Ultra-distributions associated with Fourier-Hankel type transformation B.B.Waphare

MIT ACSC, Alandi, Tal: Khed, Dist: Pune, - 412 105, Maharashtra, India

Abstract: In this paper we study the Fourier-Hankel type transform to spaces of Ultra-distributions. For this purpose, spaces $FH_{\alpha,\beta,a_k,A,a_k',A'}$, $FH_{\alpha,\beta}^{b_q,B,b_q',B'}$, $FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$ are constructed on which Fourier-Hankel type transform $(Fh_{\alpha,\beta})$ is defined. It is proved that the so defined F-H type transform $Fh_{\alpha,\beta}$ is a continuous linear mapping from the space $FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$ into the space $FH_{\alpha,\beta,b_k,B,a_k',b_k',A'_1}^{a_q,A,a_q^2,B'_1}$. Further generalized F-H transform is defined and its inversion formula is given. An operational transform formula is also established. In the end, a differential equation of the form $P(D_x, \Delta_{\alpha,\beta})$ u = g has been solved by using the so defined F-H transform. **Keywords:** Fourier-Hankel type transformation, Ultra-distribution.

1. Introduction:

If the test function spaces are some classes of non-quasi-analytic functions with some natural topology, then the dual spaces have the properties analogous to those of distributions (see Pathak [4]). The elements of these spaces are the ultra-distributions. Pathak [4] has given a comprehensive account of extensions of Fourier and Hankel transformations of Ultra-distributions (of Roumieu type). Following the idea of Roumieu [5] and Komatsu [2], we introduce the space of Ultra-differentiable functions on which the combined Fourier-Hankel transformation acts as a continuous linear mapping, so that the generalized F - H transformation on the corresponding dual spaces also acts as a continuous linear mapping.

2. Notations and terminology:

In this paper we follow the notations and terminology of Pathak [4] and Zemanian [6].

Fourier-Hankel type transform: We define an integral transform for which the Kernel is the product of the kernels of Fourier and the Hankel transformations as below:

Let $\phi(x,y)$ be a suitably restricted function on $-\infty < x < \infty$, $0 < y < \infty$ then its Fourier-Hankel type transform is given by:

$$F h_{\alpha,\beta} \phi = \Phi(\lambda,t) = \int_{-\infty}^{\infty} \int_{0}^{\infty} e^{i \lambda x} (yt)^{\alpha+\beta} J_{\alpha-\beta}(yt) \phi(x,y) dxdy, \qquad (2.1)$$

where $J_{\alpha-\beta}$ (yt) is the Bessel type function of first kind of order $\alpha-\beta$, and $\alpha-\beta$ is real with $(\alpha-\beta) \geq -\frac{1}{2}$.

3. Test function spaces and their duals:

Let $\{a_k\}$ and $\{b_k\}$ be two arbitrary sequences of positive real numbers. We shall impose some of the following constraints on these sequences so that the resulting space of test functions may be non-quasi analytic and closed under certain algebraic, differential and integral operations.

$$b_q^2 \le b_{q-1} b_{q+1} \text{ for all } q \in \mathbb{N}_0.$$
 (3.1)

An immediate consequence of this inequality is

$$b_p \ b_q \le b_0 \ b_{p+q} \ , \ \ p, q \in \mathbb{N}_0 \ ;$$
 (3.2)

and

$$\sum_{q=0}^{\infty} b_{q-1} b_q < \infty . \tag{3.3}$$

Further there are constants R, $R_1 > 0$ and H, $H_1 > 1$ such that

$$b_p \leq R H^p \min_{0 \leq q \leq p} b_p b_{p-q} \quad , \quad p \in \mathbb{N}_0$$
 (3.4)

and

$$a_p \le R_1 H_1^p \min_{0 \le q \le p} a_q \ a_{p-q}, \ p \in \mathbb{N}_0$$
 (3.5)

Now we construct certain test function spaces on which F - H transformation can be studied systematically.

The test function spaces:

$$F H_{\alpha,\beta,a_k,A,a_k',A'}$$
, $F H_{\alpha,\beta}^{b_q,B,b_q',B'}$, $F H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$.

