International journal of advanced scientific and technical research Issue 2 volume 4, August 2012
Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

Ultra-distributions associated with Fourier-Hankel type transformation
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Abstract: In this paper we study the Fourier-Hankel type transform to spaces of Ultra-

by,B,b,,B’
, FH "1 are

T . , bq.B.bg.B
distributions. For this purpose, spaces FH,gana,a » FH e oo A A

ap

constructed on which Fourier-Hankel type transform (Fh, ) is defined. It is proved that the so

i : . . . bq.B.bg,B
defined F-H type transform Fh, 5 is a continuous linear mapping from the space F Ha"ﬂ Ba qABa, .
pag A,ag,

. AaZ B
into the space F H ¢ "*""t

. .. Further generalized F-H transform is defined and its inversion
a,B,by,B,ay,by,Aq

formula is given. An operational transform formula is also established. In the end, a differential
equation of the form P (D,, A, 3) u = g has been solved by using the so defined F-H transform.
Keywords: Fourier-Hankel type transformation, Ultra-distribution.
1. Introduction:
If the test function spaces are some classes of non-quasi-analytic functions with some natural
topology, then the dual spaces have the properties analogous to those of distributions (see Pathak
[4]). The elements of these spaces are the ultra-distributions. Pathak [4] has given a
comprehensive account of extensions of Fourier and Hankel transformations of Ultra-
distributions (of Roumieu type). Following the idea of Roumieu [5] and Komatsu [2], we
introduce the space of Ultra-differentiable functions on which the combined Fourier-Hankel
transformation acts as a continuous linear mapping, so that the generalized F — H transformation
on the corresponding dual spaces also acts as a continuous linear mapping.
2. Notations and terminology:
In this paper we follow the notations and terminology of Pathak [4] and Zemanian [6].
Fourier-Hankel type transform: We define an integral transform for which the Kernel is the
product of the kernels of Fourier and the Hankel transformations as below:

Let ¢ (x,y) be a suitably restricted function on —co < x < o0, 0 <y < oo then its

Fourier-Hankel type transform is given by:

Fhogp=@@At)= [ [ e ™ (yt)**F J_p(yt) ¢(x,y) dxdy, (2.1)
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where J,_s (yt) is the Bessel type function of first kind of order « — 8, and a — g is real with
1

(a—B)= —-.

3. Test function spaces and their duals:

N

Let {a,} and {b, } be two arbitrary sequences of positive real numbers. We shall impose some of
the following constraints on these sequences so that the resulting space of test functions may be
non-quasi analytic and closed under certain algebraic, differential and integral operations.

b < by_1 by41 for all q € Ny . (3.1)
An immediate consequence of this inequality is
b, by < by b,+q, P.q € Ny ; (3.2)
and
g=0bg—1bg < o0 . (3.3
Further there are constants R, R; > 0 and H, H; > 1 such that
b, <RHP mingycq<, b, b,_q , P € Ny (3.4)
and
a, < Ry H{ mingq,o,a, ayp—q, p € Ny (3.5)

Now we construct certain test function spaces on which F — H transformation can be
studied systematically.

The test function spaces:

b Bb, B,
’ qr==qr
) H

PR o
) af.agdagd

FH ap

a,ﬁ,ak,A,a;{,A
Let ¢ be an infinitely differentiable function defined on the set

by,B,by,B
¢ EFH Y ",

a,ﬁ,ak,A,ak,A'

if and only if

|xk D] yk, (yt Dy)ql y2-1 ¢ (x,y)| < C*F (A+8)* (B+p) (4 +6)k

x (B 4+ p)?a, b, a, b‘;
for all k,k', g,qg € N,, where §,8§ and p,p > 0 are arbitrary small numbers and C*~7,
A,B,A’, B are certain positive constants depending on ¢ and {a,}, {b,} are arbitrary sequences
of positive numbers satisfying the conditions (3.1) to (3.5) for ascertaining that the resultant

space of test functions is non-quasi analytic and closed under certain algebraic differential and

integral operations.

