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Abstract: In this paper we study the Hankel type convolution operators on the space of even and 

entire functions and on Schwartz distribution spaces. We characterize the Hankel type 

convolution operators as those ones that commute with Hankel type translations and with a 

Bessel type operator. Also we prove that the Hankel type convolution operators are hypercyclic 

and chaotic on the spaces under consideration. 
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1. Introduction: The Hankel integral transformation appears taking different forms in the 

literature (see [21,25,35]). Here we define the Hankel type transformation 𝛼 ,𝛽  through [21] 

𝛼 ,𝛽 𝜙   𝑥 =    𝑥𝑦 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑥𝑦  𝜙  𝑦  𝑦4𝛼  𝑑𝑦  ,    𝑥 ∈   0, ∞  ,

∞

0

 

where 𝐽𝛼−𝛽  is the Bessel type function of the first kind and order 𝛼 − 𝛽.  Throughout this paper 

we will always assume that the order  𝛼 − 𝛽  is greater that −
1

2
 ∙  If 𝑛 ∈  ℕ then Hankel 

transform  𝑛−2 2  of order  𝑛 − 2 2  appears when it calculates the Euclidean Fourier 

transform of functions defined on ℜ𝑛  having radial symmetry. 

 The convolution operation by the Hankel type transform 𝛼 ,𝛽  - transformation was 

investigated by Hirschman [22], Haimo [20] and Cholewinski [11]. 

 To simply we denote by 𝐿1,𝛼 ,𝛽  the space 𝐿1   0, ∞ , 𝑥4𝛼𝑑𝑥 , where  𝑑𝑥 represents the 

Labesgue measure on  0, ∞ ,  that is a measurable function 𝑓 is in 𝐿1,𝛼 ,𝛽  if and only if 

  𝑓  𝑥4𝛼  𝑑𝑥 < ∞ ∙

∞

0
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If 𝑓, 𝑔 ∈  𝐿1,𝛼 ,𝛽  , the Hankel type convolution 𝑓 #𝛼 ,𝛽  𝑔 of 𝑓 and 𝑔 order 𝛼 − 𝛽 is defined by 

 𝑓 #𝛼 ,𝛽  𝑔   𝑥 =   𝑓 𝑦   𝜏𝑥  𝑔𝛼 ,𝛽     𝑦  
𝑦4𝛼

2𝛼−𝛽Γ 3𝛼 + 𝛽 
 𝑑𝑦  𝑎. 𝑒.  𝑥 ∈   0, ∞ ,

∞

0

 

where the Hankel type translation operator 𝜏𝑥𝛼 ,𝛽  , 𝑥 ∈   0, ∞  is given by  

 𝜏𝑥  𝑔𝛼 ,𝛽    𝑦 =   𝑔  𝑧  𝐷𝛼 ,𝛽   𝑥, 𝑦, 𝑧  

∞

0

𝑧4𝛼

2𝛼−𝛽Γ 3𝛼 + 𝛽 
 𝑑𝑧  𝑎. 𝑒.  𝑦 ∈   0, ∞  ∙ 

Also 𝜏𝑜𝑔𝛼 ,𝛽 = 𝑔 . Here 𝑎. 𝑒.  is understood to be with respect to the Lebesgue measure and the 

Kernel 𝐷𝛼 ,𝛽  is defined by  

𝐷𝛼 ,𝛽   𝑥, 𝑦, 𝑧 =   2𝛼−𝛽  Γ 3𝛼 + 𝛽  
2

  𝑥𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑥𝑡   𝑦𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑦𝑡 

∞

0

 

                                     ×   𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑡  𝑡4𝛼  𝑑𝑡,   𝑥, 𝑦, 𝑧 𝜖  0, ∞  ∙ 

The Hankel type transformation satisfies the following interchange formula with respect to #𝛼 ,𝛽  

convolution [22, Theorem 2.d] 

𝛼 ,𝛽   𝑓 #𝛼 ,𝛽  𝑔 =  𝛼 ,𝛽   𝑓  𝛼 ,𝛽   𝑔 ,   𝑓, 𝑔 ∈  𝐿1,𝛼 ,𝛽  ∙ 

In the sequel, since any confusion is unlinked, we write #, 𝜏𝑥  , 𝑥 ∈   0, ∞ , and 𝐷 instead of 

#𝛼 ,𝛽  , 𝜏𝑥𝛼 ,𝛽   , 𝑥 ∈   0, ∞  and 𝐷𝛼 ,𝛽  respectively. Zemanian [33-35] studied the Hankel 

transformation on distribution spaces. We considered, for the Hankel transformation, the 

following form  

𝐻𝛼 ,𝛽   𝜙   𝑥 =    𝑥𝑦 𝛼+𝛽  𝐽𝛼−𝛽   𝑥𝑦  𝜙  𝑦  𝑑𝑦   ,   𝑥 𝜖  0, ∞  ∙

∞

0

 

It is clear that 𝛼 ,𝛽  𝑎𝑛𝑑 𝐻𝛼 ,𝛽  are closely connected. 

In [1], it was defined that space ℋ consists of all those complex and smooth functions 𝜙 on 

 0, ∞  such that, for every 𝑚, 𝑛 ∈  ℕ,  the quantity 

𝜌𝑚 ,𝑛   𝜙 =  
𝑆𝑢𝑝

𝑥 𝜖  0, ∞ 
  1 + 𝑥2 𝑚    

1

𝑥
𝐷 

𝑛

 𝜙 𝑥  < ∞  

ℋ is equipped with the topology generated by the family  𝜌𝑚 ,𝑛  
𝑚 ,𝑛  𝜖ℕ

 of seminorms. 

Thus ℋ is a Frechet space and 𝛼 ,𝛽  is an automorphism of ℋ [1, Sat 5]. The Hankel 

transformation is defined on ℋ′, the dual space of ℋ, by transposition 
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Let 𝑎 > 0 ∙ According to [1], the space 𝐵𝑎  consists of all the functions 𝜙 ∈  ℋ such that 

𝜙  𝑥 = 0, 𝑥 ≥ 𝑎.  𝐵𝑎  is a complete sub-space of ℋ ∙ Moreover  𝐵𝑎  is continuously contained 

in  𝐵𝑏  , provided that 0 < 𝑎 < 𝑏 < ∞ ∙ The union space 𝐵 =   𝐵𝑎
𝑎>0  is equipped with the 

inductive topology. The Hankel type transform 𝛼 ,𝛽  𝐵𝑎  of 𝐵𝑎  , 𝑎 > 0 can be characterized by 

using[34,Theorem1]. 

According to [16, Corollary 4.8], the space ℋ coincides with the space 𝑆𝑒𝑣𝑒𝑛  of all the even 

functions in the Schwartz Space S. Moreover, for every 𝑎 > 0,  the space 𝐵𝑎  agrees with the 

space 𝔇𝑎  considered by Trimeche [29] and that is constituted by all the functions 𝜙 ∈ 𝑆𝑒𝑣𝑒𝑛  

such that 𝜙  𝑥 = 0,    𝑥  ≤ 𝑎 ∙  Then the space 𝔇∗ =   𝔇𝑎  𝑎>0 [29] coincides with the space B.      

 As in [29], ℇ∗ denotes the space of all those complex valued, smooth and even functions 

defined on ℝ. ℇ∗ is endowed with the usual topology and it coincides with the space 𝑥−𝜇−
1

2 ℇ𝜇 ,  

where ℇ𝜇  is the space introduced in [5] as it was defined as follows. 

A complex and smooth function 𝑓 defined on  0, ∞  is in ℇ𝜇 if and only if for every 𝑘 ∈  ℕ, 

there exists the following limit  

lim
𝑥→0+

 
1

𝑥
 
𝑑

𝑑𝑥
 

𝑘

 𝑓 𝑥 ∙ 

The convolution for the Hankel type 𝐻𝛼 ,𝛽  transformation can be defined by making a 

straightforward modification in the convolution # defined by Hirschman [22]. The study of the 

distributional Hankel convolution was started by de Sousa-Pinto [26] who considered only the 

order 𝜇 = 0 ∙ In a series of papers by Betancor and Marrero [5,6,30,23] have investigated the 

Hankel convolution on the Zemanian’s distribution spaces. More recently Waphare [31] have 

defined the Hankel type convolution of distributions with exponential growth. 

 In this paper we study Hankel type convolution operators on the Schwartz distribution 

spaces and on the space ℋ𝑒   ℂ  of even and entire functions. In section 2, we define the Hankel 

type transformation on the dual space ℋ𝑒   ℂ ′ of ℋ𝑒   ℂ  . The Hankel type convolution 

operators on ℋ𝑒   ℂ ,  ℇ∗ and their duals are studied in Section 3. We characterize the linear and 

continuous mappings from ℋ𝑒   ℂ  into itself that commute with the Hankel type translation 𝜏𝑧 , 

for each 𝑧 ∈  ℂ, as the Hankel convolution operators defined by the functional in ℋ𝑒   ℂ ′ . The 

corresponding result on the space 𝔇∗ was obtained in Section 4. 
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 Suppose now that 𝑋 is a topological linear space and T is a continuous linear operator 

from X into itself An element 𝑥 ∈ 𝑋 is called hypercyclic for T when the set  𝑇𝑛𝑥 ∶ 𝑛 ∈  ℕ  is 

dense in X. The importance of hypercyclic vectors derives from the study of closed invariant 

subsets. The paper of Grosse-Erdman [19] is an excellent survey of the state of art concerning 

hypercyclic operators, that is operators having hypercyclic vectors. According to Bonet [9] (See 

also Devaney [14] and Banks et al. [2]), we say that T is a chaotic operators if T satisfies the 

following two conditions: 

(i) T is topologically transitive, that is for every pair of open sets 𝑈 and 𝑉 of X there exists  

      𝑛 ∈  ℕ for which 𝑇𝑛   𝑈  ∩ 𝑉 ≠  𝜙 . 