Let ϕ be an infinitely differentiable function defined on the set

$$I = (-\infty, \infty) \times (0, \infty).$$

$$\phi \in F H_{\alpha,\beta,a_k,A,a_k,A'}^{b_q,B'}$$
 if and only if

$$\left| x^{k} D_{x}^{q} y^{k'} (y^{-1} D_{y})^{q'} y^{2\beta - 1} \phi (x, y) \right| \leq C^{\alpha - \beta} (A + \delta)^{k} (B + \rho)^{q} (A' + \delta)^{k} \times (B' + \rho')^{q} a_{k} b_{q} a_{k}' b_{q}'$$

for all k, k', $q, q' \in \mathbb{N}_0$, where δ, δ' and $\rho, \rho' > 0$ are arbitrary small numbers and $C^{\alpha-\beta}$, A, B, A', B' are certain positive constants depending on ϕ and $\{a_k\}$, $\{b_k\}$ are arbitrary sequences of positive numbers satisfying the conditions (3.1) to (3.5) for ascertaining that the resultant space of test functions is non-quasi analytic and closed under certain algebraic differential and integral operations.

In this space, we introduce the norm as follows:

$$\|\phi\|_{\delta,\delta',\rho,\rho'}^{\alpha,\beta} = Sup \frac{\left|x^k D_x^1 y^{k'} (y^{-1} D_y)^{q'} y^{2\beta-1} \phi(x,y)\right|}{(A+\delta)^k (B+\rho)^q (A'+\delta')^{k'} (B'+\rho')^{q'} a_k b_q a_k' b_q'}$$
(3.6)

where *Sup* is over all

$$(x,y) \in (-\infty,\infty) \times (0,\infty), k, k', q, q' \in \mathbb{N}_0$$
.

Here

$$q,q^{'},\delta,\delta^{'},\rho,\rho^{'}=1,\frac{1}{2},\dots$$

Here we note that

$$\|\phi\|_{1/n}^{\alpha,\beta} \le \|\phi\|_{1/(n+1)}^{\alpha,\beta}$$
, $n = 1,2,...$

Similarly the other spaces $FH_{\alpha,\beta,a_k,A,a_k',A'}$, $H_{\alpha,\beta}^{b_q,B,b_q',B'}$ can be defined and corresponding norms

on each of them, as follows:

$$\phi \in F H_{\alpha,\beta,a_k,A,a_k,A'}$$
 if and only if

$$\left| x^k D_x^q y^{k'} \left(y^{-1} D_y \right)^{q'} y^{2\beta - 1} \phi(x, y) \right| \le C^{\alpha - \beta} (A + \delta)^k (A' + \delta')^{k'} a_k a_k'$$

and

$$\phi \in F H_{\alpha,\beta}^{b_q,B,b_q',B'} \text{ if and only if}$$

$$\left| x^k D_x^q y^{k'} \left(y^{-1} D_y \right)^{q'} y^{2\beta-1} \phi(x,y) \right| \leq C^{\alpha-\beta} (B+\delta)^q (B'+\rho')^{q'} b_q b_q' \text{ , and}$$

$$\phi \in F H_{\alpha,\beta}^{b_q,\beta,b_q',\beta'} \text{ if and only if}$$

$$\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \phi(x, y) \right| \leq C^{\alpha - \beta} (B + \delta)^{q} (B' + \rho')^{q'} b_{q} b'_{q}, .$$

For
$$a_k=k^{kr}$$
 , $a_k^{'}=k^{'k_r^{'}}$ and $b_q=q^{qs}$, $b_q^{'}=q^{'q^{'}s}$ r , $r^{'}$, s , $s^{'}\geq 0$,

it can be seen that the spaces $FH_{\alpha,\beta,a_k,A,a_k',A'}$, $FH_{\alpha,\beta}^{b_q,B,b_q'}$, $FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q'}$ reduce to $FH_{\alpha,\beta,r,r',A,A'}$, $FH_{\alpha,\beta}^{s,s',B,B'}$, $FH_{\alpha,\beta,r,r',A,A'}^{s,s',B,B'}$, $FH_{\alpha,\beta,r,r',A,A'}^{s,s',B,B'}$, respectively, similar to the those studies by Lee [3].

If b_q , $b_q^{'}$ satisfy the condition (3.1), then the space $D\left\{b_q, b_q^{'}(-\infty, \infty) \times (0, \infty)\right\}$ is a subspace of $FH_{\alpha,\beta,a_k,A,a_k^{'},A^{'}}^{b_q,B,b_q^{'},B^{'}}$ and the convergence in $D\left\{b_q,b_q^{'},(-\infty,\infty) \times (0,\infty)\right\}$ implies convergence in $FH_{\alpha,\beta,a_k,A,a_k^{'},A^{'}}^{b_q,b_q,B,b_q^{'},B^{'}}$.