Page 412



International journal of advanced scientific and technical research Issue 2 volume 4, August 2012
Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

In this space, we introduce the norm as follows:

’ _ q’ _
’x" piyk (y71Dy)" y2P 1 ¢ (xy)
(A+8)K (B+p)7 (4 +6" )¢ (B'+p")7 ay by ay by,

lpll”

= Sup (3.6)

8,6 p.p
where Sup is over all

(x,y) € (—o0,0) x (0,0), k, k',q, ¢ € Ny .
Here

q'ql'& 61;,0;,0, = 1;_ ) wen mus

N

Here we note that

IpIZE < IlIEE s n =12,

Similarly the other spaces F H o bqbys CAN be defined and corresponding norms
ap.aidaA , H

ap
on each of them, as follows :

¢ €EFHypq a4, ifandonlyif

|xk D] y", (y? Dy)q yE1p(x,y)| < C*F (A+86)F (A + §HK ay a
and

¢ € FH,%"" ifand only if

|xk DY yk (y‘lDy)q y2h-1 ¢(x,y)| < CBB+68) (B +p) b, b, ,and

¢ € FH."""" ifand only if
| DI y* (y71D,)" y*# 1 p(xy)| < CF(B+6) (B +p) b, by,

’ rk, ! r ! 1 ’
Fora, = k¥, a, = k' "and b, = q%,b, =q15r,r,s,s =0,
k k q = 47, 0q

. bq.B.bg, B' bq.B.bg,B'
it can be seen that the spaces FH,g, 44 4" FH FHaBakA oA reduce to

FHuprpan  FHS BE R HngBB respectively, similar to the those studies by Lee [3].

If b, , b, satisfy the condition (3.1), then the space D {b, , by(—0,) X (0,00)} is a

bg,Bbg,B
subspace of FH ¥ "

2 oAt A and the convergence in D {b,, b,, (—o,) x (0,)} implies

bq.Bbg,B'
q
convergence in F H B apAa.d

Following Gel’fand and Shilov [1, pp.179-181], we prove the following theorem:
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Theorem 3.1: Let a4, a; satisfy (3.5). Then FHaﬁa AL complete countably normed
b,ag,A,ay,

perfect space. The dual is also complete.

Let ¢ (x,y) be an infinitely differentiable function definedon —o < x <o , 0 <y < o,

bqBbgB . .
¢ (x,y) EF Ha’ﬁ’ak’A’a;( - ifand only if (3.6) holds.
With the system of norms (3.6), we assert that the space F Hﬁ‘zBf‘?f K becomes a complete
bag,ap,

countably normed space. All that we need here is to establish that for every Cauchy sequence

{¢, e, y)}in F H 1208

w o daid {D* ¢, (x,y)} converges uniformly on every compact subset of
bhag,4,ay,

Rx1I to smooth function D* ¢ (x,y), for each k=12,...., where ¢ (x,y) €

bg.BbgB
ap.agdand

Now, the convergence of {¢, (x, y)} can be defined as follows:
Definition 3.1: A sequence of an infinitely differentiable function {¢, (x,y)} is said to be

correctly convergent to the function ¢ (x, y) if for any g, q , the function
xk DIy (y1 D))" y*#~1 ¢, (x,y) converges uniformly to
xk DI yk (y1 D,)" y*~1 ¢, (x,y) inany bounded interval.

The proof of the theorem which runs parallel to that of one given by Pathak [4, pp. 286 —
289] is broken into several steps:
I. If the sequence {¢,(x,y)}converges correctly to some function ¢ (x,y) and for some
5,p8,p ,

gy llg” < ceF,  ceF >0,

then the norm || II?”p: exists even for some function ¢ (x,y) and
8,p B
g 1107 < ceb.
Now for-a<x<a, 0<y<bh,

’ _ q’ _
Sup |ka,‘Zyk (y 1 Dy) ,yZB 1 ¢(x,ly)| -y . q’ .
XY A+ B+p)i (A +6) (B +p)arbyayb, =~ —TT=