(ii) The set of periodic vectors of T is dense in X. As usual, we say that a vector 𝑥 𝜖 𝑋 is periodic   

      for T when there exists 𝑛 ∈  ℕ such that 𝑇𝑛𝑥 = 𝑥 ∙ 

 Note that each hypercyclic operator is topologically transitive. 

Godefroy and Shapiro [18] extended the celebrated classical results of Birkhoff [8] and Maclane 

[24] proving that every partial differential operator that is not a scalar multiple of the identity 

operator is hypercyclic and Chaotic on 𝐶∞ ℝ𝑛 ∙ Bonet [9] established that the usual convolution 

operators that are not scalar multiples of the Dirac 𝛿 − functional are hyper cyclic and Chaotic 

on the Beurling ultradifferentiable functions. 

 In sections 3 and 4, we establish that the Hankel type convolution operators defined by 

functional in ℇ∗
′  are hypercyclic and Chaotic on ℇ∗ and 𝔇∗

′  , when on 𝔇∗
′   the strong topology is 

considered. 

 Throughout this paper we always denote by C a positive constant that can change from a 

line to the other one. We need to use some properties of the Bessel functions that can be 

encountered in the extensive monograph of Watson [32] 

2. The Hankel type transformation on the space 𝓗𝒆  ℂ ′ the dual of 𝓗𝒆  ℂ ∶    

By ℋ𝑒   ℂ  we denote the space of the even and entire functions. We equip ℋ𝑒   ℂ  as usual, with 

the topology of the uniform convergence on the compact subsets of  ℂ . If we define, for every 

𝑛 ∈  ℕ, the norm  

𝛾𝑛   𝑓 =  𝑆𝑢𝑝
 𝑧 ≤ 𝑛+1

 𝑓 𝑧   ,   𝑓 ∈ ℋ𝑒   ℂ  , 

the system  𝛾𝑛  𝑛  𝜖  ℕ generates the topology of ℋ𝑒   ℂ  . Thus ℋ𝑒   ℂ  is a Frechet space [27, 

p.231]. 
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It is simple exercise that ℋ𝑒   ℂ  is continuously contained in the space ℰ∗,  that is ℋ𝑒   ℂ  is a 

subspace of ℰ∗ and the topology of ℋ𝑒   ℂ  is finer than the one induced in ℋ𝑒   ℂ  by ℇ∗ . 

 The dual space of ℋ𝑒   ℂ  is represented by ℋ𝑒   ℂ ′ .  It is clear that for every 𝑧 𝜖  ℂ , the 

function 

𝑓𝑧 𝑡 =  2𝛼−𝛽  Γ  3𝛼 + 𝛽   𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑡  , 𝑡 ∈   ℂ   is in ℋ𝑒   ℂ  . 

We define the Hankel type transform 𝛼 ,𝛽 𝑇  of 𝑇 ∈  ℋ𝑒   ℂ ′ by  

𝛼 ,𝛽   𝑇   𝑧 =  2𝛼−𝛽  Γ 3𝛼 + 𝛽  < 𝑇 𝑡  ,  𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑡  > , 𝑧 ∈  ℂ ∙ 

Note that since for every  ∈  ℂ , the series 

 𝑧𝑡 − 𝛼−𝛽 𝐽𝛼−𝛽   𝑧𝑡 =   
 −1 𝑘

22𝑘+𝛼−𝛽  𝑘!  Γ  𝛼 − 𝛽 + 𝑘 + 1 
  𝑡𝑧 2𝑘  ,   𝑡 ∈ 

∞

𝑘=0

ℂ , 

converges in ℋ𝑒   ℂ  , we can write that, for every 𝑇 ∈  ℋ𝑒   ℂ ′ , 

𝛼 ,𝛽   𝑇   𝑧 =  Γ 3𝛼 + 𝛽   
 −1 𝑘

22𝑘  𝑘!  Γ 𝛼 − 𝛽 + 𝑘 + 1 
 𝑧2𝑘 < 𝑇 𝑡 ,   𝑡2𝑘 > ,   𝑧 𝜖 

∞

𝑘=0

ℂ ∙ 

Thus, 𝛼 ,𝛽   𝑇  ∈  ℋ𝑒   ℂ  provided that 𝑇 ∈  ℋ𝑒   ℂ ′ ∙  

From [1], it is clear that the Hankel type transformation on the space ℇ∗
′  is contained in ℋ𝑒   ℂ ′ ∙ 

According to [5, proposition 4.6], the definition given for the Hankel type transformation on 

ℋ𝑒   ℂ ′  extends the definition of the Hankel type transformation on ℇ∗
′ ∙ 

 We now characterize the functions in ℋ𝑒   ℂ  that belong to the image 𝛼 ,𝛽   ℋ𝑒   ℂ ′  of 

ℋ𝑒   ℂ ′  by 𝛼 ,𝛽  ∙ Our next result, that is a Hankel version of the one presented in [28, p. 474-

475] for the Fourier transformation, shows that 𝛼 ,𝛽   ℋ𝑒   ℂ ′  is actually independent of 𝛼 − 𝛽 ∙ 

Proposition 2.1: Let 𝑓 be 𝑎 function in  ℋ𝑒   ℂ . Then the following assertions are equivalent. 

(i) There exists 𝑇 ∈   ℋ𝑒   ℂ ′  such that 𝑓 = 𝛼 ,𝛽   𝑇 ∙ 

(ii) The function f is of exponential type, that exist 𝐴, 𝐵 > 0 for which  𝑓 𝑧   ≤ 𝐵 𝑒𝐴 𝑧 , 𝑧 ∈

 ℂ ∙ 

Proof: Suppose firstly that 𝑓 =  𝛼 ,𝛽   𝑇 , for some 𝑇 ∈   ℋ𝑒   ℂ ′  ∙ Since 𝑇 ∈   ℋ𝑒   ℂ ′ ,  

there exists C > 0 and 𝑟 ∈  ℕ such that 

  𝑇, 𝑔   ≤ 𝐶 
𝑆𝑢𝑝

 𝑧 ≤ 𝑟
  𝑔 𝑧  , 𝑔 ∈  ℋ𝑒   ℂ ∙ 

Hence, by using the Hahn-Banach theorem, duality arguments and by arguing as in [27, p.231] 

(See also [6]), we can find a complex measure 𝜆 having bounded support such that 
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 𝑇, 𝑔 =   𝑔  𝑧  𝑑 𝜆  𝑧 ,   𝑔 ∈  ℋ𝑒   ℂ  ∙ 

ℂ

 

In particular, it has 

𝛼 ,𝛽   𝑇   𝑧 =  2𝛼−𝛽  Γ 3𝛼 + 𝛽    𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑡  𝑑𝜆 𝑡 ,

ℂ

  𝑧 ∈  ℂ ∙ 

According to  17,  5.3. 𝑏  , we can write 

 𝛼 ,𝛽   𝑇   𝑧   ≤ 𝐶 𝑒𝑎 𝑧  , 𝑧 ∈  ℂ , 

where 𝑎 > 0 is such that the support of 𝜆 is contained in the disc  𝐷  0, 𝑎  centered in the origin 

and of radius a. 

 Hence 𝛼 ,𝛽   𝑇  is an even and entire function of exponential type. Assume now 𝑓 is a 

function in ℋ𝑒   ℂ  of exponential type, that is for certain 𝐴, 𝐵 > 0,  𝑓 𝑧   ≤ 𝐵 𝑒𝐴 𝑧 , 𝑧 ∈  ℂ  ∙ 

We put 

𝑓  𝑧 =   𝑎𝑘  
𝑧2𝑘

22𝑘  𝑘!  Γ  𝛼 − 𝛽 + 𝑘 + 1 
   , 𝑧 ∈  ℂ ∙  

∞

𝑘=0

 

Note that thus 𝑎𝑘 =   ∆𝛼 ,𝛽
𝑘  𝑓   0  ,  for every 𝑘 ∈  ℕ, where ∆𝛼 ,𝛽  denotes the Bessel type 

operator 𝑧4𝛽−2  𝐷 𝑧4𝛼  𝐷 ∙ 

According to the Cauchy integral formula, it follows that  

 𝑎𝑘 

22𝑘  𝑘!  Γ 𝛼 − 𝛽 + 𝑘 + 1 
 ≤ 𝐶 𝑒𝐴𝑅  𝑅−2𝑘      ,   𝑘 ∈  ℕ 𝑎𝑛𝑑 𝑅 > 0 ∙ 

Hence, Stirling’s formula implies that, for every  𝑘 ∈  ℕ and 𝑅 > 0, 

 𝑎𝑘  ≤ 𝐶 22𝑘   𝛼 − 𝛽 + 𝑘 𝛼−𝛽+𝑘  𝑒− 𝛼−𝛽 −𝑘   2𝜋  𝛼 − 𝛽 + 𝑘  𝑘𝑘  𝑒−𝑘   2𝜋𝑘 𝑒𝐴𝑅  𝑅−2𝑘  . 