Following Gel'fand and Shilov [1, pp.179-181], we prove the following theorem:

Theorem 3.1: Let a_k , a'_k satisfy (3.5). Then $FH^{b_q,B,b'_q,B'}_{\alpha,\beta,a_k,A,a'_k,A'}$ is a complete countably normed perfect space. The dual is also complete.

Let $\phi(x,y)$ be an infinitely differentiable function defined on $-\infty < x < \infty$, $0 < y < \infty$.

 $\phi(x,y) \in F H_{\alpha,\beta,a_k,A,a_k,A'}^{b_q,B,b_q',B'}$ if and only if (3.6) holds.

With the system of norms (3.6), we assert that the space $FH_{\alpha,\beta,a_k,a_k',A'}^{b_q,B,b_q',B'}$ becomes a complete countably normed space. All that we need here is to establish that for every Cauchy sequence $\{\phi_{\nu}(x,y)\}$ in $FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$, $\{D^k\phi_{\nu}(x,y)\}$ converges uniformly on every compact subset of $R\times I$ to smooth function $D^k\phi(x,y)$, for each $k=1,2,\ldots,$ where $\phi(x,y)\in FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$.

Now, the convergence of $\{\phi_{\nu}(x,y)\}\$ can be defined as follows:

Definition 3.1: A sequence of an infinitely differentiable function $\{\phi_{\nu}(x,y)\}$ is said to be correctly convergent to the function $\phi(x,y)$ if for any q,q', the function

$$x^k D_x^q y^{k'} (y^{-1} D_y)^{q'} y^{2\beta-1} \phi_v (x, y)$$
 converges uniformly to $x^k D_x^q y^{k'} (y^{-1} D_y)^{q'} y^{2\beta-1} \phi_v (x, y)$ in any bounded interval.

The proof of the theorem which runs parallel to that of one given by Pathak [4, pp. 286 – 289] is broken into several steps:

I. If the sequence $\{\phi_{\nu}(x,y)\}$ converges correctly to some function $\phi(x,y)$ and for some $\delta,\rho,\delta',\rho'$,

$$\|\phi_{
u}\|_{\delta^{'},
ho^{'}}^{\delta,
ho}\leq \mathcal{C}^{lpha-eta}$$
 , $\mathcal{C}^{lpha-eta}>0$,

then the norm $\| \|_{\delta',\rho'}^{\delta,\rho}$ exists even for some function $\phi(x,y)$ and

$$\|\phi_{\nu}\|_{\delta^{'},\rho^{'}}^{\delta,\rho} \leq C^{\alpha-\beta}.$$

Now for -a < x < a, $0 \le y < b$,

$$\sup_{x,y} \frac{\left| x^k D_x^q y^{k'} \left(y^{-1} D_y \right)^{q'} y^{2\beta - 1} \phi(x,y) \right|}{(A + \delta)^k (B + \rho)^q (A' + \delta')^{k'} (B' + \rho')^{q'} a_k b_q a_k' b_q'} , \qquad k,k' \leq q,q' \leq p$$

$$= \lim_{v \to \infty} \sup_{x,y} \frac{\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta-1} \phi(x,y) \right|}{(A+\delta)^{k} (B+\rho)^{q} (A'+\delta')^{k'} (B'+\rho')^{q'} a_{k} b_{k} a_{k}' b_{k}'}$$

$$\leq \|\phi_{\nu}\|_{\delta^{\prime}\rho^{\prime}}^{\delta,\rho}$$

< $C^{\alpha-\beta}$.

Now, we take the limit $a \to \infty$, $b \to \infty$, $p \to \infty$, and obtain

$$\sup_{x,y} \frac{\left| x^{k} D_{x}^{q} y^{k'} (y^{-1} D_{y})^{q'} y^{2\beta-1} \phi(x,y) \right|}{(A+\delta)^{k} (B+\rho)^{q} (A'+\delta')^{k'} (B'+\rho')^{q'} a_{k} b_{q} a_{k}' b_{q}'} \leq C^{\alpha-\beta}$$

$$k.k' \leq q, q'$$

II. If the sequence $\{\phi_{\nu}(x,y)\}$ converges to zero at each point and is fundamental in the norm $\|.\|_{\delta',\rho'}^{\delta,\rho}$, then $\|\phi_{\nu}\|_{\delta',\rho'}^{\delta,\rho} \to 0$.

As the sequence $\{\phi_{\nu}\}$ is fundamental, it converges correctly to zero and hence the sequence $\{\phi_{\nu}-\phi_{\mu}\}$ converges correctly to ϕ_{ν} as $\mu\to\infty$.