Cr qa .5
_lim Sup |x"D,‘f y* (y7'py)" y*#t ¢(x,y)|
Vo0 XY (A+ 8K (B+p)i(A + 8V (B +p )i agbya, b,
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Now, we take the limita — o, b — o0, p — oo, and obtain

Sup |ka;j yk (y—lpy)q y28=1 % (x,y) < pat
XY (A+ 8k (B+p) (A +68)k B +p) ab, arb, ~ ’
kk' <q,q

I1. If the sequence {¢, (x,y)} converges to zero at each point and is fundamental in the norm
8,p 6,p
L1I5* ., then lig l15” . — 0.
As the sequence {¢,} is fundamental, it converges correctly to zero and hence the
sequence {¢, — ¢, } converges correctly to ¢, as u — oo.

Thus for given € > 0 there exists a sufficiently large v such that

Sup 5.p
o 157, < 238, oy = aull,” < E
[1l. The space F H ﬁab ABa K . be a fundamental sequence in each of the norms ||. || . Then
k k”
according | each of the norms ||. || + exists for limit function ¢ (x,y) ; hence
bg,B.bg,B'
¢ (x,y) €F Ha’ﬁ’ak’A’a;{‘A, .

Also, according to Il, the difference {¢p — ¢, } converges correctly to zero and is bounded in each

of the norms.

Hence, we have
g — pylly” — 0 foranyq,q .

Thus, the space F H is complete.

kA apA
V. The norms || II?”p: are pairwise consistent.

Letn > 0,5,8 and p,p > 0 be given and choose arbitrarily § <&, p <p, 8§ <6,p <p.

Let {¢p (x,y)} € F Hb BbAB . be fundamental in ||. IIgtpp,,. Since ¢, (x, y) is bounded with
respect to || II?’Jp,, ,forany k,k',q,q and x,y , we have

|4 DI y* (y71D,)" ¥y p(ry)| < (A+8)F (B+p) (A +8) (B +p)7
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X ay b, ay b, .
For sufficiently large k > ko, k' > k, , the inequality
A+ 6 (4 +80F < (1Cf™") (A+8)* (4" +6)* holds.
Consequently, forany q,q ,x,yand k = ko, k' = ky,
[ D2 ¥ (51 D,)" 1 g, ()] < 0 A+ BN (B +p)0 (A + 80 (B +p)0
X ai by ay by | (3.2)
Next, using boundedness of ¢, (x,y) with respect to ||. II?‘;" , We arrive at (3.7), for any

k.k',x,y andq = qo, ¢ = qq.
We now examine the remaining case when k < koand k' < ko, 9 < qo , ¢ < qq -

Fork < ko, k' < kg, |x| >1, |yl > 1, we have for any q,q and x, y by virtue of (3.7),
| DYy (y71Dy)" ¥t o, ()

x| Jyl*o

q (,,—1 q 281
T |x|ko—k |y koK DI (y™'Dy)" v ¢y (x,¥)

1 ’ ’ ! ’ ’ ’ ’
< Wn(A+6)"°(B+p)q (4 + 80 (B' +p)" ay, by ay, by

For sufficiently large |x|, say |x| > x,, and |y|, say |y| > y, , we obtain

(A+ &)k (4 + 6')ko
|| vl
(k' =012, ..., kg, q =1,2,.....q0 — 1)
and therefore for g < qo, ¢ <qo, k <ko k' < kg, the inequality (3.7) is satisfied.

ko bg Qrybg < (A+ 8k (A +6)kakb a, by,

Finally, if k < ko, k' < ky then for fixed 8,8, p, p’ constants
(A+ 8 (B+p) (4 +8) (B +p)a b, a, b, are bounded by some number C, .

¢ (y71D,)" y# 1, (,y)| —0for—xg<x<x, 0<y<

Since the sequence {

yo as v — oo for given n > 0 there exists v, sufficiently large such that for v > v,, the

inequality (3.7) holds. Then, for v > v, the inequality (3.7) is satisfied for all x,y,k, k', q,q .