Then, by taking, for every 𝑘 ∈  ℕ −   0 , 𝑅 =  
2𝑘

𝐴
  , it follows  

                                                𝑎𝑘  ≤ 𝐶  
𝛼−𝛽+𝑘

𝑘
 

𝑘

  𝛼 − 𝛽 + 𝑘 2𝛼   𝑘 𝐴2𝑘  ≤ 𝐶 𝑀2𝑘                    (2.1) 

for some  𝑀 > 0 ∙ 

Suppose now 𝛾 is a closed simple path having the origin in its interior. For every 𝑚 𝜖 ℕ, we have 

that  

1

2𝜋𝑖
    𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑡 

𝛾

 𝑡−2𝑚−1 𝑑𝑡 
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=
1

2𝜋𝑖
  

 −1 𝑘  𝑧2𝑘

22𝑘+𝛼−𝛽  𝑘!  Γ 𝛼 − 𝛽 + 𝑘 + 1 
  𝑡2𝑘−2𝑚−1  𝑑𝑡

𝛾

∞

𝑘=0

 

=  
 −1 𝑚  𝑧2𝑚

22𝑚+𝛼−𝛽  𝑚!  Γ 𝛼 − 𝛽 + 𝑚 + 1 
 ∙ 

Hence, since by (2.1) the series  

 𝑎𝑚   −1 𝑚  𝑧−2𝑚−1 

∞

𝑚=0

 

converges for every 𝑧 ∈  ℂ with  𝑧  > 𝑀 , if 𝛾 represents the circle with centre 0 and radius 2M 

then  

𝑓 𝑧 =  
1

2𝜋𝑖
   𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽 𝑧𝑡  2𝛼−𝛽    −1 𝑚  𝑎𝑚  𝑡−2𝑚−1  𝑑𝑡,   ∞

𝑚=0𝛾
 𝑧 ∈  ℂ ∙                 (2.2)  

We now define the functional T on ℋ𝑒   ℂ  by 

 𝑇, 𝑔 =  
1

2𝜋𝑖
   𝑔 𝑡   

(−1)𝑚

Γ 3𝛼 + 𝛽 
 𝑎𝑚  𝑡−2𝑚−1  𝑑𝑡 ,   𝑔 ∈ 

∞

𝑚=0𝛾

ℋ𝑒   ℂ  ∙ 

Thus 𝑇 ∈  ℋ𝑒   ℂ ′ ∙ Indeed, for every 𝑔 ∈  ℋ𝑒   ℂ  , from (2.1), it follows that 

  𝑇, 𝑔   ≤ 𝐶 Sup
 𝑧 ≤2𝑀

 𝑔 𝑧    , 𝑔 ∈  ℋ𝑒   ℂ  ∙  

Moreover (2.2) says that 𝛼 ,𝛽   𝑇 = 1 ∙ 

Thus proof is completed. 

Remark 1: According to proposition 2.1, the Hankel type transformation of an element of  

ℋ𝑒   ℂ ′ is always actually the Hankel type transform of a complex measure on  ℂ  having 

compact support. The Hankel type transforms of measures on  0, ∞  has been studied, for 

instance in [13]. 

Remark 2: Proposition 2.1 can be seen as an extension of [5, Theorem 4.9] where Paley-Wiener 

type theorem for Hankel type transforms of the elements of ℇ∗
′  were established. 

 We now establish a uniqueness theorem for Hankel type transforms on ℋ𝑒   ℂ ′ .  Our 

next result will be also useful in the sequel. 

Proposition 2.2: If  𝑉 is a subset of  ℂ  having adherence points, then the linear space 

ℳ𝜈 = 𝑠𝑝𝑎𝑛   . 𝑧 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧 ∶ 𝑧 ∈ 𝑉  

generated by the functions  𝑧.  − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧  , 𝑧 ∈ 𝑉 , is dense in ℋ𝑒   ℂ  ∙ 

In particular, if 𝑇 ∈  ℋ𝑒   ℂ ′  and 𝛼 ,𝛽   𝑇 = 0 then T=0. 
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Proof: Suppose that 𝑇 ∈  ℋ𝑒   ℂ ′  and 𝑇 = 0 on ℳ𝜈 ∙ There exists a complex measure 𝜆 having 

compact support [27, p.23] such that  

 𝑇, 𝑓 =   𝑓 𝑡  𝑑𝜆  𝑡    ,   𝑓 ∈ 

𝐶

ℋ𝑒   ℂ  ∙ 

The function 𝐹 =  𝛼 ,𝛽   𝑇  is even and entire. Moreover since 𝑇 = 0 on ℳ𝜈  , 𝐹 = 0 on V. 

Hence 𝐹 = 0 on  ℂ ∙ 

Differentiating under the integral sign we obtain 

∆𝛼 ,𝛽
𝑘  𝐹 𝑧 =    −𝑡2 𝑘   𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑡  𝑑𝜆  𝑡  ,   

ℂ

 𝑘 ∈  ℕ  𝑎𝑛𝑑 𝑧 ∈  ℂ , 

where ∆𝛼 ,𝛽  represents the Bessel type operator 𝑧4𝛽−2  𝐷 𝑧4𝛼  𝐷 ∙ Hence for every 𝑘 ∈  ℕ,   

∆𝛼 ,𝛽
𝑘  𝐹 0 =  2𝛼−𝛽  Γ 3𝛼 + 𝛽    −1 𝑘  𝑡2𝑘  𝑑𝜆 𝑡 

ℂ

 

                                         =   −1 𝑘  2𝛼−𝛽  Γ  3𝛼 + 𝛽  < 𝑇 𝑡 , 𝑡2𝑘  > = 0. 

Then  𝑇, 𝑓 = 0 for every 𝑓 ∈  ℋ𝑒   ℂ  ∙ 

Proof will be completed by using Hahn-Banach theorem. 

3. Hankel type translation and Hankel type convolution on the spaces 𝓗𝒆  ℂ  and ℇ∗ and 

their duals : 

We start this section by studying the Hankel type translation operator on the space ℋ𝑒   ℂ  ∙ 

Following [12, p.7], it can be established that for every 𝑛 ∈  ℕ ,   

𝜏𝑥   𝑡2𝑛   𝑦 =    
𝑛
𝑘
  

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 
 

𝑛

𝑘=0

𝑥2 𝑛−𝑘  𝑦2𝑘 ,  

𝑥, 𝑦 ∈   0,  ∞  ∙ 

Proof of (3.1) may be found in [4].                                                                                            (3.1) 

 Let 𝑓 ∈  ℋ𝑒   ℂ  and assume that 

𝑓  𝑧 =   𝑎𝑘  𝑧2𝑘  ,   ∞
𝑘=0 𝑧 ∈  ℂ  ,  where 𝑎𝑘  ∈  ℂ , 𝑘 ∈  ℕ ∙ For every 𝑥, 𝑦 ∈   0,   ∞ ,  we can 

write 

 𝜏𝑥𝑓   𝑦 =   𝐷  𝑥, 𝑦, 𝑧    𝑎𝑛  𝑧2𝑛

∞

𝑛=0

  
𝑧4𝛼

2𝛼−𝛽  Γ 3α + β 
 𝑑𝑧

𝑥+𝑦

 𝑥−𝑦 
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            =   𝑎𝑛   𝐷  𝑥, 𝑦, 𝑧  𝑧2𝑛  

𝑥+𝑦

 𝑥−𝑦 

∞

𝑛=0

𝑧4𝛼

2𝛼−𝛽  Γ 3α + β 
 𝑑𝑧 

                                               =   𝑎𝑛    
𝑛
𝑘
  

Γ 𝑛+3𝛼+𝛽  Γ 3𝛼+𝛽 

Γ 𝑛−𝑘+3𝛼+𝛽  Γ 𝑘+3𝛼 +𝛽 
  𝑥2 𝑛−𝑘  𝑦2𝑘𝑛

𝑘=0
∞
𝑛=0  . 

We now define the Hankel type translate 𝜏𝑧𝑓 of 𝑓 ∈  ℋ𝑒   ℂ  by  

 𝜏𝑧𝑓   𝑡 =   𝑎𝑛    
𝑛
𝑘
  

Γ 𝑛+3𝛼+𝛽  Γ 3𝛼+𝛽 

Γ 𝑛−𝑘+3𝛼+𝛽  Γ 𝑘+3𝛼+𝛽 
 𝑧2 𝑛−𝑘  𝑡2𝑘  ,   𝑧,   𝑡 ∈  ℂ .𝑛

𝑘=0
∞
𝑛=0                  (3.2) 

Note that, for every 𝑧, 𝑡 ∈  ℂ,  

  𝑎𝑛     
𝑛
𝑘
  

𝑛

𝑘=0

∞

𝑛=0

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 
  𝑧 2 𝑛−𝑘   𝑡 2𝑘  

=   𝐷   𝑧 ,  𝑡 , 𝑥     𝑎𝑛   𝑥2𝑛

∞

𝑛=0

  
𝑥4𝛼

2𝛼−𝛽  Γ 3𝛼 + 𝛽 
 𝑑𝑥 ∙

 𝑧 + 𝑡 

  𝑧 − 𝑡  

 

Hence the series defining 𝜏𝑧𝑓 converges uniformly on each compact subset of ℂ ∙ We can 

interchange the order of summation to obtain that 

 𝜏𝑧𝑓   𝑡 =   
Γ 3𝛼 + 𝛽 

Γ 𝑘 + 3𝛼 + 𝛽 
 𝑡2𝑘    

𝑛
𝑘
  𝑧2 𝑛−𝑘  𝑎𝑛  

Γ 𝑛 + 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽 

∞

𝑛=𝑘

 ,   𝑧, 𝑡 𝜖 ℂ .

∞

𝑘=0

 

Thus we prove that 𝜏𝑧𝑓 is in ℋ𝑒   ℂ , for every 𝑧 𝜖 ℂ .  

Proposition 3.1: (i) For every  𝜖 ℂ , the Hankel type translation 𝜏𝑧  defines continuous linear 

mapping from ℋ𝑒   ℂ  into itself. 

(ii) Let 𝑓 ∈  ℋ𝑒   ℂ  .  Then the (nonlinear) mapping 𝐹𝑓 defined by 

𝐹𝑓 ∶  ℂ →  ℋ𝑒   ℂ   

𝑧 →  𝜏𝑧𝑓 ,   

is continuous from ℂ into ℋ𝑒   ℂ . 

Proof: (i) Let  𝜖 ℂ . For every 𝑓 ∈  ℋ𝑒   ℂ ,  𝜏𝑧𝑓 is also in ℋ𝑒   ℂ . Suppose now that  𝑓𝜈  𝜈𝜖ℕ is a 

sequence in ℋ𝑒   ℂ  such that 𝑓𝜈 → 𝑓, as 𝜈 → ∞ in ℋ𝑒   ℂ  and 𝜏𝑧𝑓𝜈 → 𝑔, as 𝜈 →  ∞,  in ℋ𝑒   ℂ .  