Thus for given $\epsilon > 0$ there exists a sufficiently large ν such that

$$\|\phi_{\nu}\|_{\delta^{'},\rho^{'}}^{\delta,\rho} \leq \sup_{\mu \geq \nu} \|\phi_{\nu} - \phi_{\mu}\|_{\delta^{'},\rho^{'}}^{\delta,\rho} < E.$$

III. The space $F H_{\alpha,\beta,a_k,A,a_k',A'}^{bq,B,b'_q,B'}$ be a fundamental sequence in each of the norms $\|.\|_{\delta',\rho'}^{\delta,\rho}$. Then according I each of the norms $\|.\|_{\delta',\rho'}^{\delta,\rho}$ exists for limit function $\phi(x,y)$; hence

$$\phi\left(x,y\right) \in F\; H^{b_{q},B,b_{q}^{'},B^{'}}_{\alpha,\beta,a_{k},A,a_{k}^{'},A^{'}}\;.$$

Also, according to II, the difference $\{\phi - \phi_{\nu}\}$ converges correctly to zero and is bounded in each of the norms.

Hence, we have

$$\|\phi-\phi_{\nu}\|_{\delta^{'},\rho^{'}}^{\delta,\rho}\longrightarrow 0$$
 for any q,q' .

Thus, the space $F H_{\alpha,\beta,\alpha_k,A,a_k',A'}^{b_q,B,q,B',B'}$ is complete.

IV. The norms $\| \|_{\delta',\rho'}^{\delta,\rho}$ are pairwise consistent.

Let $\eta > 0$, δ , $\delta^{'}$ and ρ , $\rho^{'} > 0$ be given and choose arbitrarily $\delta^{'} < \delta$, $\rho^{''} < \rho^{'}$, $\delta^{'} < \delta$, $\rho^{'} < \rho$.

Let $\{\phi(x,y)\}\in FH^{b_q,B,b_q',B'}_{\alpha,\beta,a_k,A,a_k',A'}$ be fundamental in $\|.\|^{\delta,\rho}_{\delta',\rho''}$. Since $\phi_{\nu}(x,y)$ is bounded with

respect to $\| \|_{\delta^{'},\rho^{''}}^{\delta,\rho}$, for any $k,k^{'},q,q^{'}$ and x,y , we have

$$\left| x^{k} \mathcal{D}_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \phi(x, y) \right| \leq (A + \delta)^{k} (B + \rho)^{q} (A' + \delta')^{k'} (B' + \rho')^{q'}$$

$$\times a_k b_q a'_k b'_q$$
.

For sufficiently large $k > k_{0}$, $k^{'} > k_{0}^{'}$, the inequality

$$(A + \delta')^k (A' + \delta')^{k'} \le (\eta' C_1^{\alpha - \beta}) (A + \delta)^k (A' + \delta')^{k'}$$
 holds.

Consequently, for any q, q', x, y and $k \ge k_0$, $k' \ge k'_0$,

$$\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \phi_{v} (x, y) \right| \leq \eta (A + \delta)^{k} (B + \rho)^{q} (A' + \delta')^{k'} (B' + \rho')^{q'}$$

$$\times a_{k} b_{a} a_{k}' b_{a}'$$
(3.2)

Next, using boundedness of $\phi_{\nu}(x,y)$ with respect to $\|.\|_{\delta',\rho''}^{\delta,\rho}$, we arrive at (3.7), for any k,k',x,y and $q \geq q_0$, $q' \geq q'_0$.

We now examine the remaining case when $k < k_0$ and $k' < k'_0$, $q < q_0$, $q' < q'_0$. For $k < k_0$, $k' < k'_0$, |x| > 1, |y| > 1, we have for any q, q' and x, y by virtue of (3.7),

$$\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \phi_{v} \left(x, y \right) \right|$$

$$= \frac{|x|^{k_0} |y|^{k'_0}}{|x|^{k_0-k} |y|^{k'_0-k'}} \left| D_x^q \left(y^{-1} D_y \right)^{q'} y^{2\beta-1} \phi_v \left(x, y \right) \right|$$

$$\leq \frac{1}{|x||y|} \eta (A+\delta)^{k_0} (B+\rho)^q (A'+\delta')^{k'_0} (B'+\rho')^{q^1} a_{k_0} b_q a'_{k_0} b'_q.$$

For sufficiently large |x|, say $|x|>x_0$, and |y|, say $|y|>y_0$, we obtain

$$\frac{(A+\delta)^{k_0}}{|x|} \frac{(A^{'}+\delta^{'})^{k_0^{'}}}{|y|} a_{k_0} b_q a_{k_0}^{'} b_q^{'} \leq (A+\delta)^k (A^{'}+\delta^{'})^{k^{'}} a_k b_q a_k^{'} b_k^{'}$$

$$(k^{'}=0,1,2,\ldots,k_0^{'},q^{'}=1,2,\ldots,q_0^{'}-1)$$

and therefore for $q < q_0$, $q^{'} < q_0^{'}$, $k < k_0$, $k^{'} < k_0^{'}$, the inequality (3.7) is satisfied.