Consequently, for v > v, |I¢VII5¢” + < n, from which it also follows that the sequence

{¢, } tends to zero in the topology of the space F H "Bﬁ o L asv — .
Qaj,a k
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V. If the sequence {¢, (x, y)} is bounded in each of the norms || ¢, IIgi”p, and converges correctly

bq,B,bq,B

to zero, it tends to zero in the topology of the space FH_ Y

Let 5,8, p,p and an arbitrary n > 0 be given. Choose § < 8,p < p,8 <&,p <p.
The numbers ||¢, II“ﬁ 0 are bounded by the constant C‘”g b

For sufficiently large q,q ', k, k' say qo = qq, ko = k, respectively, in the inequality.

(A+8)  B+p) (4 +8) (B +p) T hold
' NE (R g olds .
(A+8) (B+p) (4 +68) (B +p)e cer

Hence, for k < ko, k' < ko q < qo , ¢ = qo, We have
|X" DY y* (y‘lDy)q’yzﬁ‘l b, (x, y)| < n(A+ 8k (B+p)i(A +8)F
x (B + p')q’ak b, a b;, :
Fork <k k' < ko, q <qo q = qq respectively and
x| 1yl > HEoto (cg'ﬂcf‘f’ /n), where
CiPOP = q R H, “f”p A+8) A +6).

5 .,p
We have

|xk D¢ yk' (y‘l Dy)q y2B-1 ¢(x,y)|

_ a5
1 |1 DYyt (v D))" ¥, (x,))
lxl Iyl (A+ 8+ (B +p)7 (A4 + 8V (B +p)7 apys b
q

X (A+ &) (B +p)1 (4 + 8V 1 (B + )7 ayy1 b,
< a RO HEH QIS (A+8)F (B+p)t (4 +8)F (B +p)7
X ai by a b(;
< 1 (A+ 8k (B+p) (A +8) (B +p) a; b, ayb,.
Finally, if k < ko, k' < ky, ¢ <qo, ¢ < qo and
xllyl < HE ™o (cboe )

then by virtue of uniform convergence of the sequence

{D,‘Z (y_lDy)q y2P-1 ¢, (x, y)}, the inequality
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| DI y¥ (y'D,)" ¥ ¢, (x,9)
< n(A+8) (B+p)(A + 8 (B +p") a; b, ay b,
will also hold for sufficiently large v > vj.

Therefore, for v > v,, the inequality (3.3) holds for all x,y,k, k', q,q'

Forv > v,
16,1127 = o [ Dy (r7'D,)" 1 () <
S At O B (A 48 (B +p ) abyap b,
from which it follows that ¢, (x, ) — 0 in the topology of F H_ babg B :
BakAakA

V1. If the sequence {¢, (x,y)} is bounded in each of the norms ||. |Igi"p, and converges correctly

. bq.B.bq.B
to some function ¢ (x,y) then ¢,(x,y) € FHa,ﬁ,ak,A,a;,A

sequence {¢, (x,y)} in the topology of the space F phaP el
a,B,ar.Aay,A

. and Q (x,y) is the limit of the

Now, ¢, (x,y) € F o PP

o B oA by virtue of I.

The difference {p(x,y) — ¢, (x, y)} is bounded in all the norms and converges to zero;
according to Il the difference converges to zero in the topology of the space F H qﬁﬁ ab ABa r
k» k’
Thus proof is completed.
Similarly the other spaces can also be shown to be the complete countable normed
spaces. Moreover, by invoking the theorem due to Zemanian [6, pp.21-23], we infer that the
corresponding dual spaces are also complete.