                Since  ℋ𝑒   ℂ  is continuously contained in ℰ∗,  𝑓𝜈  → 𝑓, as 𝜈 → ∞ in ℰ∗ . Then, by [29, 

(2), 2] we can write  

 𝜏𝑧𝜈   𝑦
2𝑛   𝑡 −  𝜏𝑧0

 𝑦2𝑛  𝑡   ≤  𝜏 𝑧𝜈    𝑦
2𝑛    𝑡  + 𝜏 𝑧0  𝑦

2𝑛    𝑡   

                                                                      ≤   𝐷   𝑧𝜈  ,  𝑡 , 𝑦  𝑦2𝑛  
𝑦4𝛼

2𝛼−𝛽Γ 3𝛼 + 𝛽 
 𝑑𝑦

𝑐

0
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                                                                      +  𝐷   𝑧0 ,  𝑡 , 𝑦  𝑦2𝑛  
𝑦4𝛼

2𝛼−𝛽Γ 3𝛼 + 𝛽 
 𝑑𝑦 

𝑐

0

 

                                                            ≤ 2 𝑐2𝑛  , 𝜈 ∈  ℕ −   0  and  𝑡  ≤ 𝑎,  where 

𝑐 = 𝑎 + 𝑏. 

 Hence, if 𝑓  𝑧 =   𝑎𝑛  𝑧2𝑛 ,   𝑧 𝜖 ℂ,∞
𝑛=0   then for every 𝜖 < 0, there exists 𝑛0  ∈  ℕ 

such that 

  𝑎𝑛   𝜏𝑧𝜈
 𝑦2𝑛  𝑡 − 𝜏𝑧0

 𝑦2𝑛  𝑡  

∞

𝑛=𝑛0

 ≤ 2   𝑎𝑛   𝑐2𝑛 < 𝜖 ,

∞

𝑛=𝑛0

 

for 𝜈 𝜖 ℕ −   0  and  𝑡 ≤ 𝑎 . 

Moreover it is clear that 

 𝑎𝑛  𝜏𝑧𝜈
  𝑦2𝑛  𝑡  

∞

𝑛=0

 

=   𝑎𝑛

𝑛0−1

𝑛=0

   
𝑛
𝑘
  

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ  𝑘 + 3𝛼 + 𝛽 
 𝑧𝜈

2 𝑛−𝑘  𝑡2𝑘

   𝑎𝑛

𝑛0−1

𝑛=0

 

𝑛

𝑘=0

𝜏𝑧0
  𝑦2𝑛   𝑡 , 

as  𝜈 → ∞, uniformly in  𝑡  ≤ 𝑎. 

               Thus we can conclude that 𝜏𝑧𝜈  𝑓 →  𝜏𝑧0
𝑓  as 𝜈 → ∞, uniformly in the disc 𝐷  0, 𝑏  with 

center in the origin and radius b, and the proof is finished. 

     Proposition 3.1 (i) allows us to define the Hankel type convolution 𝑇#𝑓 of 𝑓 ∈

 ℋ𝑒   ℂ ′ and 𝑓 ∈  ℋ𝑒   ℂ  as follows: 

 𝑇#𝑓   𝑧 =   𝑇, 𝜏𝑧𝑓  , 𝑧 ∈  ℂ. 

Note that Proposition 3.1, (ii) implies that 𝑇#𝑓 is a continuous function on ℂ, for every 𝑇 ∈

 ℋ𝑒   ℂ ′  and 𝑓 ∈  ℋ𝑒   ℂ .  Moreover, as we will prove in the following, 𝑇#𝑓 is in ℋ𝑒   ℂ , for 

each 𝑇 ∈  ℋ𝑒   ℂ ′ and 𝑓 ∈  ℋ𝑒   ℂ . 

Proposition 3.2: Let 𝑇 ∈  ℋ𝑒   ℂ ′. Then the mapping 𝐹𝑇  defined by 𝐹𝑇   𝑓 = 𝑇#𝑓 , 𝑓 ∈

 ℋ𝑒   ℂ , is a continuous linear mapping from ℋ𝑒   ℂ  into itself. 

Proof: Let 𝑓 ∈  ℋ𝑒   ℂ  and 𝑧 ∈  ℂ .  Assume that 

𝑓 𝑡 =   𝑎𝑛  𝑡2𝑛 ,   

∞

𝑛=0

 𝑡 ∈  ℂ . 
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According to (3.2) and by taking into account that the series converges uniformly in every 

compact subset of ℂ, we can write 

                                          𝑇#𝑓   𝑧 =   𝑇, 𝜏𝑧𝑓  

        =   𝑎𝑛   𝑇 𝑡 , 𝜏𝑧 𝑦
2𝑛  𝑡  

∞

𝑛=0

 

                                                      =   𝑎𝑛    
𝑛
𝑘
  

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 

𝑛

𝑘=0

∞

𝑛=0

 

               ×  𝑧2 𝑛−𝑘   𝑇 𝑡 , 𝑡2𝑘   , 𝑧 ∈  ℂ . 

Thus 𝑇#𝑓 is an entire function. 

  To see that the mapping 𝐹𝑇 is continuous we use the closed graph theorem. Assume that 

 𝑓𝜈  𝜈𝜖ℕ is a sequence in ℋ𝑒   ℂ  such that 𝑓𝜈 → 𝑓, as 𝜈 → ∞, in ℋ𝑒   ℂ , and 𝑇# 𝑓𝜈 → 𝑔,  as 

𝜈 → ∞ in ℋ𝑒   ℂ . By Proposition 3.1, (i) for every 𝑧 ∈  ℂ ,  𝜏𝑧  𝑓𝜈 →  𝜏𝑧𝑓, as 𝜈 → ∞ in ℋ𝑒   ℂ  . 

Hence, since 𝑇 ∈  ℋ𝑒   ℂ ′ ,  𝑇#𝑓𝜈   𝑧  →   𝑇 ≠ 𝑓   𝑧  as 𝜈 → ∞, for every 𝑧 ∈  ℂ. Then 

𝑔 = 𝑇#𝑓. The closed graph theorem allows now to conclude that 𝐹𝑇 is a continuous mapping. 

Thus proof is completed. 

 We, define the Hankel type convolution 𝑆 ≠ 𝑇 of 𝑆 and 𝑇 ∈  ℋ𝑒   ℂ ′  as the functional 

on ℋ𝑒   ℂ  given through 

 𝑆 ≠ 𝑇, 𝑓 =   𝑆, 𝑇 ≠ 𝑓   , 𝑓 ∈  ℋ𝑒   ℂ  . 

Note that, according to Proposition 3.2, 𝑆 ≠ ∈  ℋ𝑒   ℂ ′ , for each 𝑆, 𝑇 ∈  ℋ𝑒   ℂ ′ .  By 

proceeding as in [15, proposition 6] we can prove that the mapping defined by  𝑆, 𝑇  → 𝑆#𝑇 is 

bilinear and continuous from ℋ𝑒   ℂ ′  ×  ℋ𝑒   ℂ ′  into ℋ𝑒   ℂ ′ , when ℋ𝑒   ℂ ′  has the strong 

topology. 

 We now establish the interchange formula involving distributional Hankel type 

transformation and convolution. 

Proposition 3.3 : If 𝑆, 𝑇 ∈ ℋ𝑒   ℂ ′   then 

𝛼 ,𝛽   𝑆#𝑇 =  𝛼 ,𝛽   𝑆  𝛼 ,𝛽   𝑇 . 

Proof: By [22,  1 , Section 2] we can write 

𝛼 ,𝛽   𝑆#𝑇   𝑧  

=  2𝛼−𝛽  Γ 3𝛼 + 𝛽    𝑆#𝑇  𝑡 ,  𝑧𝑡 − 𝛼−𝛽 𝐽𝛼−𝛽 𝑧𝑡   

=  2𝛼−𝛽Γ 3𝛼 + 𝛽  𝑆 𝑡 ,  𝑇 𝑦 , 𝜏𝑡   𝑧 − 𝛼−𝛽 𝐽𝛼−𝛽   𝑧   𝑦    
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=   𝑆 𝑡 ,  𝑇 𝑦 , 2𝛼−𝛽Γ 3𝛼 + 𝛽   𝑧𝑡 − 𝛼−𝛽 𝐽𝛼−𝛽  𝑧𝑡  2𝛼−𝛽  Γ 3𝛼 + 𝛽  𝑧𝑦 − 𝛼−𝛽  𝐽𝛼−𝛽 𝑧𝑦    

=  𝛼 ,𝛽   𝑆   𝑧  𝛼 ,𝛽   𝑇   𝑧 , 𝑧 ∈  ℂ . 

 The following algebraic properties for the Hankel convolution on ℋ𝑒   ℂ ′  can be proved 

by using Propositions 2.2 and 2.3. 

Proposition 3.4: Let 𝑇, 𝑅, 𝑆 ∈  ℋ𝑒   ℂ ′  .  Then 

(i) 𝑇#𝑅 = 𝑅#𝑇, 

(ii) 𝑇 # 𝑅#𝑆 =   𝑇#𝑅  #𝑆, 

(iii) 𝑇#𝛿 = 𝑇, where, as usual, 𝛿 denotes the Dirac functional. 

             We now characterize the Hankel type convolution operators in ℋ𝑒   ℂ  as those linear 

and continuous mappings from ℋ𝑒   ℂ  into itself which commute with Hankel type translations 

and Bessel type operators. Our result is inspired in [18, Proposition 5.2] to the usual convolution 

operators on entire functions. Similar properties for Hankel type convolution operators on 

Zemanian spaces can be found in [30, 7]. 

Proposition 3.5: Assume that L is a continuous linear mapping from ℋ𝑒   ℂ  into itself. The 

following assertions are equivalent: 

(i) L commutes with 𝜏𝑧 , that is 𝐿 𝜏𝑧 =  𝜏𝑧  𝐿, on ℋ𝑒   ℂ ,  for every  𝑧 ∈  ℂ. 

(ii) L commutes with the Bessel type operator ∆𝛼 ,𝛽 =  𝑧4𝛽−2  𝐷 𝑧4𝛼  𝐷, that is 𝐿 ∆𝛼 ,𝛽 =  ∆𝛼 ,𝛽  𝐿 on 

ℋ𝑒   ℂ . 