Finally, if $k < k_0$, $k' < k'_0$ then for fixed $\delta, \delta', \rho, p'$ constants

 $(A+\delta)^k (B+\rho)^q (A^{'}+\delta^{'})^{k^{'}} (B^{'}+\rho^{'})^q a_k b_q a_k^{'} b_q^{'}$ are bounded by some number C_2 .

Since the sequence $\left\{ \left| D_x^q \left(y^{-1} D_y \right)^{q'} y^{2\beta - 1} \phi_{\nu} \left(x, y \right) \right| \to 0 \text{ for } -x_0 \le x \le x_0 \text{ , } 0 \le y \le y_0 \text{ as } \nu \to \infty \text{ for given } \eta > 0 \text{ there exists } \nu_0 \text{ sufficiently large such that for } \nu > \nu_0 \text{, the inequality (3.7) holds. Then, for } \nu > \nu_0 \text{, the inequality (3.7) is satisfied for all } x, y, k, k', q, q'.$

Consequently, for $\nu > \nu_0$, $\|\phi_\nu\|_{\delta',\rho'}^{\delta,\rho} \leq \eta$, from which it also follows that the sequence $\{\phi_\nu\}$ tends to zero in the topology of the space F $H_{\alpha,\beta,a_k,a_k',A'}^{b_q,\beta,b_q',B'}$ as $\nu \to \infty$.

V. If the sequence $\{\phi_{\nu}(x,y)\}$ is bounded in each of the norms $\|\phi_{\nu}\|_{\delta',\rho'}^{\delta,\rho}$ and converges correctly to zero, it tends to zero in the topology of the space $FH_{\alpha,\beta,\alpha_k,A,\alpha_k,A'}^{bq,B,b'_q,B'}$.

Let $\delta, \delta', \rho, \rho'$ and an arbitrary $\eta > 0$ be given. Choose $\delta' < \delta, \rho' < \rho, \delta'' < \delta, \rho'' < \rho'$. The numbers $\|\phi_{\nu}\|_{\delta', \rho'}^{\alpha, \beta, \delta, \rho}$ are bounded by the constant $C_{\delta', \rho''}^{\alpha, \beta, \delta, \rho}$.

For sufficiently large q, q', k, k' say $q_0 \ge q'_0$, $k_0 \ge k'_0$ respectively, in the inequality.

$$\frac{(A+\delta)^{k} (B+\rho^{'})^{q} (A^{'}+\delta^{'})^{k^{'}} (B^{'}+\rho^{''})^{q^{'}}}{(A+\delta)^{k} (B+\rho)^{q} (A^{'}+\delta^{'})^{k^{'}} (B^{'}+\rho^{'})^{q^{'}}} < \frac{\eta}{C_{\delta^{'},\rho^{'}}^{\alpha,\beta,\delta,\rho}} \ holds \ .$$

Hence, for $k \leq k_0$, $k^{'} \leq k_0^{'}$, $q \leq q_0$, $q^{'} \geq q_0^{'}$, we have

$$\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \phi_{v}(x, y) \right| \leq \eta (A + \delta)^{k} (B + \rho)^{q} (A' + \delta')^{k'}$$

$$\times (B' + \rho')^{q'} a_{k} b_{q} a'_{k} b'_{q}.$$

For $k \leq k_0$, $k^{'} \leq k_0^{'}$, $q \leq q_0$, $q^{'} \geq q_0^{'}$ respectively and

$$|x| |y| > H_1^{k_0 + k'_0} \left(C_{\delta', \rho''}^{\alpha, \beta, \delta, \rho} / \eta \right)$$
, where
 $C_{\delta', \rho''}^{\alpha, \beta, \delta, \rho} = a_1 R_1 H_1 C_{\delta', \rho''}^{\alpha, \beta, \delta, \rho} (A + \delta) (A' + \delta')$.