Now, we define a countable union space as follows:

. bq.B1,b q B1 bq,Bz,b(IZ,Bz
Let A; < A, and B; < B, ; then the space F H B ap A, is a subspace of F Ha Bandnaidy

Further, the convergence of a sequence {¢, (x,y)} in F H ! o BLbg.Br

e ap A, implies the

i by B;
convergence in F H 75202,
g a,f.ay,dz, ak Ay

by B
Hence we may construct the union of countably normed spaces F H q b dad for all indices
A k
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N oo . bq,B2,bg.B;
This union coincides with the space F H 27472,
a,p,ag,a,d,

[oe]

Hbq,B,bq,I? _ F Hbq,B,bq,B ,
a,p,ag,a a,p.ag,Aap,A

A,B=1

F

Similarly, we define

[ee]
FHypoa = U FHyga o and
A=1

[ee]

bq.B.bg byBbg,B
Ha,ﬁ - Ha,ﬂ
B=1
, , bq.B.bg,B" | bg,Bbg bq.B.bg.B'
The elements of the spaces F H, 5 o' » FHyga a4 » Hop H " F Ha'ﬂ'ak'a;( are

called ultra-differentiable functions and those of corresponding dual spaces are called ultra-
distributions.

4. Differential and Integral Operators

Following Zemanian [6], we define the following operators.

Nop ¢ (x,y) = y** D y*P~1 ¢(x,y)

Myp ¢(x,y) = y*$71 D y* ¢(x,y)
y

Neg o(x,y) = y*@ ftzf"l ¢(x,t) dt .

[0¢]

From which follows
Ayg = Myg Nyp = x?F~1 D x* D x2F~1
= (28 —-1) (4a + 2 —2) x*@+B-D 1+ 2(2a + 2 — 1) x*e+4 3D, 4 x2@2a+2-Dp2Z

Note that for a = +%  p=2— % , A, p reduces to

4

Lo

S, = D* — (4p* — 1)/4x2.
Now, we study these operators on the above spaces.

Theorem 4.1: The operation ¢ — N,z ¢ is a continuous linear mapping F Ha,/?,ak,A,a;(,Al into

FHyg1ana.4 . \f b, satisfies (3.1) then the operation ¢ — N,z ¢ is a continuous linear

. by,B,by.B . by,B,by,B H
ing fromF """, intoFH © """ ", .
mapp g a,B.ag.AayA a,p,lag,AaA

Proof: For¢p € FH, 4, a4 »Wehave
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' ' : 41
“DIy* (r70,)" ¥t (N & Gey))| = [ DIy (v710,)" Ty g y)
<CCF A+ A +8) aa .
The proof of the remaining part is similar. Thus proof is completed.
Theorem 4.2: (a) Let a}( satisfy (3.5) and b(} satisfy (3.1) then the operation ¢ — M,z ¢ is a

i i i , by,Bbg,B .
continuous linear mapping from FHypgrapa,.4 (FHM'1 ) into

by,Bby,B H'
, , , q' 1] q' )
FHa,ﬁ,ak,A,ak,A JHq (F Ha,ﬁ )

(b) Let a}( satisfy (3.5) and b; satisfy (3.1) then the operation ¢ — M, s ¢ is a continuous

. . byBbg,B . byBbg,B H
linear mapping from F Ha,ﬁ,1,ak_A,a;(,A’ into F Ha,ﬂ,l,ak,A,a;c,A’ .

Proof: For¢ € FH, 4314, 44,4 » Wehave
r _ _ q,
|2 D¢ y* y?# 1 (y7D,)" (Map & )|
o q+1 5
= |4} y¥ (y710,)" Ty g (xy)]
<CCPUA+O (U +p) aa.
Hence, the result follows. The proof of (b) is similar. Thus proof is completed.

Theorem 4.3: The operation ¢ — Na‘,};d)is a continuous linear mapping from

FHygra,na,0 MOFH, g0 a0 an-f b, satisfies (3.1) then the operation ¢ — Nep ¢ is

. . . bg,B,by,B bg,B,by,B’ .
a continuous linear mapping FH 1 (F B ) into

q

a,p a,,B,l,ak,A,aA,A’

b,,B,b,,B’ b,,B,b,,B’