(iii) There exists a complex measure 𝜆 on ℂ having compact support for which  

 𝐿𝑓   𝑧 =    𝜏𝑧𝑓   𝑡  𝑑𝜆 𝑡 ,   𝑓 𝜖 

ℂ

ℋ𝑒   ℂ . 

(Note that the property says that there exists 𝑇 ∈  ℋ𝑒   ℂ ′  such that 𝐿𝑓 = 𝑇#𝑓, 𝑓 ∈ ℋ𝑒   ℂ ) 

(iv) There exists an entire function Φ of exponential type such that 𝐿 =  Φ Δα ,β  on ℋ𝑒   ℂ , that 

is if Φ  𝑧 =   𝑎𝑛  𝑧𝑛 ,   ∞
𝑛=0  𝑧 ∈  ℂ ,  then  

𝐿𝑓 =   𝑎𝑛  ∆𝛼 ,𝛽
𝑛  𝑓,   𝑓 ∈ 

∞

𝑛=0

ℋ𝑒   ℂ  , 

where the series converges in ℋ𝑒   ℂ  . 

Proof : (i) ⟹ (ii) . Let 𝑓 ∈  ℋ𝑒   ℂ  .  Suppose that 𝑓 𝑡 =   𝑎𝑛  𝑡2𝑛∞
𝑛=0  ,   𝑡 ∈  ℂ .  If Δ𝛼 ,𝛽  

represents the Bessel type operator 𝑡4𝛽−2 𝐷 𝑡4𝛼  𝐷, 

we can write  
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Δ𝛼 ,𝛽  𝑓 𝑡 =   𝑎𝑛  4 𝑛 + 𝛼 − 𝛽  𝑛 𝑡2 𝑛−1 ,   𝑧 ∈  ℂ .

∞

𝑛=0

  

we are going to prove that 

                                                                lim𝑧→0  
𝜏𝑧𝑓−𝑓

𝐶𝛼 ,𝛽  𝑧2 =  ∆𝛼 ,𝛽  𝑓 ,                                                   (3.3) 

where 𝐶𝛼 ,𝛽 =  
1

4 3𝛼+𝛽 
  and the convergence is understood in ℋ𝑒   ℂ  . 

 A straightforward manipulation, by splitting the interior sum, allows us to write 

 𝜏𝑧𝑓   𝑡 −  𝑓 𝑡 

𝐶𝛼 ,𝛽  𝑧2
 

=  
4 3𝛼 + 𝛽 

𝑧2
  𝑎𝑛    

𝑛
𝑘
  

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 

𝑛−1

𝑘=0

 𝑧2 𝑛−𝑘  𝑡2𝑘

∞

𝑛=1

 

= 4 3𝛼 + 𝛽   𝑎𝑛  𝑛 
Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 + 𝛼 − 𝛽  Γ 5𝛼 + 3𝛽 
 𝑡2 𝑛−1 

∞

𝑛=1

 

+ 
4 3𝛼 + 𝛽 

𝑧2
  𝑎𝑛    

𝑛
𝑘
 

𝑛−2

𝑘=0

 
Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ  𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 

∞

𝑛=2

 𝑧2 𝑛−𝑘  𝑡2𝑘  

=  Δ𝛼 ,𝛽  𝑓 𝑡 +  4  𝛼 − 𝛽  𝑧2   𝑎𝑛    
𝑛
𝑘
  

Γ 𝑛+3𝛼+𝛽  Γ 3𝛼+𝛽 

Γ 𝑛−𝑘+3𝛼+𝛽  Γ 𝑘+3𝛼+𝛽 
 2

 𝑛 − 𝑘 − 2 
𝑧                      

𝑛−2
𝑘=0

∞
𝑛=2 𝑡2𝑘 ,  

for each  𝑡 ∈  ℂ  and 𝑧 ∈  ℂ −   0 . 

Hence to see (3.3), we have to show that 

                     lim𝑧→0 𝑧2   𝑎𝑛    
𝑛
𝑘
  

Γ 𝑛+3𝛼+𝛽  Γ 3𝛼+𝛽 

Γ 𝑛−𝑘+3𝛼+𝛽  Γ 𝑘+3𝛼+𝛽 
 𝑧2 𝑛−𝑘−2  𝑡2𝑘 = 0𝑛−2

𝑘=0
∞
𝑛=2     .        (3.4) 

uniformly in every compact subset of ℂ. 

Let 𝑎 > 0. As it was mentioned above, the series 

  𝑎𝑛     
𝑛
𝑘
  

𝑛

𝑘=0

∞

𝑛=0

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 
  𝑧 2 𝑛−𝑘   𝑡 2𝑘  

converges uniformly in  𝑡  ≤ 𝑎 , for every 𝑧 ∈  ℂ.  Moreover, it has  

  𝑎𝑛     
𝑛
𝑘
  

𝑛−2

𝑘=0

∞

𝑛=2

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 
  𝑧 2 𝑛−2−𝑘   𝑡 2𝑘  

≤    𝑎𝑛     
𝑛
𝑘
  

Γ 𝑛 + 3𝛼 + 𝛽  Γ 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3𝛼 + 𝛽  Γ 𝑘 + 3𝛼 + 𝛽 

𝑛

𝑘=0

∞

𝑛=0

 𝑎2𝑘  < ∞,  𝑡  ≤ 𝑎, 𝑎𝑛𝑑  𝑧  ≤ 1. 
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Hence (3.4) holds uniformly in  𝑡 ≤ 𝑎. Thus (3.3) is proved when the convergence is understood 

in ℋ𝑒   ℂ . 

Then we can infer that, if (i) holds 

∆𝛼 ,𝛽  𝐿 𝑓 =  lim
𝑧→0

𝜏𝑧𝐿𝑓 − 𝐿𝑓

𝐶𝛼 ,𝛽  𝑧2
=  lim

𝑧→0
𝐿  

𝜏𝑧𝑓 − 𝑓

𝐶𝛼 ,𝛽  𝑧2
 = 𝐿  lim

𝑧→0

𝜏𝑧𝐿𝑓 − 𝑓

𝐶𝛼 ,𝛽  𝑧2
  

                                                                          = 𝐿  ∆𝛼 ,𝛽𝑓 . 

Hence (i) implies (ii). 

(ii) ⟹ (i) : Assume that 𝑓 ∈  ℋ𝑒   ℂ  and it is given by 

𝑓 𝑡 =   𝑎𝑛  𝑡2𝑛  ,

∞

𝑛=0

 𝑡 ∈  ℂ .    

Let  𝑧 ∈  ℂ.  We can write 

 𝜏𝑧𝑓   𝑡 =   
Γ 3𝛼 + 𝛽 

Γ 𝛼 − 𝛽 + 𝑘 + 1 
 𝑧2𝑘    

𝑛
𝑘
  𝑎𝑛  𝑡2(𝑛−𝑘)  

Γ 𝑛 + 3𝛼 + 𝛽 

Γ 𝑛 − 𝑘 + 3 

∞

𝑛=𝑘

∞

𝑘=0

 

                  =  Γ 3𝛼 + 𝛽   
𝑧2𝑘

22𝑘Γ 𝛼−𝛽+𝑘+1 𝑘!

∞
𝑘=0   Δ𝛼 ,𝛽

𝑘  𝑓   𝑡 ,   𝑧, 𝑡 ∈  ℂ  .                               (3.5) 

The last series is uniformly convergent in every compact subset of ℂ. 

Then from (ii), it follows that 

𝐿  𝜏𝑧𝑓 =  Γ 3𝛼 + 𝛽   
𝑧2𝑘

22𝑘Γ 𝛼 − 𝛽 + 𝑘 + 1 !
 𝐿  Δ𝛼 ,𝛽

𝑘  𝑓 

∞

𝑘=0

 

               =  Γ 3𝛼 + 𝛽   
𝑧2𝑘

22𝑘Γ 𝛼 − 𝛽 + 𝑘 + 1 𝑘!
 Δ𝛼 ,𝛽

𝑘  𝐿  𝑓 =  𝜏𝑧 𝐿𝑓 .

∞

𝑘=0

 

Hence, L commutes with Hankel type translations. 

(i) ⟹ (iii) : Assume that (i) holds. We define the functional T on ℋ𝑒   ℂ  as follows 

 𝑇, 𝑓 = 𝐿  𝑓   0  ,   𝑓 ∈  ℋ𝑒   ℂ .  

It is clear that T is in ℋ𝑒   ℂ ′ . Hence there exists a complex number 𝜆 on ℂ having compact 

support [27, p. 231] such that 

                                                  𝑇, 𝑓 =   𝑓 𝑡  𝑑𝜆 𝑡  ,   𝑓 ∈ 
ℂ

ℋ𝑒   ℂ .                                         (3.6) 

Then by using (3.6), it follows that 

 𝐿𝑓   𝑧 =  𝜏𝑧   𝐿𝑓   0 = 𝐿  𝜏𝑧𝑓   0  
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                                                    =   𝜏𝑧   𝑡 𝑑𝜆 𝑡   ,   

ℂ

 𝑧 ∈  ℂ  𝑎𝑛𝑑  𝑓 ∈  ℋ𝑒   ℂ . 