We have

$$\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta-1} \phi(x,y) \right|$$

$$= \frac{1}{|x| |y|} \frac{\left| x^{k+1} D_{x}^{q} y^{k+1} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta-1} \phi_{v}(x,y) \right|}{(A+\delta)^{k+1} (B+\rho)^{q} (A'+\delta')^{k+1} (B'+\rho')^{q'} a_{k+1} b_{q}}$$

$$\times (A+\delta)^{k+1} (B+\rho)^{q} (A'+\delta')^{k'+1} (B'+\rho')^{q'} a_{k+1} b_{q}}$$

$$\leq a_{1} R_{1} H_{1}^{k+k'+2} \|\phi\|_{\delta,\rho'}^{\alpha,\beta,\delta,\rho} (A+\delta)^{k} (B+\rho)^{q} (A'+\delta')^{k'} (B'+\rho')^{q'} x_{k} b_{q} a_{k}' b_{q}'$$

$$\leq \eta (A+\delta)^{k} (B+\rho)^{q} (A'+\delta')^{k'} (B'+\rho')^{q'} a_{k} b_{q} a_{k}' b_{q}'.$$

Finally, if $k < k_0$, $k^{'} < k_0^{'}$, $q < q_0$, $q^{'} < q_0^{'}$ and

$$|x||y| \leq H_q^{k_0 + k_0'} \left(C_{\delta',\rho''}^{\alpha,\beta,\delta,\rho} / \eta \right)$$

then by virtue of uniform convergence of the sequence

$$\left\{D_x^q \left(y^{-1}D_y\right)^{q'} y^{2\beta-1} \phi_v \left(x,y\right)\right\}$$
, the inequality

$$\left| x^{k} D_{x}^{q} y^{k'} (y^{1} D_{y})^{q'} y^{2\beta - 1} \phi_{v} (x, y) \right|$$

$$\leq \eta (A + \delta)^{k} (B + \rho)^{q} (A' + \delta')^{k'} (B' + \rho')^{q'} a_{k} b_{q} a_{k}' b_{q}'$$

will also hold for sufficiently large $\nu \geq \nu_0$.

Therefore, for $v \ge v_0$, the inequality (3.3) holds for all x, y, k, k', q, q'For $v \ge v_0$

$$\|\phi_{v}\|_{\delta^{'},\rho^{'}}^{\delta,\rho} = \frac{\sup_{x,y} \frac{\left|x^{k} D_{x}^{q} y^{k'} (y^{-1} D_{y})^{q'} y^{2\beta 1} \phi(x,y)\right|}{(A+\delta)^{k} (B+\rho)^{q} (A'+\delta')^{k'} (B'+\rho')^{q'} a_{k} b_{q} a_{k}' b_{q}'} < \eta ,$$

from which it follows that $\phi_{\nu}(x,y) \to 0$ in the topology of $F H_{\alpha,\beta,a_k,A,a_k,A'}^{b_q,\beta,b_q',B'}$.

VI. If the sequence $\{\phi_{\nu}(x,y)\}$ is bounded in each of the norms $\|.\|_{\delta',\rho'}^{\delta,\rho}$ and converges correctly to some function $\phi(x,y)$ then $\phi_{\nu}(x,y) \in F$ $H_{\alpha,\beta,a_k,A,a_k',A'}^{b_{q},\beta,b_{q}',B'}$ and Q(x,y) is the limit of the sequence $\{\phi_{\nu}(x,y)\}$ in the topology of the space F $H_{\alpha,\beta,a_k,A,a_k',A'}^{b_{q},\beta,b_{q}',B'}$.

Now,
$$\phi_{\nu}(x, y) \in F H_{\alpha, \beta, a_{\nu}, A, a_{\nu}, A'}^{b_{q}, \beta', b'_{q}, B'}$$
 by virtue of I.

The difference $\{\phi(x,y) - \phi_{\nu}(x,y)\}$ is bounded in all the norms and converges to zero; according to II the difference converges to zero in the topology of the space F $H^{b_q,\beta,b'_q,B'}_{\alpha,\beta,a_k,A,a'_k,A'}$. Thus proof is completed.

Similarly the other spaces can also be shown to be the complete countable normed spaces. Moreover, by invoking the theorem due to Zemanian [6, pp.21-23], we infer that the corresponding dual spaces are also complete.

Now, we define a countable union space as follows:

Let $A_1 < A_2$ and $B_1 < B_2$; then the space $F \; H^{b_q,B_1,b_q',B_1'}_{\alpha,\beta,a_k,A_1,a_k',A_1'}$ is a subspace of $F \; H^{b_q,B_2,b_q',B_2}_{\alpha,\beta,a_k,A_2,a_k',A_2'}$.