F H %P (FH" a )
a,B a,plagAayA

Proof: We prove the last part of the theorem; the other two parts can be similarly proved. For

by,B,by,B
¢ EFH V1

a,B,arAayA

|ka,? yk (y—lpy)q'yzﬁ—l (Na‘,}; ¢ (x, y))|

., we have

re q-1 _
= |e*Diy* (y71D,)" T y et g (x,y)|
<C C;xﬁ'l (A+ 8k B+p) (A +p) (B +p)' " a b, aby_y

< CP A+ (B+p)T (A +p) (B +p) a by a by .
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Theorems 4.1 and 4.2 imply that if a, satisfies (3.5) and b[] satisfies (3.1) then the

. . . . . B
operation A,p= Mgz . Ngyp is @ continuous linear mapping from FH_ bq.B.bg, into

ﬂkAkA

bq.B.bg,B' H
ap.apdayA H '

Similar results hold for other two spaces also.

Operations in dual spaces:

by.Bbg,B byBbg,B . .

In the dual spaces F H. wpapdaps + FHaop ) FHa,ﬂ,ak,A,a;c,A, , Ngp is defined as the
adjoint of — M, s and M, 4 is defined as the adjoint of —N,, 5. More precisely, N, ; is defined as
a generalized differential operator on the above dual spaces by

(Nog fr0) = (f,— My @), Where ¢ belongs to

bq.B.bg.B bq,B,bg,B’
FHypiama,a 07 FH o OTFHamakAa;A’ and f belongs to
' bq Bb B bq Bb B H
FHyponaon u, O F H,% rF Haﬁ oo H

On the other hand, M, is defined as a generalized differential operator on the dual

spaces by
(Myp f, @) = {f,—Nyp @), Where ¢ belongs to
bq.Bby,B' bq.B,bg,B’
FHaﬁakAa A or FH FHaﬁakAakA,and f belongs to
' o bq.BbgB H
F Ha.ﬁlllak,A,ak,A Hy O F Ha,ﬁ,ak,A,a;{,A' Hy

Now invoking theorem due to Zemanian [6, p.21-23] and Theorems 4.2 and 4.1 to the
above definitions, we get

Theorem 4.4: (a) The operation f — N,z f is a continuous linear mapping F H, 5 ;. 44! A" i,
into F Hy g 16, 44,4 » If a satisfies (3.5), if b, satisfies (3.1).

bBbBH bBbB

|qusat|sf|es(34) and of FH ‘ e fapAad into FH WA, d

bq Bb B H i
FHY nto FHa"ﬁl

if a; satisfies (3.5) and b, satisfies (3.4).
(b) The operation f — M, f is a continuous linear mapping F H, 14, 44 4 ONO

bBb’B’H bq.B.bg,B

FHypaaa.a » FHg, """ intoFH if b, satisfies (3.4), and if a, satisfies (3.5),
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bqBbg.B H bgBbgB H . byBbgB . -
|fb satisfies (3.1), FH nto FHa'ﬁ‘Lak‘A‘a;{‘A, into FHa’ﬁ’ak’A’a;“A, if b, satisfies
(3.4).

(c) The operation f — A,z fis a continuous linear mapping of FHypana,a 1, ONO

b Bb B H by,B,b B . - .
FHy g oy na,a If ay satisfies (3.5), F H 5" into F H, " g if b, satisfies (3.4) , and if
a,, satisfies (3.5), if bq satisfies (3.4) .
byBbyB H . byBbg,B o
A Hy into F Ha, B g, A if b, satisfies (3.4).

5. Fourier-Hankel type transformation of test functions:
In this section we consider the mapping of the aforesaid ultra differentiable functions by F h, s .

It is easily seen that the Fourier-Hankel transform F H, ; ¢ exists for each test function ¢ in

bq.B.bg.B by,B,b, by,B,by,B

ql » q ql » ql
, , . — >
ap.apay ’ FH“'ﬁak'A'ak'A FH,, a,p FH“,[; ’ FHa,ﬁ,ak,A,ak,A when (C( ‘B) -

FH

1

-
Theorem 5.1: If ay, a, satisfy the condition (3.5) then for (a — ) = —% the conventional

Fourier-Hankel type transform F h, ; defined by (2.1) is a continuous linear mapping from the

space F H* PP into the space F H* P , where Ay = A BH?and B, = A2 H° .

