{\tau_f} = \limsup_{r \to \infty} \frac{\log M(r, f)}{r^{\lambda_f}}, 0 < \lambda_f < \infty.$$

Definition 5 Let "a" be a complex number, finite or infinite. The Nevanlinna's deficiency and the Valiron deficiency of "a" with respect to a meromorphic function f are defined as

$$\delta(a;f) = 1 - \limsup_{r \to \infty} \frac{N(r,a;f)}{T(r,f)} = \liminf_{r \to \infty} \frac{m(r,a;f)}{T(r,f)}$$

and

$$\Delta(a;f) = 1 - \liminf_{r \to \infty} \frac{N(r,a;f)}{T(r,f)} = \limsup_{r \to \infty} \frac{m(r,a;f)}{T(r,f)}.$$

Definition 6 The quantity $\Theta(a; f)$ of a meromorphic function f is defined as follows

$$\Theta(a; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, a; f)}{T(r, f)}.$$

Definition 7 [17] For $a \in \mathbb{C} \cup \{\infty\}$, we denote by $n(r, a; f \mid = 1)$, the number of simple zeros of f – a in $|z| \le r$. $N(r, a; f \mid = 1)$ is defined in terms of $n(r, a; f \mid = 1)$ in the usual way. We put

$$\delta_1(a;f) = 1 - \limsup_{r \to \infty} \frac{N(r,a;f|=1)}{T(r,f)},$$

the deficiency of 'a' corresponding to the simple a-points of f i.e., simple zeros of f - a.

Yang [16] proved that there exists at most a denumerable number of complex numbers $a \in \mathbb{C} \cup \{\infty\}$ for which $\delta_1(a;f) > 0$ and $\sum \delta_1(a;f) \leq 4$. $a \in \mathbb{C} \cup \{\infty\}$

Definition 8 [12] For $a \in \mathbb{C} \cup \{\infty\}$, let $n_p(r,a;f)$ denotes the number of zeros of f-a in $|z| \leq r$, where a zero of multiplicity < p is counted according to its multiplicity and a zero of multiplicity $\geq p$ is counted exactly p times; and $N_p(r,a;f)$ is defined in terms of $n_p(r,a;f)$ in the usual way. We define

$$\delta_p(a; f) = 1 - \limsup_{r \to \infty} \frac{N_p(r, a; f)}{T(r, f)}$$
.

Definition 9 [3] P[f] is said to be admissible if

- (i) P[f] is homogeneous, or
- (ii) P[f] is non homogeneous and m(r, f) = S(r, f).

2 Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 [1] If f is meromorphic and g is entire then for all sufficiently large values of r,

$$T(r, f \circ g) \le \{1 + o(1)\} \frac{T(r, g)}{\log M(r, g)} T(M(r, g), f).$$

Lemma 2 [2] Let f be meromorphic and g be entire and suppose that $0 < \mu < \rho_g \le \infty$. Then for a sequence of values of r tending to infinity,

$$T(r, f \circ g) \ge T(\exp(r^{\mu}), f)$$
.

Lemma 3 [10] Let f be meromorphic and g be entire such that $0 < \mu < \rho_g \le \infty$ and $\lambda_f > 0$. Then for a sequence of values of f tending to infinity,

$$T(r, f \circ g) > T(\exp(r^{\mu}), g)$$
.

Lemma 4 [7] Let f be a meromorphic function and g be an entire function such that $\lambda_g < \mu < \infty$ and $0 < \lambda_f \le \rho_f < \infty$. Then for a sequence of values of r tending to infinity,

$$T(r, f \circ g) < T(\exp(r^{\mu}), f)$$
.

Lemma 5 [7] Let f be a meromorphic function of finite order and g be an entire function with $0 < \lambda_g < \mu < \infty$. Then for a sequence of values of r tending to infinity,

$$T(r, fog) < T(\exp(r^{\mu}), g)$$
.

Lemma 6 [3] Let $P_0[f]$ be admissible. If f is of finite order or of non-zero lower order and

$$\sum_{a \neq \infty} \Theta(a; f) = 2 \text{ then}$$

$$\lim_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)} = \Gamma_{P_0[f]}.$$

Lemma 7 [3] Let f be either of finite order or of non-zero lower order such that $\Theta(\infty; f) =$

 $\sum_{\substack{a \neq \infty}} \delta_p(a;f) = 1 \text{ or } \delta(\infty;f) = \sum_{\substack{a \neq \infty}} \delta(a;f) = 1. \text{ Then for homogeneous } P_0[f],$

$$\lim_{r\to\infty} \frac{T(r, P_0[f])}{T(r,f)} = \gamma_{P_0[f]}.$$

Lemma 8 Let f be a meromorphic function of finite order or of non zero lower order. If $\sum \Theta(a;f)=2$, then the order (lower order) of homogeneous $P_0[f]$ is same as that of f. $a\neq\infty$ Also $\sigma_{P_0[f]}$, $\overline{\sigma}_{P_0[f]}$ and $\overline{\tau}_{P_0[f]}$ are $\Gamma_{P_0[f]}$ times that of f if f is of positive finite order.

Proof. By Lemma 6, $\lim_{r \to \infty} \frac{\log T(r, P_{\theta}[f])}{\log T(r, f)}$ exists and is equal to 1.

$$\begin{split} \rho_{P_0[f]} &= \limsup_{r \to \infty} \frac{\log T(r, P_0[f])}{\log r} \\ &= \limsup_{r \to \infty} \frac{\log T(r, f))}{\log r} \cdot \lim_{r \to \infty} \frac{\log T(r, P_0[f])}{\log T(r, f)} \\ &= \rho_f. \, 1 = \rho_f. \end{split}$$

In a similar manner, $\lambda_{P_0[f]} = \lambda_f$.