(iii) ⟹ (iv) : Assume that 

 𝐿𝑓   𝑧 =    𝜏𝑧𝑓   𝑡  𝑑𝜆  𝑡   𝑧 ∈  ℂ  , 𝑎𝑛𝑑  𝑓 ∈  ℋ𝑒   ℂ  ,

ℂ

 

for some complex measure 𝜆 on ℂ having bounded support 

Let 𝑓 ∈  ℋ𝑒   ℂ  . According to (3.5), since  𝜏𝑧𝑓   𝑡 =   𝜏𝑧𝑓   𝑧 , 𝑧, 𝑡 ∈  ℂ,  it has 

 𝐿𝑓   𝑧 =    
Γ 3𝛼 + 𝛽 

22𝑘Γ 𝛼 − 𝛽 + 𝑘 + 1 𝑘!
 𝑡2𝑘   ∆𝛼 ,𝛽

𝑘  𝑓   𝑧  𝑑𝜆  𝑡 

∞

𝑘=0ℂ

 

              =   
Γ 3𝛼+𝛽 

22𝑘  Γ 𝛼−𝛽+𝑘+1  𝑘 !
  ∆𝛼 ,𝛽

𝑘 𝑓 ∞
𝑘=0   𝑧   𝑡2𝑘  𝑑𝜆 𝑡  ,   

ℂ
 𝑧 ∈  ℂ  𝑎𝑛𝑑 𝑓 ∈  ℋ𝑒   ℂ .   (3.7) 

Here we have taken into account that the series is, for every z ∈  ℂ, uniformly convergent in the 

support of 𝜆. 

 We denote, for every 𝑘 ∈  ℕ,  

𝜆𝑘 =   𝑡2𝑘  𝑑𝜆 𝑡 .

ℂ

 

We choose 𝑚 > 0 such that  𝑡 ≤ 𝑀, for every 𝑡 in the support of 𝜆. Then, it follows 

 𝜆𝑘  ≤   𝑡 2𝑘  𝑑 𝜆  𝑡  ≤  𝑀2𝑘   𝜆   ℂ  , 𝑘 ∈  ℕ,
ℂ

                                                                   (3.8) 

where  𝜆  represents the total variation measure of 𝜆. 

The function Φ is defined by 

Φ  𝑧 =   
Γ 3𝛼 + 𝛽  𝜆𝑘

22𝑘  Γ 𝛼 − 𝛽 + 𝑘 + 1 𝑘!
 𝑧𝑘  ,   

∞

𝑘=0

𝑧 ∈  ℂ. 

From (3.8), it follows that 

 
 𝜆𝑘 

22𝑘Γ 𝛼 − 𝛽 + 𝑘 + 1 𝑘!
  𝑧 𝑘  ≤ 𝐶  

 𝑧𝑀2 𝑘

22𝑘Γ 𝛼 − 𝛽 + 𝑘 + 1 𝑘!

∞

𝑘=0

∞

𝑘=0

 

                                                              ≤ 𝐶  
 𝑧 𝑀2 𝑘

𝑘!

∞

𝑘=0

= 𝐶 𝑒𝑀2 𝑧  , 𝑧 ∈  ℂ. 

Hence Φ is an entire function of expontial type 

Moreover, (3.7) can be rewritten as 
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 𝐿𝑓  𝑧 =   Φ Δ𝛼 ,𝛽 𝑓  𝑧  , 𝑧 ∈  ℂ  𝑎𝑛𝑑 𝑓 ∈  ℋ𝑒   ℂ  . 

Note also that the series in (3.7) converges uniformly in every compact subset of ℂ ∙ 

(iv) ⟹ (i) : Suppose now that, for every 𝑓 ∈  ℋ𝑒   ℂ , 

 𝐿𝑓   𝑧 =   𝑎𝑘   ∆𝛼 ,𝛽
𝑘 𝑓   𝑧  , 𝑧 ∈  ℂ,

∞

𝑘=0

 

for a certain 𝑎𝑘  ∈  ℂ , 𝑘 ∈  ℕ,  where the series converges in ℋ𝑒   ℂ . 

 Hence, if 𝑓 ∈  ℋ𝑒   ℂ , since 𝜏𝑧  ∆𝛼 ,𝛽  𝑓 =  ∆𝛼 ,𝛽  𝜏𝑧𝑓, 𝑧 ∈  ℂ , according to Proposition 

3.1, (i), it is concluded that  

𝜏𝑧   𝐿𝑓   𝑡 =   𝑎𝑘  𝜏𝑧   ∆𝛼 ,𝛽
𝑘 𝑓   𝑡 =   𝑎𝑘  ∆𝛼 ,𝛽

𝑘   𝜏𝑧𝑓   𝑡 

∞

𝑘=0

∞

𝑘=0

 

                                               = 𝐿  𝜏𝑧𝑓   𝑡 , 𝑡, 𝑧 ∈  ℂ ∙ 

Thus proof is completed.  

Remarks 3: Note that (3.5) can be rewritten as follows 

𝜏𝑧𝑓 =  Φ𝑧   Δ𝛼 ,𝛽𝑓  , 𝑓 ∈  ℋ𝑒   ℂ   𝑎𝑛𝑑 𝑧 ∈  ℂ , 

where Φ𝑧  represents, for each 𝑧 ∈  ℂ,  the function defined by 

Φ𝑧 𝑡 =  Γ 3𝛼 + 𝛽   
𝑧2𝑘

22𝑘Γ 𝛼 − 𝛽 + 𝑘 + 1 𝑘!
 𝑡𝑘

∞

𝑘=0

 ,   𝑡 ∈  ℂ ∙ 

Remark 4: The condition (iv) in Proposition 3.5 can be replaced by the following finer property: 

(iv) There exists an entire function Φ such that 𝐿 =  Φ Δ𝛼 ,𝛽  on ℋ𝑒   ℂ  and that there exist 

𝐴, 𝐵 > 0 for which  

 Φ 𝑧   ≤ 𝐴 𝑖𝛼−𝛽   𝐵  𝑧 𝛼+𝛽   , 𝑧 ∈  ℂ ∙ 

Here 𝑖𝛼−𝛽   𝑧 =  𝑧− 𝛼−𝛽  𝐼𝛼−𝛽  𝑧 , 𝑧 ∈  ℂ  ,  where 𝐼𝛼−𝛽  denotes the modified Bessel function 

of the first kind and order  𝛼 − 𝛽   𝑆𝑒𝑒  32, 𝑝. 77 .   

                In the following we obtain a Hankel version of [18, Theorem 5]. We obtain a new class 

of hypercyclic operators in ℋ𝑒   ℂ  . 

Propositions 3.6: Assume that L is a continuous linear mapping from ℋ𝑒   ℂ  into itself which 

commutes with the Hankel type translation 𝜏𝑧 , for every 𝑧 ∈  ℂ. Then L has a invariant and 

hypercyclic manifold that is dense in ℋ𝑒   ℂ  and L is a chaotic operator on ℋ𝑒   ℂ ,  provided 

that L is not a multiple of the identity operator. 
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Proof: According to Proposition 3.5 there exists an entire function Φ of exponential type such 

that 𝐿 =  Φ  Δ𝛼 ,𝛽  , that is, if 

Φ  𝑧 =   𝑎𝑛  𝑧𝑛 ,   

∞

𝑛=0

𝑧 ∈  ℂ , 𝑤𝑒𝑟𝑒 𝑎𝑛  ∈  ℂ, 𝑛 ∈  ℕ, 𝑡𝑒𝑛 

                          𝐿 𝑓 =   𝑎𝑛  ∆𝛼 ,𝛽
𝑛  𝑓, 𝑓 ∈  ℋ𝑒   ℂ  ;  

∞

𝑛=0

 

where the series converges in ℋ𝑒   ℂ  ∙   

For every 𝑎 ∈  ℂ, we define the function 𝑗𝑎  by 

𝑗𝑎 𝑧 =   𝑧𝑎 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑎 , 𝑧 ∈  ℂ ∙   

We have that 

∆𝛼 ,𝛽  𝑗𝑎   𝑧 =  −𝑎2  𝑗𝑎 𝑧 , 𝑎, 𝑧 ∈  ℂ.  

Hence, for every 𝑎 ∈  ℂ, 

                                             𝐿 𝑗𝑎 =   𝑎𝑛   −𝑎2 𝑛  𝑗𝑎 =  Φ  −𝑎2  𝑗𝑎  
∞
𝑛=0  ∙                                    (3.9) 

To simplify we define Ψ  𝑧 =  Φ  – 𝑧2  , 𝑧 ∈  ℂ .   

From Proposition 2.2, it now follows that the range of L is dense in ℋ𝑒   ℂ ,  provided that 

𝐿 ≠ 0. Indeed, suppose that Φ is not zero identically. Then the set 

𝑉 =   𝑧 ∈  ℂ ∶   Ψ  𝑧  ≠ 0  

is an open and non-empty subset of ℂ. Hence according to Proposition 2.2, the linear space 

𝑀𝑣  generated by  𝑗𝑎 𝑎∈𝑣  is dense in ℋ𝑒   ℂ . 

Since 𝑀𝑣  is contained in the range of L, it follows that the range of L is a dense subset of 

ℋ𝑒   ℂ . 

 Assume that L is not a multiple of the identity. Then Φ is not a constant function. The 

well known Liouville theorem implies that the sets 𝑊1  𝑎𝑛𝑑 𝑊2  defined by  

𝑊1 =   𝑧 ∈  ℂ ∶   𝜓  𝑧  < 1  and 

  𝑊2 =   𝑧 ∈  ℂ ∶   𝜓  𝑧   > 1     ,      

are non-empty open sets in ℂ. According to (3.9), it is clear that for every 𝑛 ∈  ℕ. 

                                                         𝐿𝑛  𝑗𝑎 =  Ψ  𝑎 𝑛  𝑗𝑎     ,    𝑎 ∈  ℂ .                                           (3.10) 

In particular, if 𝑎 𝜖 𝑊1  then, from (3.10) we infer that lim𝑛→∞ 𝐿𝑛  𝑗𝑎 = 0, uniformly in every 

compact subset of  ℂ . Hence  

lim
𝑛→∞

𝐿𝑛𝑓 = 0  , 𝑖𝑛  ℋ𝑒   ℂ , 
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for every 𝑓 ∈  ℳ𝑊1
 . 

 We now define the mapping S on  𝑗𝑎 𝑎  ∈ 𝑊2
 by 

𝑆 𝑗𝑎 =  
1

Ψ 𝑎 
 𝑗𝑎  , 𝑎 𝜖 𝑊2  , 𝑎𝑛𝑑 𝑆 is extended to the linear space ℳ𝑊2

 generates by   𝑗𝑎 𝑎  ∈ 𝑊2
as a 

linear mapping. 