Further, the convergence of a sequence $\{\phi_{\nu}(x,y)\}$ in $FH_{\alpha,\beta,a_k,A_1,a_k',A_1'}^{b_q,B_1,b_q',B_1'}$ implies the convergence in $FH_{\alpha,\beta,a_k,A_2,a_k',A_2'}^{b_q,B_2,b_q',B_2'}$.

Hence we may construct the union of countably normed spaces $F H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B_1,b'_q,B'}$ for all indices A,B=1,2,...

This union coincides with the space $F H_{\alpha,\beta,a_k,a_k,a_k'}^{b_q,B_2,b_q',B_2'}$

$$F H_{\alpha,\beta,a_k,a_k'}^{b_q,B,b_q',B'} = \bigcup_{AB=1}^{\infty} F H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}.$$

Similarly, we define

$$F H_{\alpha,\beta,a_k,a_k^{'}} = \bigcup_{A=1}^{\infty} F H_{\alpha,\beta,a_k,a_k^{'},A^{'}} \quad \text{and}$$

$$H_{\alpha,\beta}^{b_q,B,b_q^{'}} = \bigcup_{B=1}^{\infty} H_{\alpha,\beta}^{b_q,B,b_q^{'},B^{'}}$$

The elements of the spaces $FH_{\alpha,\beta,a_k,a_k'}$, $FH_{\alpha,\beta,a_k,A,a_k',A'}$, $H_{\alpha,\beta}^{b_q,B,b_q',B'}$, $H_{\alpha,\beta}^{b_q,B,b_q'}$, $FH_{\alpha,\beta,a_k,a_k'}^{b_q,B,b_q',B'}$ are called ultra-differentiable functions and those of corresponding dual spaces are called ultra-distributions.

4. Differential and Integral Operators

Following Zemanian [6], we define the following operators.

$$N_{\alpha,\beta} \phi(x,y) = y^{2\alpha} D y^{2\beta-1} \phi(x,y)$$

$$M_{\alpha,\beta} \phi(x,y) = y^{2\beta-1} D y^{2\alpha} \phi(x,y)$$

$$N_{\alpha,\beta}^{-1} \phi(x,y) = y^{2\alpha} \int_{-\infty}^{y} t^{2\beta-1} \phi(x,t) dt.$$

From which follows

$$\begin{split} \Delta_{\alpha,\beta} &= \, M_{\alpha,\beta} \,\, N_{\alpha,\beta} \, = \, x^{2\beta-1} \, D \, x^{4\alpha} \, D \, x^{2\beta-1} \\ &= \, (2\beta-1) \, (4\alpha+2\beta-2) \, x^{4(\alpha+\beta-1)} + 2(2\alpha+2\beta-1) \, x^{4\alpha+4\beta-3} D_x + x^{2(2\alpha+2\beta-1)} D_x^2 \, . \end{split}$$
 Note that for $\alpha = \frac{1}{4} + \frac{\mu}{2}$, $\beta = \frac{1}{4} - \frac{\mu}{2}$, $\Delta_{\alpha,\beta}$ reduces to
$$S_\mu \, = \, D^2 - (4\mu^2-1)/4x^2 \, . \end{split}$$

Now, we study these operators on the above spaces.

Theorem 4.1: The operation $\phi \to N_{\alpha,\beta} \phi$ is a continuous linear mapping $F H_{\alpha,\beta,a_k,A,a_k',A'}$ into $F H_{\alpha,\beta,1,a_k,A,a_k',A'}$. If b_q' satisfies (3.1) then the operation $\phi \to N_{\alpha,\beta} \phi$ is a continuous linear mapping from $F_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$ into $F H_{\alpha,\beta,1,a_k,A,a_k',A'}^{b_q,B,b_q',B',A'}$.

Proof: For $\phi \in F H_{\alpha,\beta,a_k,A,a_k',A'}$, we have

$$\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \left(N_{\alpha, \beta} \phi(x, y) \right) \right| = \left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q' + 1} y^{2\beta - 1} \phi(x, y) \right|$$

$$\leq C C_{q}^{\alpha, \beta} (A + \delta)^{k} (A' + \delta')^{k'} \alpha_{k} \alpha_{k}'.$$

The proof of the remaining part is similar. Thus proof is completed.