Again by Lemma 6,

$$\begin{split} \sigma_{P_0[f]} &= \limsup_{r \to \infty} \frac{T(r, P_0[f])}{r^{\rho} P_0[f]} \\ &= \lim_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)} \cdot \limsup_{r \to \infty} \frac{T(r, f)}{r^{\rho} f} = \Gamma_{P_0[f]} \cdot \sigma_f \,. \end{split}$$

Similarly $\overline{\sigma}_{P_0[f]} = \Gamma_{P_0} . \overline{\sigma}_f$.

Also

$$\tau_{P_0[f]} = \underset{r \to \infty}{\operatorname{liminf}} \frac{T(r, P_0[f])}{r^{\lambda_{P_0[f]}}}$$

$$= \lim_{r \to \infty} \frac{T(r, P_0[f])}{T(r, f)} \cdot \liminf_{r \to \infty} \frac{T(r, f)}{r^{\lambda_f}} = \Gamma_{P_0} \cdot \tau_f.$$

Analogously $\overline{\tau}_{P_0[f]} = \Gamma_{P_0[f]}.\overline{\tau}_f$.

This proves the lemma.

Lemma 9 Let f be a meromorphic function of finite order or of non zero lower order such that $\Theta(\infty;f) = \sum_{\substack{\alpha \neq \infty}} \delta_p(\alpha;f) = 1$. Then the order (lower order) of homogeneous $P_0[f]$ and f are same. Also $\sigma_{P_0[f]}$, $\overline{\sigma}_{P_0[f]}$ and $\overline{\tau}_{P_0[f]}$ are $\gamma_{P_0[f]}$ times that of f when f is of finite positive order.

We omit the proof of the lemma because it can be carried out in the line of Lemma 8 and with the help of Lemma 7.

In a similar manner we can state the following lemma without proof.

Lemma 10 Let f be a meromorphic function of finite order or of non-zero lower order such that $\delta(\infty;f) = \sum_{\substack{\alpha \neq \infty}} \delta(\alpha;f) = 1$. Then for every homogeneous $P_0[f]$ the order (lower order) of $P_0[f]$ is same as that of f. Also the $\sigma_{P_0[f]}, \overline{\sigma}_{P_0[f]}, \tau_{P_0[f]}$ and $\overline{\tau}_{P_0[f]}$ are $\gamma_{P_0[f]}$ times that of f when f is of finite positive order.

Lemma 11 [13] Let f be a transcendental meromorphic function of finite order or of non-zero lower order and $\sum \delta_1(a;f) \leq 4$, then $a \in \mathbb{C} \cup \{\infty\}$

$$\lim_{r\to\infty}\frac{T(r,M[f])}{T(r,f)}=\Gamma_M-(\Gamma_M-\gamma_M)\,\Theta(\infty\,;f)\,,$$

where

$$\Theta(\infty; f) = 1 - \limsup_{r \to \infty} \frac{\overline{N}(r, f)}{T(r, f)}$$

Lemma 12 If f be a transcendental meromorphic function of finite order or of non-zero lower order and $\sum \delta_1(a;f) \leq 4$, then the order and lower order of M[f] are same as $a \in \mathbb{C} \cup \{\infty\}$ those of f. Also $\sigma_{M[f]}$, $\overline{\sigma}_{M[f]}$, $\sigma_{M[f]}$ and $\overline{\tau}_{M[f]}$ are $\{\Gamma_M - (\Gamma_M - \gamma_M) \Theta(\infty; f)\}$ times that of

f when f is of finite positive order.

We omit the proof of the lemma $\,$ because it can be carried out in the line of Lemma $\,$ 8 and with the help of Lemma $\,$ 11 $\,$.

3 Theorems.

In this section we present the main results of the paper.

Theorem 1 Let f be a meromorphic function and g be an entire function such that (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $\lambda_f = \lambda_g$, (iii) $\tau_f > 0$, (iv) $\overline{\tau}_g < \infty$ and (v) $\lambda_f < \rho_g \le \infty$. Also let $\sum_{g \in \mathcal{G}} \Theta(a; f) = 2$. Then $a \ne \infty$

$$\frac{\max\left\{\lambda_{f}, \lambda_{g}\right\}}{\Gamma_{P_{0}[f]}.\overline{\tau}_{f}} \leq \limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_{0}[f])} \leq \rho_{f} \frac{\overline{\tau}_{g}}{\Gamma_{P_{0}[f]} \tau_{f}}.$$

Proof. Let us suppose that $0 < \varepsilon < \min \{ \lambda_f, \Gamma_{P_0[f]}, \tau_f \}$.

Since $\lambda_f < \rho_g$, in view of Lemma 2 we obtain for a sequence of values of r tending to infinity that

$$\log T(r, f \circ g) \ge \log T(\exp(r^{\lambda_f}), f)$$

$$i.e., \log T(r, f \circ g) \ge (\lambda_f - \varepsilon) \log \exp(r^{\lambda_f})$$

$$i.e., \log T(r, f \circ g) \ge (\lambda_f - \varepsilon) r^{\lambda_f}.$$
(1)

Again by Lemma 8, we have for all sufficiently large values of r,

$$T(r, P_0[f]) \le (\overline{\tau}_{P_0[f]} + \varepsilon) r^{\lambda_{P_0[f]}}$$

i.e.,
$$T(r, P_0[f]) \leq (\Gamma_{P_0[f]} \overline{\tau}_f + \varepsilon) r^{\lambda_f}$$
.