Thus S maps ℳ𝑊2
into itself and  

 𝐿𝑆  𝑗𝑎 = 𝐿  
1

Ψ(𝑎)
 𝑗𝑎 =  𝑗𝑎   ,   𝑎 ∈  𝑊2 ∙ 

Hence,  𝐿𝑆 𝑓 = 𝑓, 𝑓 ∈  ℳ𝑊2
. Moreover by proceeding as above, we obtain that 

lim
𝑛→∞

𝑆𝑛𝑓 = 0 ,  𝑖𝑛  ℋ𝑒   ℂ  ,  

for each 𝑓 ∈  ℳ𝑊2
. 

 According to [18, Corollary 1.5],  it follows that L has hypercyclic vectors. We denote by 

𝑔 a hypercyclic vector of L. 

 We are going to see that there exist an invariant and hypercyclic manifold with respect to 

L that is dense in ℋ𝑒   ℂ  . 

 Let 𝑝 be an holomorphic polynomial not identically zero. Then 𝑃(𝐿) is a continuous 

linear mapping from ℋ𝑒   ℂ  into itself, and as it is not hard to show, 𝑝 𝐿 = 𝑝  Φ   Δ𝛼 ,𝛽 . 

Hence, 𝑝 (𝐿) commutes with Hankel type translation 𝜏𝑧 , for every  𝑧 ∈  ℂ . Morever, since Φ is 

not constant in ℂ, the range of 𝑝(𝐿) is sense in ℋ𝑒   ℂ . We now define the manifold ℳ through 

ℳ =   𝑝 𝐿 𝑔 ∶ 𝑝 𝑖𝑠 𝑎 𝑜𝑙𝑜𝑚𝑜𝑟𝑝𝑖𝑐 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  

It is clear that ℳ is invariant for L. 

 On the other hand, for every 𝑛 ∈  ℕ and every holomorphic polynomial p, it has 

𝐿𝑛  𝑝  𝐿  𝑔 = 𝑝 𝐿  𝐿𝑛  𝑔 . 

Hence, if p is a holomorphic polynomial, since the set  𝐿𝑛𝑔 ∶ 𝑛 𝜖 ℕ  and the range of 𝑝  𝐿  are 

dense in  ℋ𝑒   ℂ . 

 Thus we prove that ℳ is a dense manifold of ℋ𝑒   ℂ  that is constituted by hypercyclic 

vectors. 

 We now prove that 𝐿 is chaotic in ℋ ℂ .  

Since Ψ is entire and non constant, there exists 𝑛 ∈  ℕ such that Ψ 𝐺𝑛 ∩ 𝜕 𝒟  0,1  contains a 

non-empty and open subset of the boundary 𝜕 𝒟 (0,1) of the unit disc 𝐷  0,1  . Here, for every 
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𝑚 ∈  ℕ, 𝐺𝑚  represents the closure of the disc 𝐷  0, 𝑚  with center in the origin and radius 𝑚,   

The set 𝐸 defined by 

𝐸 =   𝑧 ∈  𝐺𝑛 ∶  Ψ 𝑧 𝑙 = 1 ,   𝑓𝑜𝑟 𝑠𝑜𝑚𝑒  𝑙 ∈ ℕ  

is infinity. Hence Ε has an adherence point in 𝐺𝑛 . Then by Proposition 2.2, we can prove that the 

linear space 

ℳ𝐸 = 𝑠𝑝𝑎𝑛  𝑗𝑎 ∶ 𝑎 ∈  𝐸   generates by  𝑗𝑎 𝑎  ∈ 𝐸  is dense in ℋ𝑒   ℂ  . Here, as above,  

𝑗𝑎   𝑧 =   𝑎𝑧 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑎𝑧 , 𝑧 ∈  ℂ  𝑎𝑛𝑑 𝑎 ∈ 𝐸  

Assume that 𝑎 ∈ 𝐸. There exists  𝑙 ∈ ℕ such that Ψ  𝑎 𝑙 = 1. 

Hence 

𝐿𝑙   𝑗𝑎 =  Ψ  𝑎 𝑙  𝑗𝑎 =  𝑗𝑎 . 

Thus we see that 𝑗𝑎  is a periodic point of L. Then ℳ𝐸  is contained by periodic points of L and L 

is choatic on ℋ𝑒   ℂ  . 

This completes the proof. 

Remark 5: A continuous linear operator 𝐿 on a topological linear space 𝑋 is called cyclic if 

there exists a vector 𝑥 ∈ 𝑋 for which the span of the orbit  𝐿𝑛𝑥 𝑛  𝜖  ℕ is dense in 𝑋. In this case 

𝑥 is called a cyclic vector of L. It is obvious that if L is a hypercyclic operator on 𝑥 then 𝐿 is also 

a cyclic operator on X. Hence according to Proposition 3.6 if L is a continuous linear mapping 

from ℋ𝑒   ℂ  into itself that commutes with Hankel type translations 𝜏𝑧 , 𝑧 ∈  ℂ ,  then 𝐿 is a 

cyclic operator on ℋ𝑒   ℂ  provided that 𝐿 is not a multiple of the identity operator. Moreover, by 

proceeding as in [10, p.86], where the Bessel functions 𝑗𝑎 ,   𝑎 ∈  ℂ, replace the exponential 

functions, we can see that there exists a dense linear manifold ℳ of ℋ𝑒   ℂ  such that each non-

zero element of ℳ is cyclic for every continuous linear mapping from ℋ𝑒   ℂ  into itself 

commuting with Hankel type translations   𝜏𝑧 , 𝑧 ∈  ℂ , that is not a multiple of the identity 

operator. 

 We now study hypercyclicity and the chaoticity of the Hankel type convolution operators 

on ℰ∗.  

Proposition 3.7: Suppose that 𝑇 ∈  ℰ∗ 
′  , then the Hankel convolution operator 𝐹𝑇 defined on ℰ∗ 

by 𝐹𝑇   Φ = 𝑇# 𝜙, 𝜙 ∈  ℰ∗  is hypercyclic and chaotic, provided that T is not a multiple of the 

Dirac 𝛿 −functional. 



International journal of advanced scientific and technical research                               Issue 2 volume 4, August 2012          

Available online on   http://www.rspublication.com/ijst/index.html                                                   ISSN 2249-9954 

 Page 446 
 

Proof: Since the space ℋ𝑒   ℂ  is continuously contained in ℰ 𝑤  the restriction of T to ℋ𝑒   ℂ  

is in ℋ𝑒   ℂ ′ . Also the restriction of the mapping 𝐹𝑇 to ℋ𝑒   ℂ  defines a continuous linear 

mapping from ℋ𝑒   ℂ  into itself. 

 Suppose that 𝐹𝑇 𝑓 =  𝜆𝑓  ,   𝑓 ∈  ℋ𝑒   ℂ  ,  for some 𝜆 ∈  ℂ. 

Then for every 𝑓 ∈  ℋ𝑒   ℂ  

 𝐹𝑇 𝑓   0 =   𝑇#𝑓   0 =   𝑇, 𝜏0𝑓 =   𝑇, 𝑓 =  𝜆 𝑓  0 . 

Hence 𝑇 =  𝜆𝛿. 

 Moreover, from (3.5), it follows that, for every  𝑓 ∈  ℋ𝑒   ℂ , 

  

𝐹𝑇   𝑓   𝑧 =   𝑇, 𝜏𝑧𝑓 =  Γ  3𝛼 + 𝛽   
1

22𝑘Γ 𝛼 − 𝛽 + 𝑘 + 1 𝑘!
  Δ𝛼 ,𝛽

𝑘 𝑓   𝑧 

∞

𝑘=0

 

                                                         ×   𝑇 𝑡 ,  𝑡2𝑘  , 𝑧 ∈  ℂ. 

Thus Proposition 3.5 implies that 𝐹𝑇 commutes with the Hankel type translation 𝜏𝑧  ,  for every 

𝑧 ∈  ℂ. 

Hence, if T is not a multiple of the Dirac 𝛿 − functional, from Proposition 3.6 it deduces that the 

mapping 𝐹𝑇 is hypercyclic in ℋ𝑒   ℂ . 

 We will prove that ℋ𝑒   ℂ  is a dense subspace of ℰ∗. Then, according to [9, Lemma 1] 

and Proposition 3.6, we obtain that 𝐹𝑇 is hypercyclic and chaotic in ℰ∗. 

 The density property of ℋ𝑒   ℂ  in ℰ∗ follows from Hahn-Banach theorem. Indeed, let 

𝑇 ∈  ℰ∗ such that  𝑇, 𝑓 = 0, 𝑓 ∈  ℋ𝑒   ℂ .   

In particular, for every 𝑧 ∈  ℂ,  

 𝑇 𝑡 ,  𝑧𝑡 − 𝛼−𝛽  𝐽𝛼−𝛽   𝑧𝑡  = 0. 

In other words, 𝛼 ,𝛽   𝑇   𝑧 = 0, 𝑧 ∈  ℂ . Then, according to  

 5, 𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 4.6 ,  we obtain that 

 𝑇, 𝜑 =   𝛼 ,𝛽   𝑇 , 𝛼 ,𝛽   ϕ  = 0, 𝜙 ∈  𝔇∗ 

Hence, since 𝒟∗ is a dense subspace of ℰ∗ , it follows that 𝑇 = 0 on ℰ∗. Then the Hanh-Banach 

theorem implies that ℋ𝑒   ℂ  is dense in ℰ∗. Thus proof is completed. 

 As a consequence of Propositions 3.6 and 3.7, we obtain Hankel version of celebrated 

results of Birkhoff [8], concerning the usual translation operators, and of MacLane [24], about 

the differentiation operators. 
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Corollary 3.8 : (i) For every 𝑧 ∈  ℂ −   0 , the Hankel type translation operator 𝜏𝑧  is 

hypercyclic and choatic on ℋ𝑒   ℂ  and on ℰ∗. 