ﬁ kA a,A aBayAapA
Proof: Let K be a bounded set in F Hb Bbq ABa .. Then every ¢ in K satisfies the inequality
ayAap,A

[x D% (r710,) ¥ ;v)| < CP A+ O (B+p)T (4 +8) (B +p)
X aj bq a}c b,
forallq,q € Nyand k, k' =0,1,2......
Let @ (§,t) = F hy g ¢ (x,y) . For any pair of non-negative integers k' and q , from Zemanian
[6. p.139],
Nopg k' =1 v oo Nopq @ (x,y) = yq' Nypq -1 --Nepg ¢ (x,y) and using q'- times
Fhep1(-y¢) = Nyg Fhyp ¢, we get
Nepg k=1 -Nag @ = (DT Fhypo (¥ ¢xy).
Next apply k' —times, F hy g (Nyp ¢) = —(¢) F hyp ¢, We get

Nopg k' —1 o we-Nog @ = (1)1 (—-1/t)k F Rog g k' =1 - Nog & (x,¥)).
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So that
O Nag s Nep @ED = [ [0 Ny s oo Napd )
—00 0

x el ya+ﬁ ]a—ﬁ+q+k (X:Y) dx dy .
Now, the proof is similar to the proof of Theorem 4.1.1 of Lee [3].

Thus, we can write:

(1) +0 &k DI ¢k (t71 D)7 1 @ (4,1)

8\8

j etk 420k piyk (y=1D,)" y2 =1 p(x,y) e (yt) P ], gy (v1) dxdy
0

Now, we assume that v, v are positive integers such that v' > 4a, set n =v + 2q + k and use

g—ath —q, (Z)

the o
a—f+q +k

< C, and the estimate from [4, p.107] and the Theorem

3.11.1 from [4, p.107],
|Ek D? (¢, t)| < CAY (1+6)1% (2B)*a, by, forallk,q =v, we obtain the following
estimate.
|(—1)¥ +¢ gk DItk (¢71D,)7 Pl (E, 1))
< C AT (1+6)7%2 (2B)* a, b CF (B +p) q,
x [(A+p) 20 a,, + (A +6 )"+2 Uy 42
< C AT (1+ 8)172 (2B)% a, by, C° (B +p)7 ¢, (H;(4' +8)) ™" a; +2q
2
x |1+ R (A+6) B, Tq, v2d']

q q+2 k (X,,B ’ ’ q' 1 1 1 ’ k,+2q, , ,
< CAT(1+8)12 (2B azby, €7 (B +p)7 q, (Hi(A +35)) A 424
< C AT (1+6)7 (2B)* a, by 3P RF(AB'H? +p)* @ by (A H® + 67 a2
Thus proof is completed.

Theorem 5.2: If a;, a;’ satisfy the conditiona, < R, H” mina, a,_,p € Ng, 0<q<p

then for (a —fB) = —=, F h,p is continuous linear mapping from the space F H,, B A

-1 p'
into the space F Hg‘ga" & :

I _ I2 ,6
where B,= A“Hp .
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Proof: Following the procedure of the proof of the above theorem we get
(=D)F*7 ¢k D ek (71D T L (E, 1)
< CAT (1+68)7*2 (2B)* ag by €7 (A2 Hf + 8') q a?r .
6. Generalized Fourier-Hankel transformation of the Ultra-Distributions and its Inversion:

For (a — B) = —%, we define the generalized F-H transformation F h;ﬁ on each of the dual

by,B,b, Jbg,B,by,B
,FH Y " "and FH 71

by,B,by.B
4 FH" ro
a,B a,B,ar.Aay,A

FH iy

spaces FH. as

afapa, ’ a.B.axAay,
follows:

(F,®) = (f,$) (6.1)
where ® =F hy,p ¢, F=f h;,ﬁ ¢, ¢ €FH,p and f belongs to the corresponding dual
space.