(2)

Therefore from (1) and (2) it follows for a sequence of values of r tending to infinity that

$$\frac{\log T(r, f \circ g)}{T(r, P_0[f])} \ge \frac{(\lambda_f - \varepsilon) r^{\lambda_f}}{(\Gamma_{P_0[f]} \overline{\tau}_f + \varepsilon) r^{\lambda_f}}$$

i.e.,
$$\limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \ge \frac{\lambda_f}{\Gamma_{P_0[f]} \overline{\tau}_f}.$$
 (3)

Similarly in view of Lemma 3 we get that

$$\limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \ge \frac{\lambda_g}{\Gamma_{P_0[f]} \overline{\tau}_f}.$$
 (4)

Again we have from Lemma 1 for all sufficiently large values of r,

$$T(r, f \circ g) \le \{1 + o(1)\} T(M(r, g), f)$$

i.e.,
$$\log T(r, f \circ g) \le (\rho_f + \varepsilon) \log M(r, g) + O(1)$$

$$i.e. \ , \ \underset{r \to \infty}{\operatorname{liminf}} \frac{\log T(r,fog)}{T(r\,,P_0[\,f\,])} \leq \left(\,\rho_f + \varepsilon\right) \underset{r \to \infty}{\operatorname{liminf}} \frac{\log M(r,g)}{T(r\,,P_0[\,f\,])} \cdot \\$$

(5)

Also for all sufficiently large values of *r*

$$\log M(r,g) \le (\overline{\tau}_q + \varepsilon) r^{\lambda_g}. \tag{6}$$

Again in view of Lemma 8 we obtain for a sequence of values of r tending to infinity that

$$T(r, P_0[f] \ge (\tau_{P_0[f]} - \varepsilon) r^{\lambda_{P_0[f]}}$$

i.e.,
$$T(r, P_0[f] \ge (\Gamma_{P_0[f]} \tau_f - \varepsilon) r^{\lambda_f}$$
.

(7)

Since $\lambda_f = \lambda_g$ we get from (6) and (7) for a sequence of values of r tending to infinity that

$$\liminf_{r \to \infty} \frac{\log M(r,g)}{T(r, P_0[f])} \le \frac{\overline{\tau}_g}{\Gamma_{P_0} \tau_f}$$
(8)

Since $\varepsilon(>0)$ is arbitrary, from (6) and (8) we obtain that

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \rho_f \frac{\overline{\tau}_g}{\Gamma_{P_0[f]} \tau_f} \tag{9}$$

Thus the theorem follows from (3), (4) and (9).

Remark 1 If we take " $\Theta(\infty;f) = \sum_{\substack{a \neq \infty \\ a \neq \infty}} \delta_p(a;f) = 1$ or $\delta(\infty;f) = \sum_{\substack{a \neq \infty \\ a \neq \infty}} \delta(a;f) = 1$ " instead of " $\sum_{\substack{a \neq \infty \\ one\ can\ easily\ prove\ that}} \Theta(a;f) = 2$ " in Theorem 1 and the other conditions remain the same then

$$\frac{\max\left\{\lambda_{f}, \lambda_{g}\right\}}{\gamma_{P_{0}[f]}.\overline{\tau}_{f}} \leq \limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_{0}[f])} \leq \rho_{f} \frac{\overline{\tau}_{g}}{\gamma_{P_{0}[f]} \tau_{f}}.$$

In the line of Theorem 1 and with the help of Lemma $12\ we$ may state the following theorem without proof.

Theorem 2 Let f be a transcendental meromorphic function and g be an entire function such that (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $\lambda_f = \lambda_g$, (iii) $\tau_f > 0$, (iv) $\overline{\tau}_g < \infty$ and (v) $\lambda_f < \rho_g$. Also let $\sum \delta_1(a;f) \le 4$. Then $a \in \mathbb{C} \cup \{\infty\}$

$$\frac{\max\left\{\lambda_{f}, \lambda_{g}\right\}}{\Gamma_{M} - (\Gamma_{M} - \gamma_{M}) \Theta(\infty; f).\overline{\tau}_{f}} \leq \limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[f])}$$
$$\leq \rho_{f} \frac{\overline{\tau}_{g}}{\Gamma_{M} - (\Gamma_{M} - \gamma_{M}) \Theta(\infty; f) \tau_{f}}$$

In the line of Theorem 1 we may also state the following theorem without proof.

Theorem 3 Let f be a meromorphic function and g be an entire function with (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $0 < \lambda_g < \rho_g < \infty$, (iii) $0 < \overline{\tau}_g \le \sigma_g < \infty$, and (iv) $0 < \overline{\tau}_g \le \tau_g < \infty$. Also let

$$\Theta(\infty\,;g)=\sum\limits_{a\,\neq\,\infty}\delta_p(a\,;g)=1$$
 or $\delta(\infty\,;g)=\sum\limits_{a\,\neq\,\infty}\delta(a\,;g)=1$. Then

$$\frac{\max\left\{\lambda_{f}, \lambda_{g}\right\}}{\gamma_{P_{0}[g]}.\overline{\tau}_{g}} \leq \limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_{0}[g])} \leq \frac{\rho_{f}}{\gamma_{P_{0}[g]}} \min\left\{\frac{\sigma_{g}}{\overline{\sigma}_{g}}, \frac{\overline{\tau}_{g}}{\tau_{g}}\right\}$$

Remark 2 In addition to the conditions of Theorem 3 if f be a meromorphic function with $0 < \lambda_f^{**} \le \rho_f^{**} < \infty$ then by Definition 2 and similar process of Theorem 1 one can verify that

$$\frac{\lambda_{f}^{**}}{\gamma_{P_{0}[g]}.\overline{\tau}_{g}} \leq \limsup_{r \to \infty} \frac{T(r,fog)}{T(r,P_{0}[g])} \leq \frac{\{1+o(1)\}\,\rho_{f}^{**}}{\gamma_{P_{0}[g]}} \min\left\{\frac{\sigma_{g}}{\overline{\sigma}_{g}},\frac{\overline{\tau}_{g}}{\tau_{g}}\right\}.$$