(ii) The operator ∆𝛼 ,𝛽  is hypercyclic and chaotic on ℋ𝑒   ℂ  and on ℰ∗. 

4. Hankel type convolution operators on the spaces 𝓓∗ and its dual: 

 In this section we study the Hankel convolution operators on the spaces 𝒟∗ and 𝒟∗
′  , the 

dual space of 𝒟∗. 

If 𝑇 ∈  ℰ∗,  by using [5, Proposition 4.7 (3.1) and (3.2)], we can see that 

𝜏𝑥   𝑇# 𝜙 = 𝑇 #  𝜏𝑥𝜙  , Δ𝛼 ,𝛽   𝑇#𝜙 = 𝑇# ∆𝛼 ,𝛽  𝜙 . 

𝜓 #  𝑇#𝜙 = 𝑇#  𝜓#𝜙 , for every 𝜓, 𝜙 ∈  𝒟∗ and 𝑥 ∈   0, ∞  . 

 In the following, we characterize the Hankel type convolution operators on 𝒟∗ as those 

linear and continuous mappings on 𝒟∗ into itself that commutes with Hankel type translations, 

with Bessel type operators or with Hankel type convolutions. 

 In Propositions 3.5, we established the corresponding result on the space ℋ𝑒   ℂ . 

Analogous properties on Zemanian spaces were shown in [3,7,30]. 

Proposition 4.1: Let L be a continuous linear mapping from 𝒟∗ into itself. The following 

assertions are equivalent. 

(i) L commutes with Hankel type translations, that is for every 𝑥 ∈   0, ∞ , 𝐿 𝜏𝑥 =  𝜏𝑥  𝐿 on  𝒟∗. 

(ii) There exists a (unique) 𝑇 ∈  ℰ∗
′  such that 𝐿𝜙 = 𝑇 #𝜙, 𝜙 ∈  𝒟∗ . 

(iii) L commutes with Hankel type convolution in the following sense, for each 𝜙, 𝜓 ∈  𝒟∗ ,

𝐿  𝜙 # 𝜓 =  𝜙#𝐿  𝜓 .         

(iv) L commutes with Hankel type convolution in the following sense, for every 𝜙 ∈  𝒟∗ and 

𝑇 ∈  ℰ∗
′  , 𝐿  𝑇 # 𝜙 = 𝑇 #𝐿  𝜙  . 

Moreover (i) or equivalently, (ii), (iii) and (iv) implies that the following holds  

(v). L commutes with the Bessel type operator Δ𝛼 ,𝛽  , that is 𝐿 Δ𝛼 ,𝛽 =  Δ𝛼 ,𝛽  𝐿 ,  on  𝒟∗. 

Proof: (i) ⟹ (ii) . We can proceed as in the proof of [30, Theorem…..] 

(ii) ⟹ (iii). It is sufficient to take into account [5, Proposition 4.1]. 

(iii) ⟹ (iv). Let 𝑇 ∈  ℰ∗
′  . We choose a function 𝜓 ∈  𝒟1 such that 

 𝜓  𝑥  𝑥4𝛼  𝑑𝑥

∞

0

=  2𝛼−𝛽  Γ 3𝛼 + 𝛽 . 

For every 𝑚 ∈  ℕ,  we define 
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𝜓𝑚   𝑥 =  𝑚6𝛼+2𝛽  𝜓 𝑚𝑥 ,   𝑥 ∈   0, ∞ ,  and 

𝑇𝑚 = 𝑇 ≠  𝜓𝑚  , 

by invoking [5, Proposition 3.5 and 4.1] and by taking into account that T defines a continuous 

convolution operator from 𝒟∗ into itself we conclude that, for every 𝜙 ∈  𝒟∗ , 

𝑇𝑚  # 𝜙 ⟶ 𝑇# 𝜙, 𝑎𝑠  𝑚 ⟶ ∞, 

in the sense of convergence in 𝒟∗. 

By (iii), since 𝑇𝑚  ∈  𝒟∗ , 𝑚 ∈  ℕ   [5, Propositions 4.8], we can write  

𝑇 #  𝐿𝜙 =  lim𝑚→∞ 𝑇𝑚  # 𝐿  𝜙 =  lim𝑚→∞ 𝐿  𝑇𝑚  # 𝜙 = 𝐿  𝑇 # 𝜙 . 

Thus (iv) is proved. 

(iv) ⟹ (i). Let 𝑥 ∈   0, ∞ .  As usual, we define the Hankel type translation operator 𝜏𝑥  on 𝒟∗
′  

by transposition, that is if 𝑇 ∈  𝒟∗
′   the functional 𝜏𝑥  𝑇 is defined by 

 𝜏𝑥  𝑇, 𝜙 =   𝑇, 𝜏𝑥  𝜙  , 𝜙 ∈   𝒟∗ . 

Since 𝜏𝑥  is continuous linear mapping from 𝒟∗ into itself [5, Corollary 3.3], 𝜏𝑥  𝑇 ∈  𝒟∗
′   for each 

 ∈  𝒟∗
′  . 

 By denoting by 𝛿 the Dirac functional, we have that 

𝜏𝑥  𝜙 =   𝜏𝑥𝛿  # 𝜙 ∈  𝒟∗ . 

Indeed, if  𝜙 ∈  𝒟∗ , it follows 

 𝜏𝑥𝛿  # 𝜙  𝑦 =   𝜏𝑥𝛿, 𝜏𝑦  𝜙 =   𝛿, 𝜏𝑥  𝜏𝑦  𝜙 =   𝛿, 𝜏𝑦   𝜏𝑥𝜙   

                                              =   𝜏𝑥  𝜙   𝑦   ,   𝑦 ∈   0, ∞ . 

Moreover it is not hard to see, according to [5, Proposition 4.4], that 𝜏𝑥  𝛿 ∈  ℰ∗
′  . Hence, from 

(iv) it follows that, for every 𝜙 ∈  𝒟∗ , 

𝜏𝑥 𝐿𝜙 =  𝜏𝑥  𝛿 # 𝐿𝜙 = 𝐿  𝜏𝑥𝛿 # 𝜙 = 𝐿  𝜏𝑥𝜙 .  

Hence L commutes with the Hankel type translation operator 𝜏𝑥  . 

Thus, we have proved that the properties (i) – (iv) are equivalent. To complete the proof of this 

proposition we are going to prove that (ii) ⟹ (v). Assume that there exists 𝑇 ∈  ℰ∗
′  such that   

𝐿𝜙 = 𝑇 # 𝜙, 𝜙 ∈  𝒟∗ . 

According to  1, 𝐿𝑒𝑚𝑚𝑎 8,  𝑏 ,  6  ,  we can write, for every  ∈  𝒟∗ , 

𝛼 ,𝛽   ∆𝛼 ,𝛽  𝐿 𝜙    𝑥 =  −𝑥2 𝛼 ,𝛽   𝑇   𝑥  𝛼,𝛽   𝜙   𝑥  

                                                                              =  𝛼 ,𝛽   𝐿 Δ𝛼 ,𝛽  𝜙    𝑥     ,   𝑥  ∈   0, ∞ . 

Hence, from the uniqueness property of Hankel type transformation on 𝒟∗ ,  it follows that 
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∆𝛼 ,𝛽  𝐿𝜙 = 𝐿 Δ𝛼 ,𝛽  𝜙    ,    𝜙  ∈  𝒟∗ . 

Thus we establish that L commutes with the Bessel type operator ∆𝛼 ,𝛽  . This completes the 

proof. 

Remark 6: We do not know if condition (v) implies property (i) (and then (ii), (iii) and (iv) in 

Proposition 4.1. The procedure developed in [3] does not work now because there is not any 

function 𝜙 # 0 in 𝒟∗ having compactly supported 𝛼 ,𝛽  transform. 

 Since ℰ∗
′  is the space of convolution operators in 𝒟∗ ,  the elements of ℰ∗

′  define Hankel 

type convolution operators on 𝒟∗
′  . If 𝑆 ∈  𝒟∗

′  and  ∈  ℰ∗
′  ,  the Hankel type convolution 𝑆 # 𝑇 of 

S and T is the functional in 𝒟∗
′  defined by 

 𝑆 # 𝑇,   𝜙 =   𝑆, 𝑇 # 𝜙   , 𝜙 ∈   𝒟∗ . 

Moreover, we can establish that the Hankel type convolution operator associated to 𝑇 ∈  ℰ∗
′  is 

continuous on 𝒟∗
′  . 

Proposition 4.2: Let  ∈  ℰ∗
′  . The mapping 𝐹𝑇  defined by 

𝐹𝑇 ∶  𝒟∗ 
′ ⟶  𝒟∗

′   ,   𝑆 ⟶   𝑆 # 𝑇, 

is continuous from 𝒟∗
′  into itself, when on 𝒟∗

′  we consider the weak ∗ or the strong topology. 

Proof:  It is sufficient to take into account that the mapping 𝜙 ⟶ 𝑇 # 𝜙 is continuous from 𝒟∗ 

into itself. Thus proof is completed.     

 Finally it is shown that the Hankel type convolution operator associated to every element 

of ℰ∗
′  is hypercyclic and chaotic. 

Proposition 4.3: Let  ∈  ℰ∗
′  . Assume that T is not a multiple of the Dirac 𝛿 − functional. Then 

the Hankel type convolution operator 𝐹𝑇 defined as in Proposition 4.2 is hypercyclic and chaotic 

on 𝒟∗ 
′  is equipped with the strong topology. 

Proof: According to Proposition 3.7, the functional 𝑇 ∈  ℰ∗
′  defines a Hankel type convolution 

operator on ℰ∗ that is hypercyclic and chaotic. Since ℰ∗ is a dense subspace of 𝒟∗
′  when 𝒟∗

′  is 

endowed with the strong topology, by involving [9, Lemma 1], we conclude that 𝐹𝑇  is 

hypercyclic and chaotic on 𝒟∗
′  , when on 𝒟∗

′  we consider the strong topology. Thus proof is 

completed. 
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