The generalized Fourier transform of f € D’ is defined to be the element of F € Z'
such that the generalized Parseval relation
(F,y)= Qm)"({f,¢"), where f € FH(;'B ) ¢" €EFH,p .
®=fhypd, F=fhyyf and
® €FH,p , " €EFHyp.
Thus, f hyp ONF H;,ﬁ is the adjoint of the mapping ® — (2m)" ¢".

Since f71[f] = 2mn)™ [f (fV)] and

hep = hgp , wealso have

(f oy f,®) = QE)7US, f hyp @) (6.2)
The inverse Fourier-Hankel type transform can therefore be defined as :
1

r _1
f=(hy) F (@=p)z-3.
Now, applying theorem due to Zemanian [6, pp. 21-23] to Theorems 5.1 and 5.2 above and in
view of definition (6.2) above, we can state the following theorems.

Theorem 6.1 : Let (a — B) = —% . If a, a, satisfy the condition (3.5), then the generalized

Fourier-Hankel type transform f h;ﬁ is a continuous linear mapping from the dual space

ag.d,2 52 | "by,B,by,B
FH “’lintoFH ¥ 1

,B,by,B «pa,A »  Where Ay =AB Hi*and B, = A% H,%.
B.by, B.ay,
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Theorem 6.2: Let (a —B) = —%. If a, ,a, satisfy the condition (3.5), then the generalized

Fourier-Hankel type transform fh;,,,g Is a continuous linear mapping from the dual space

g , "
ag,aq°,B1 . b,,B,b,,B
FH* %, , into FH 779,
a,B,by,B,ay,by,Aq a,p.ag,Aay,A

. Where A; = AB'H> and B, = A2 H®.

7. An operational calculus:

The distributional Fourier-Hankel type transform generates an operational calculus by means of
which certain differential equations involving generalized functions can be solved. We now

consider the differential equation:

P(DF ALy, )u=g (7.1)
where p(x,y) is a polynomial having no zeros on — o < x,y <0, g is a given member of
' , ' o "bq.B.bg,B’ "bg,B.bg "bq.B.bg,B’ .
FHygapa, O FHopapaaa O FHyp or FH, g or FHa‘ﬁ‘ak‘A‘a;(‘A, , Pis a

polynomial such that
P((-i&), (=t»)) #0
and u is an unknown generalized function which is to be determined. Using
F o ((fo 'Alé,ﬁ,y)f) = (—i&)* (—=t»* F h, 4 (f) and applying
F hepg to(7.1), we obtain
(P (i () ) U 0 =6 (0 (7.2)

where U and G are distributional Fourier-Hankel type transforms of u and g respectively.

. N s "bg,Bby,B
Since (P (—i&)*, (—t?)* ) is a multiplier in F Hopana, +FHogaoaan +F Ha;B b

"bg.B,b, "bg,B,by,B
FH 7 FH 7",
a,p a,B.ai.A.apA

, 1/P(—if)" ,(—tz)k’) is a multiplier in the corresponding dual space for
ag, a;( satisfying the condition (3.5) and b, ,b'q satisfying the condition (3.1) .
Therefore,

U0 =GE )/ P((—i)k ,(~tDF) .

By taking the generalized inverse Fourier-Hankel type transform (Fh:,(,ﬁ)_1 , the solution is given by

u(ny) = (Fhiy)” FED/P((—)* ,(—tF ).

This means that for each testing function ¢ belonging to one of the spaces

"bg,B,b, "bg,B,by,B'
FH CFH VY Fg T

"bg.B,by.B
or FH g OrFH 171 o
, a,B a,B.aiAayA

a,B.aphag @ P is a polynomial

a,B,ak,ay

such that P (— ig, —tz) # 0, the unknown u belonging to the corresponding dual space is given by
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(w, (Fhp) " @) = (F(&,0)/P((—i&)F , (—t2)F ), B(E, 1))
= (F (&, 1) @ (&,6)/P((=i®)F, (—tD)* ),
where @ = F hy 5 .
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