Remark 3 Under the same condition of Theorem 3 , if we take " $\sum_{a \neq \infty} \Theta(a; f) = 2$ " instead

of " $\Theta(\infty\,;g)=\sum\limits_{\substack{a\,\neq\,\infty}}\delta_p(a\,;g)=1$ or $\delta(\infty\,;g)=\sum\limits_{\substack{a\,\neq\,\infty}}\delta(a\,;g)=1$ ", then the following result holds:

$$\frac{1}{\Gamma_{P_0[g]}.\overline{\tau}_g} \max\{\lambda_f, \ \lambda_g\} \leq \limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[g])} \leq \frac{\rho_f}{\Gamma_{P_0[g]}} \min\left\{\frac{\sigma_g}{\overline{\sigma}_g}, \frac{\overline{\tau}_g}{\tau_g}\right\}.$$

Remark 4 In Remark 2 if we take $0 < \lambda_f^{**} \le \rho_f^{**} < \infty$ instead of $0 < \lambda_f \le \rho_f < \infty$ and the other conditions remain the same then it can be shown that

$$\frac{\lambda_{f}^{**}}{\Gamma_{P_{0}\left[g\right]}.\overline{\tau}_{g}} \leq \limsup_{r \to \infty} \frac{T(r,fog)}{T(r,P_{0}\left[g\right])} \leq \frac{\left\{1+o(1)\right\}\rho_{f}^{**}}{\Gamma_{P_{0}\left[g\right]}} \min \left\{\frac{\sigma_{g}}{\overline{\sigma}_{g}},\frac{\overline{\tau}_{g}}{\tau_{g}}\right\} \cdot$$

Theorem 4 Let f be a meromorphic function and g be a transcendental entire function such that (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $0 < \lambda_g \le \rho_g < \infty$, (iii) $0 < \overline{\sigma}_g \le \sigma_g < \infty$, (iv) $0 < \overline{\tau}_g \le \tau_g < \infty$. Also let $\sum \delta_1(a;f) \le 4$. Then $a \in \mathbb{C} \cup \{\infty\}$

$$\begin{split} \frac{\max\left\{\lambda_{f},\lambda_{g}\right\}}{\left\{\Gamma_{M}-\left(\Gamma_{M}-\gamma_{M}\right)\,\Theta\left(\infty\;;g\right)\right\}.\overline{\tau}_{g}} &\leq \limsup_{r\to\infty}\frac{\log T(r,f\circ g)}{T(r,M[\,g\,])} \leq \\ &\frac{\rho_{f}\,\min\left\{\frac{\sigma_{g}}{\overline{\sigma}_{g}}\;,\;\frac{\overline{\tau}_{g}}{\tau_{g}}\right\}}{\left\{\Gamma_{M}-\left(\Gamma_{M}-\gamma_{M}\right)\;\Theta\left(\infty\;;g\right)\right\}}\,. \end{split}$$

The proof is omitted because it can be carried out in the line of Theorem 3 and with the help of Lemma 12.

Remark 5 Under the same conditions of Theorem 4 if f be a meromorphic function with order zero and $0 < \lambda_f^{**} \le \rho_f^{**} < \infty$ then with the help of Definition 2 and similar process of Theorem 4 one can easily verify that

$$\begin{split} \frac{\lambda_{f}^{**}}{\left\{\Gamma_{M} - \left(\Gamma_{M} - \gamma_{M}\right) \Theta\left(\infty;g\right)\right\} . \overline{\tau}_{g}} &\leq \limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[g])} \leq \\ &\frac{\left\{1 + o(1)\right\} \rho_{f}^{**} \min\left\{\frac{\sigma_{g}}{\overline{\sigma}_{g}} , \frac{\overline{\tau}_{g}}{\tau_{g}}\right\}}{\left\{\Gamma_{M} - \left(\Gamma_{M} - \gamma_{M}\right) \Theta\left(\infty;g\right)\right\}} \,. \end{split}$$

Theorem 5 Let f be a meromorphic function and g be an entire function such that (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $\rho_f = \rho_g$, (iii) $\sigma_g < \infty$, (iv) $\overline{\sigma}_f > 0$ and $\Theta(\infty; f) = \sum_{\substack{a \ne \infty}} \delta_p(a; f) = 1$ or $\delta(\infty; f) = \sum_{\substack{a \ne \infty}} \delta(a; f) = 1$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \frac{1}{\gamma_{P_0[f]}} \min \left\{ \rho_f \frac{\sigma_g}{\sigma_f}, \rho_f \frac{\overline{\sigma}_g}{\overline{\sigma}_f}, \lambda_f \frac{\sigma_g}{\overline{\sigma}_f} \right\}$$

Proof. As $T(r,g) \le \log^+ M(r,g)$, we have from Lemma 1 for a sequence of values of r tending to infinity that

$$T(r, f \circ g) \le \{1 + o(1)\} T(M(r, g), f)$$

i. e.,
$$\log T(r, f \circ g) \le (\lambda_f + \varepsilon) \log M(r, g) + O(1)$$

$$i.e., \underset{r \to \infty}{\lim \inf} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \left(\lambda_f + \varepsilon\right) \underset{r \to \infty}{\lim \inf} \frac{\log M(r, g)}{T(r, P_0[f])} \ \cdot \tag{10}$$

Now from the definition of type it follows for all sufficiently large values of r

$$\log M(r,g) \le (\sigma_g + \varepsilon) r^{\rho_g}. \tag{11}$$

Also from the definition of lower type we obtain for a sequence of values of r tending to infinity that

$$\log M(r,g) \le (\overline{\sigma}_g + \varepsilon) r^{\rho_g}. \tag{12}$$

Again by Lemma 9 and Lemma 10, we have for all sufficiently large values of r that $T(r, P_0[f]) \ge (\overline{\sigma}_{P_0[f]} - \varepsilon) r^{\rho_{P_0[f]}}$

i.e.,
$$T(r, P_0[f]) \ge (\gamma_{P_0[f]} \overline{\sigma}_f - \varepsilon) r^{\rho_f}$$
. (13)

Similarly with the help of Lemma 9 and Lemma 10 we obtain for a sequence of values of r tending to infinity that

$$T(r, P_0[f]) \le (\sigma_{P_0[f]} - \varepsilon) r^{\rho_{P_0[f]}}$$
i.e., $T(r, P_0[f]) \le (\gamma_{P_0[f]} \sigma_f - \varepsilon) r^{\rho_f}$. (14)

Since $\rho_f = \rho_g$ we get from (11) and (14) for a sequence of values of r tending to infinity that

$$\liminf_{r \to \infty} \frac{\log M(r,g)}{T(r, P_0[f])} \le \frac{\sigma_g}{\gamma_{P_0[f]} \sigma_f} .$$
(15)

Similarly from (12) and (13) it follows for a sequence of values of r tending to infinity that

$$\liminf_{r \to \infty} \frac{\log M(r,g)}{T(r, P_0[f])} \le \frac{\overline{\sigma}_g}{\gamma_{P_0[f]} \overline{\sigma}_f}$$
(16)

Also we obtain from (11) and (13) for all sufficiently large values of r,

$$\liminf_{r \to \infty} \frac{\log M(r,g)}{T(r, P_0[f])} \le \frac{\sigma_g}{\gamma_{P_0[f]} \overline{\sigma_f}}.$$
(17)

Since ε (> 0) is arbitrary, from (5) and (15) we obtain that

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \rho_f \frac{\sigma_g}{\gamma_{P_0[f]} \sigma_f}.$$
(18)

Similarly from (5) and (16) it follows that

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \rho_f \frac{\overline{\sigma}_g}{\gamma_{P_0[f]} \overline{\sigma}_f} .$$
(19)

Also we get from (10) and (17) that

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \lambda_f \frac{\sigma_g}{\gamma_{P_0[f]} \overline{\sigma}_f} \quad (20)$$

Thus the theorem follows from (18), (19) and (20).

Remark 6 Theorem 5 remains true with $\Gamma_{P_0[f]}$ instead of $\gamma_{P_0[f]}$ if we replace the condition $\Theta(\infty;f) = \sum_{\substack{\alpha \neq \infty}} \delta_p(\alpha;f) = 1$ or $\delta(\infty;f) = \sum_{\substack{\alpha \neq \infty}} \delta(\alpha;f) = 1$ by $\sum_{\substack{\alpha \neq \infty}} \Theta(\alpha;f) = 2$ and the other conditions remain the same .

Theorem 6 Let f be a transcendental meromorphic function and g be an entire function such that (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $\rho_f = \rho_g$, (iii) $\sigma_g < \infty$, (iv) $\overline{\sigma}_f > 0$ and $\sum_{\substack{a \in \mathbb{C} \cup \{\infty\}}} \delta_1(a;f) \le a \in \mathbb{C} \cup \{\infty\}$

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[f])} \leq \frac{1}{\{\Gamma_{M} - (\Gamma_{M} - \gamma_{M}) \ \Theta(\infty; f)\}} \min \left\{ \rho_{f} \frac{\sigma_{g}}{\sigma_{f}}, \rho_{f} \frac{\overline{\sigma}_{g}}{\overline{\sigma}_{f}}, \lambda_{f} \frac{\sigma_{g}}{\overline{\sigma}_{f}} \right\}.$$

The proof of the theorem can be established in the line of Theorem 6 and with the help of Lemma 12 and therefore is omitted .

In the line of Theorem 5 we may state the following theorem without proof.

Theorem 7 Let f be a meromorphic function and g be an entire function such that (i) $0 < \lambda_f < \infty$, (ii) $\sigma_g < \infty$, (iii) $\overline{\sigma}_f > 0$, and (iv) $\sum_{a \neq \infty} \Theta(a;g) = 2$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[g])} \le \frac{\lambda_f}{\Gamma_{P_0[g]}} \cdot \frac{\sigma_g}{\overline{\sigma}_g}.$$

Remark 7 In addition to the conditions of Theorem 7 if f be a meromorphic function with $0 < \lambda_f^{**} < \infty$ then one can easily verify that

$$\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r, P_0[g])} \leq \frac{\{1 + o(1)\} \lambda_f^{**}}{\Gamma_{P_0[g]}} \cdot \frac{\sigma_g}{\overline{\sigma}_g}.$$

Remark 8 Theorem 7 and Remark 7 remain true with $\gamma_{P_0[g]}$ instead of $\Gamma_{P_0[g]}$ if we replace the condition $\sum_{\substack{\alpha \neq \infty}} \Theta(\alpha;g) = 2$ by $\Theta(\infty;g) = \sum_{\substack{\alpha \neq \infty}} \delta_p(\alpha;g) = 1$ or $\delta(\infty;g) = \sum_{\substack{\alpha \neq \infty}} \delta(\alpha;g) = 1$ and the other conditions are same . $\alpha \neq \infty$

In the line of Theorem $\,7\,$ and in view of Lemma $\,12\,$ we may state the following theorem without proof .

Theorem 8 Let f be a meromorphic function and g be a transcendental entire function such that (i) $0 < \lambda_f < \infty$ (ii) $\overline{\sigma}_g < \infty$, (iii) $\overline{\sigma}_f > 0$ and $\sum_{a \in \mathbb{C}} \delta_1(a; f) \leq 4$. Then $a \in \mathbb{C} \cup \{\infty\}$

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[g])} \le \frac{\lambda_f}{\{\Gamma_M - (\Gamma_M - \gamma_M) \mid \Theta(\infty; g)\}} \cdot \frac{\sigma_g}{\overline{\sigma}_g}.$$

Remark 9 In addition the conditions of Theorem 8 if f be a meromorphic function with $0 < \lambda_f^{**} < \infty$ then one can easily verify that

$$\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r, M[g])} \leq \frac{\left\{1 + o(1)\right\} \lambda_f^{**}}{\left\{\Gamma_M - \left(\Gamma_M - \gamma_M\right) \right. \left.\Theta(\infty; g)\right\}} \cdot \frac{\sigma_g}{\overline{\sigma}_g} \cdot$$

Theorem 9 Let f be a meromorphic function and g be an entire function such that $0 < \lambda_g < \rho_f$, $0 < \lambda_f \le \rho_f < \infty$, $\overline{\sigma}_f > 0$ and $\sum_{\substack{a \neq \infty}} \Theta(a; f) = 2$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \min \frac{1}{\Gamma_{P_0[f]}} \left\{ \frac{\rho_f}{\overline{\sigma}_f}, \frac{\rho_g}{\overline{\sigma}_f} \right\}.$$

Proof. Since $\lambda_g < \rho_f$, in view of Lemma 4 we obtain for a sequence of values of r tending to infinity that

$$\log T(r, f \circ g) < \log T\{\exp(r^{\rho_f}), f\}$$

$$i.e., \log T(r, f \circ g) < (\rho_f + \varepsilon) \log \exp(r^{\rho_f})$$

$$i.e., \log T(r, f \circ g) < (\rho_f + \varepsilon) r^{\rho_f}.$$
(21)

Again by Lemma 8, we have for all sufficiently large values of r,

$$T(r, P_0[f]) \ge (\overline{\sigma}_{P_0[f]} - \varepsilon) r^{\rho_{P_0[f]}}$$
i.e., $T(r, P_0[f]) \ge (\Gamma_{P_0[f]} \overline{\sigma}_f - \varepsilon) r^{\rho_f}$. (22)

Therefore from (21) and (22) it follows for a sequence of values of r tending to infinity

$$\frac{\log T(r, f \circ g)}{T(r, P_0[f])} \leq \frac{(\rho_f + \varepsilon) r^{\rho_f}}{(\Gamma_{P_0[f]} \overline{\sigma}_f - \varepsilon) r^{\rho_f}}$$
i.e.,
$$\lim_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \leq \frac{\rho_f}{\Gamma_{P_0[f]} \overline{\sigma}_f}.$$
(23)

Similarly in view of Lemma 5 we get that

$$\limsup_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \frac{\rho_g}{\Gamma_{P_0[f]} \overline{\sigma}_f}.$$
 (24)

Thus the theorem follows from (23) and (24).

Remark 10 Theorem 9 remains true with $\gamma_{P_0[f]}$ instead of $\Gamma_{P_0[f]}$ if we replace the condition $\sum_{\alpha \neq \infty} \Theta(\alpha; f) = 2$ by $\Theta(\infty; f) = \sum_{\alpha \neq \infty} \delta_p(\alpha; f) = 1$ or $\delta(\infty; f) = \sum_{\alpha \neq \infty} \delta(\alpha; f) = 1$ and $\alpha \neq \infty$ the other conditions remain the same.

Theorem 10 Let f be a meromorphic function and g be an entire function such that $0 < \lambda_g < \rho_f$, $0 < \lambda_f \le \rho_f < \infty$, $\overline{\sigma}_g > 0$ and $\Theta(\infty; g) = \sum_{\substack{a \neq \infty}} \delta_p(a; g) = 1$ or $\delta(\infty; g) = \sum_{\substack{a \neq \infty}} \delta(a; g) = 1$. Then $a \neq \infty$

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[g])} \leq \min \ \frac{1}{\gamma_{P_0[f]}} \left\{ \frac{\rho_f}{\overline{\sigma}_g}, \frac{\rho_g}{\overline{\sigma}_g} \right\}.$$

Theorem 10 can be carried out in the line of Theorem 9 and therefore its proof is omitted . **Remark 11** if we take $\sum_{\substack{a \neq \infty}} \Theta(a\,;g) = 2$ instead of $\Theta(\infty\,;g) = \sum_{\substack{a \neq \infty}} \delta_p(a\,;g) = 1$ or $\delta(\infty\,;g) = \sum_{\substack{a \neq \infty}} \delta(a\,;g) = 1$ in Theorem 10 and the other conditions remain the same then

Theorem 10 remains valid with $\Gamma_{P_0[g]}$ instead of $\gamma_{P_0[g]}$.

The following two theorems can be carried out in view of Lemma 14 and in the similar way of Theorem 9 and Theorem 10 respectively. Hence the proof is omitted.

Theorem 11 Let f be a meromorphic function and g be an entire function such that $0 < \lambda_g < \rho_f$, $0 < \lambda_f \le \rho_f < \infty$, $\overline{\sigma}_f > 0$ and $\sum_{\substack{\alpha \in \mathbb{C} \cup \{\infty\}}} \delta_1(\alpha; f) = 4$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[f])} \leq \min \frac{1}{\left\{\Gamma_M - (\Gamma_M - \gamma_M) \ \Theta(\infty; g)\right\}} \left\{ \frac{\rho_f}{\overline{\sigma}_f}, \frac{\rho_g}{\overline{\sigma}_f} \right\}.$$

Theorem 12 Let f be a meromorphic function and g be a transcendental entire function such that $0 < \lambda_g < \rho_f$, $0 < \lambda_f \le \rho_f < \infty$, $\overline{\sigma}_g > 0$ and $\sum_{a \in \mathbb{C}} \delta_1(a;g) \le 4$. Then $a \in \mathbb{C} \cup \{\infty\}$

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[g])} \leq \min \frac{1}{\left\{ \Gamma_{M} - (\Gamma_{M} - \gamma_{M}) \ \Theta(\infty; g) \right\}} \left\{ \frac{\rho_{f}}{\overline{\sigma}_{g}}, \frac{\rho_{g}}{\overline{\sigma}_{g}} \right\}.$$

Using the notion of weak type, we may state the following theorem without proof:

Theorem 13 Let f be a meromorphic function and g be an entire function such that (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $\lambda_f = \lambda_g$, (iii) $\overline{\tau}_g < \infty$, (iv) $\tau_f > 0$ and $\Theta(\infty; f) = \sum_{\substack{a \neq \infty}} \delta_p(a; f) = 1$ or $\delta(\infty; f) = \sum_{\substack{a \neq \infty}} \delta(a; f) = 1$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \frac{1}{\gamma_{P_0[f]}} \min \left\{ \rho_f \frac{\tau_g}{\tau_f}, \rho_f \frac{\overline{\tau}_g}{\overline{\tau}_f}, \lambda_f \frac{\overline{\tau}_g}{\tau_f} \right\}.$$

Remark 12 if we take $\sum_{\substack{a \neq \infty \\ a \neq \infty}} \Theta(a;f) = 2$ instead of $\Theta(\infty;f) = \sum_{\substack{a \neq \infty \\ a \neq \infty}} \delta_p(a;f) = 1$ or $\delta(\infty;f) = \sum_{\substack{a \neq \infty \\ a \neq \infty}} \delta(a;f) = 1$ in Theorem 13 and the other conditions remain the same then $a \neq \infty$ Theorem 13 remain valid with $\Gamma_{P_0[f]}$ instead of $\gamma_{P_0[f]}$.

Theorem 14 Let f be a transcendental meromorphic function and g be an entire function such that (i) $0 < \lambda_f \le \rho_f < \infty$, (ii) $\lambda_f = \lambda_g$, (iii) $\overline{\tau}_g < \infty$, (iv) $\tau_f > 0$ and $\sum_{\substack{G \in \mathbb{C} \cup \{\infty\}}} \delta_1(a;f) \le 4$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[f])} \leq \frac{1}{\{\Gamma_M - (\Gamma_M - \gamma_M) \ \Theta(\infty; f)\}} \min \left\{ \ \rho_f \frac{\tau_g}{\tau_f}, \rho_f \frac{\overline{\tau}_g}{\overline{\tau}_f}, \lambda_f \frac{\overline{\tau}_g}{\tau_f} \right\}.$$

The proof is omitted as it can be carried out in the line of $\,$ Theorem 13 and in view of Lemma 12 .

In the line of Theorem 7 we may state the following theorem without proof.

Theorem 15 Let f be a meromorphic function and g be an entire function such that (i) $0 < \lambda_f < \infty$, (ii) $\overline{\tau}_g < \infty$, (iii) $\tau_f > 0$ and $\Theta(\infty;g) = \sum_{\substack{a \neq \infty}} \delta_p(a;g) = 1$ or $\delta(\infty;g) = \sum_{\substack{a \neq \infty}} \delta(a;g) = 1$. Then $a \neq \infty$

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[g])} \le \frac{\lambda_f}{\gamma_{P_0[g]}} \cdot \frac{\overline{\tau}_g}{\tau_g} \cdot$$

Remark 13 if we take $\sum\limits_{\substack{a \neq \infty}} \Theta(a;g) = 2$ instead of $\Theta(\infty;g) = \sum\limits_{\substack{a \neq \infty}} \delta_p(a;g) = 1$ or $\delta(\infty;g) = \sum\limits_{\substack{a \neq \infty}} \delta(a;g) = 1$ in Theorem 15 and the other conditions remain the same then $a \neq \infty$ Theorem 15 is still valid with $\Gamma_{P_0[g]}$ instead of $\gamma_{P_0[g]}$.

Remark 14 In addition to the conditions of Theorem 15 if f be a meromorphic function with $0 < \lambda_f^{**} < \infty$ then one can easily verify that

$$\liminf_{r \to \infty} \frac{T(r,fog)}{T(r,P_0[g])} \le \frac{\{1+o(1)\}\lambda_f^{**}}{\gamma_{P_0[g]}} \cdot \frac{\overline{\tau}_g}{\tau_g}.$$

The following theorem can be carried out in the line of Theorem 15 and in view of Lemma 12:

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[g])} \le \frac{\lambda_f}{\{\Gamma_M - (\Gamma_M - \gamma_M) \mid \Theta(\infty; g)\}} \cdot \frac{\overline{\tau}_g}{\tau_g}$$

Remark 15 In addition to the conditions of Theorem 16 if f be a meromorphic function with $0 < \lambda_f^{**} < \infty$ then one can easily verify that

$$\liminf_{r \to \infty} \frac{T(r, f \circ g)}{T(r, M[g])} \leq \frac{\{1 + o(1)\} \lambda_f^{**}}{\{\Gamma_M - (\Gamma_M - \gamma_M) \ \Theta(\infty; g)\}} \cdot \frac{\overline{\tau}_g}{\tau_g} \cdot$$

Theorem 17 Let f be a meromorphic function and g be an entire function such that $0 < \lambda_g < \lambda_f$, $0 < \lambda_f \le \rho_f < \infty$, $\tau_f > 0$ and $\Theta(\infty; f) = \sum_{\substack{a \neq \infty}} \delta_p(a; f) = 1$ or $\delta(\infty; f) = \sum_{\substack{a \neq \infty}} \delta(a; f) = 1$. Then $a \neq \infty$

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[f])} \le \frac{1}{\gamma_{P_0[f]}} \min \left\{ \frac{\rho_f}{\tau_f}, \frac{\rho_g}{\tau_f} \right\}.$$

The proof of the Theorem is omitted because it can be carried out in the line of Theorem 9 and using the notion of weak type.

Remark 16 if we take $\sum_{\substack{a \neq \infty \\ a \neq \infty}} \Theta(a;f) = 2$ instead of $\Theta(\infty;f) = \sum_{\substack{a \neq \infty \\ a \neq \infty}} \delta_p(a;f) = 1$ or $\delta(\infty;f) = \sum_{\substack{a \neq \infty \\ a \neq \infty}} \delta(a;f) = 1$ in Theorem 17 and the other conditions remain the same then $\alpha \neq \infty$ Theorem 17 is also valid with $\Gamma_{P_0[f]}$ instead of $\gamma_{P_0[f]}$.

Theorem 18 Let f be a meromorphic function and g be an entire function such that $0 < \lambda_g < \lambda_f$, $0 < \lambda_f \le \rho_f < \infty$, $\tau_f > 0$ and $\sum_{\alpha \in \mathbb{C}} \delta_1(\alpha; f) = 4$. Then $\alpha \in \mathbb{C} \cup \{\infty\}$

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[f])} \le \frac{\min\left\{\frac{\rho_f}{\tau_f}, \frac{\rho_g}{\tau_f}\right\}}{\left\{\Gamma_M - (\Gamma_M - \gamma_M) \ \Theta(\infty; f)\right\}} .$$

We omit the proof of Theorem 18 because it can be carried out in the line of Theorem 17.

Theorem 19 Let f be a meromorphic function and g be an entire function such that $0 < \lambda_g < \lambda_f$, $0 < \lambda_f \le \rho_f < \infty$, $\tau_g > 0$ and $\Theta(\infty; g) = \sum_{\substack{a \neq \infty}} \delta_p(a; g) = 1$ or $\delta(\infty; g) = \sum_{\substack{a \neq \infty}} \delta(a; g) = 1$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, P_0[g])} \le \frac{1}{\gamma_{P_0[g]}} \min \left\{ \frac{\rho_f}{\tau_g} , \frac{\rho_g}{\tau_g} \right\}.$$

The proof of Theorem 19 is omitted because it can be carried out in the line of Theorem 17.

Remark 17 if we take $\sum_{\substack{a \neq \infty}} \Theta(a;g) = 2$ instead of $\Theta(\infty;g) = \sum_{\substack{a \neq \infty}} \delta_p(a;g) = 1$ or $\delta(\infty;g) = \sum_{\substack{a \neq \infty}} \delta(a;g) = 1$ in Theorem 19 and the other conditions remain the same then $\alpha \neq \infty$ Theorem 19 remain valid with $\Gamma_{P_0[g]}$ instead of $\gamma_{P_0[g]}$.

Theorem 20 Let f be a meromorphic function and g be an entire function with $0 < \lambda_g < \lambda_f$, $0 < \lambda_f \le \rho_f < \infty$, $\tau_g > 0$ and $\sum_{\substack{a \in \mathbb{C} \cup \{\infty\}}} \delta_1(a;g) \le 4$. Then

$$\liminf_{r \to \infty} \frac{\log T(r, f \circ g)}{T(r, M[g])} \leq \frac{\min \left\{ \frac{\rho_f}{\tau_g}, \frac{\rho_g}{\tau_g} \right\}}{\left\{ \Gamma_M - (\Gamma_M - \gamma_M) \right\} \Theta(\infty; g) \right\}} .$$

The proof is omitted.

References

- [1] Bergweiler, W.: On the Nevanlinna characterestic of a composite function , Complex variables , Vol. 10(1988) , pp. 225 236 .
- [2] Bergweiler, W.: On the growth rate of composite meromorphic functions , Complex Variables, Vol. 14 (1990); pp. 187 196.
- [3] Bhattacharjee, N. and Lahiri, I. : Growth and value distribution of differential polynomials , Bull. Math. Soc. Sc. Math. Roumanie Tome , Vol. 39(87) , No. 1-4(1996) , pp. 85-104 .
- [4] Clunie, J.: The Composition of Entire and Meromorphic Functions , Mathematical essays dedicated to A. J. Macintyre , Ohio University Press 1970 , pp. 75 92 .
- [5] Datt , S.K. and Jha , A. : On the weak type of $\,$ meromorphic functions , Int. Math. Forum , Vol. 4, No. 12 (2009), $\,$ pp. 569 579 .
- [6] Datta, S.K. and Biswas, T. : On the definition of a meromorphic function of order zero , Int. Mat. Forum , Vol. 4, No. 37(2009), pp.1851-1861 .
- [7] Datta, S.K. and Biswas, T.: On a result of Bergweiler, Int. J. Pure Appl. Math., Vol. 51, No. 1(2009), pp. 33 37.
- [8] Doeringer, W.: Exceptional values of differential polynomials , Pacific J. Math., Vol. 98, No. 1(1982) , pp. 55-62 .
- [9] Hayman, W.K.: Meromorphic Functions, The Clarendon Press, Oxpord, 1964.
- [10] Lahiri, I. and Sharma, D.K. : Growth of composite entire and meromorphic functions , Indian J. Pure Appl. Math., Vol. 26, No. 5(1995), pp. 451- 458.
- [11] Lahari, I.: Growth of composite integral functions, Indian J. Pure Appl. Math., Vol. 20, No. 9 (September 1989), pp. 899 907.
- [12] Lahiri, I.: Deficiencies of differential polynomials , Indian J. Pure Appl. Math., Vol. 30, No. 5(1999), pp. 435 447 .
- [13] Lahari, I. and Datta, S.K.: Growth and value distribution of differential monomials, Indian J. Pure Appl. Math., Vol. 32, No. 12 (December 2001), pp. 1831 1841.
- [14] Sons, L.R.: Defficiencies of monomials, Math. Z, Vol. 111(1969), pp. 53 68.
- [15] Singh, A.P.: Growth of composite entire functions, Kodai Math. J., Vol. 8(1985), pp. 99 102.
- 16] Yang, L.: Value distribution theory and new research on it, Science Press, Beijing (1982).
- [17] Yi, H.X.: On a result of Singh, Bull. Austral. Math. Soc., Vol. 41 (1990), pp. 417 420.
- [18] Valiron, G.: Lectures on the General Theory of Integral Functions , Chelsea Publishing Company , 1949 .