Theorem 4.2: (a) Let a'_k satisfy (3.5) and b'_q satisfy (3.1) then the operation $\phi \to M_{\alpha,\beta} \phi$ is a continuous linear mapping from $F H_{\alpha,\beta,1,a_k,a'_k,A'} \left(F H_{\alpha,\beta,1}^{b_q,B,b'_q,B'} \right)$ into $F H_{\alpha,\beta,a_k,A,a'_k,A',H'_1} \left(F H_{\alpha,\beta}^{b_q,B,b'_q,B',H'} \right)$.

(b) Let a_k' satisfy (3.5) and b_q' satisfy (3.1) then the operation $\phi \to M_{\alpha,\beta}$ ϕ is a continuous linear mapping from F $H_{\alpha,\beta,1,a_{k,A},a_{k},A'}^{b_q,B,b_q',B'}$ into F $H_{\alpha,\beta,1,a_{k},A,a_{k},A'}^{b_q,B,b_q',B',H'}$.

Proof: For $\phi \in FH_{\alpha,\beta,1,a_k,A,a_k,A'}$, we have

$$\begin{aligned} & \left| x^{k} D_{x}^{q} y^{k'} y^{2\beta-1} (y^{-1} D_{y})^{q'} \left(M_{\alpha,\beta} \phi (x,y) \right) \right| \\ &= \left| x^{k} D_{x}^{q} y^{k'} (y^{-1} D_{y})^{q'+1} y^{2\beta-1} \phi (x,y) \right| \\ &\leq C C_{q}^{\alpha,\beta} (A+\delta)^{k} (A'+\rho')^{k'} a_{k} a_{k}' . \end{aligned}$$

Hence, the result follows. The proof of (b) is similar. Thus proof is completed.

Theorem 4.3: The operation $\phi \to N_{\alpha,\beta}^{-1} \phi$ is a continuous linear mapping from $F H_{\alpha,\beta,1,a_k,A,a_k',A'}$ into $F H_{\alpha,\beta,a_k,A,a_k',A',H_1'}$. If b_q' satisfies (3.1) then the operation $\phi \to N_{\alpha,\beta}^{-1} \phi$ is a continuous linear mapping $F H_{\alpha,\beta}^{b_q,B,b_q',B'} \left(F H_{\alpha,\beta,1,a_k,A,a_k',A'}^{b_q,B,b_q',B'}\right)$ into $F H_{\alpha,\beta}^{b_q,B,b_q',B'} \left(F H_{\alpha,\beta,1,a_k,A,a_k',A,a_k',A'}^{b_q,B,b_q',B'}\right)$.

Proof: We prove the last part of the theorem; the other two parts can be similarly proved. For $\phi \in F H^{b_q,B,b'_q,B'}_{\alpha,\beta,a_k,A,a'_k,A'}$, we have

$$\begin{split} & \left| x^{k} D_{x}^{q} \ y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \left(N_{\alpha, \beta}^{-1} \ \phi \left(x, y \right) \right) \right| \\ & = \left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q' - 1} y^{-(4\alpha + 2\beta)} \phi(x, y) \right| \\ & \leq C \ C_{q'}^{\alpha, \beta, 1} \ (A + \delta)^{k} \ (B + \rho)^{q} \ (A' + \rho')^{k'} \ (B' + \rho')^{q' - 1} \ a_{k} \ b_{q} \ a_{k}' \ b_{q - 1}' \\ & \leq C_{q'}^{\alpha, \beta, 1} \ (A + \delta)^{k} \ (B + \rho)^{q} \ (A' + \rho')^{k'} \ (B' + \rho')^{q'} \ a_{k} \ b_{q} \ a_{k}' \ b_{q}' \ . \end{split}$$

Theorems 4.1 and 4.2 imply that if $a_k^{'}$ satisfies (3.5) and $b_q^{'}$ satisfies (3.1) then the operation $\Delta_{\alpha,\beta}=M_{\alpha,\beta}$. $N_{\alpha,\beta}$ is a continuous linear mapping from $FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B',B'}$ into $FH_{\alpha,\beta,a_k,A,a_k',A',H'}^{b_q,B,b_q',B',B',A',H'}$.

Similar results hold for other two spaces also.

Operations in dual spaces:

In the dual spaces $FH'_{\alpha,\beta,a_k,A,a'_k,A'}$, $FH^{b_q,B,b'_q,B'}_{\alpha,\beta}$, $FH^{b_q,B,b'_q,B'}_{\alpha,\beta,a_k,A,a'_k,A'}$, $N_{\alpha,\beta}$ is defined as the adjoint of $-N_{\alpha,\beta}$. More precisely, $N_{\alpha,\beta}$ is defined as a generalized differential operator on the above dual spaces by

$$\langle N_{\alpha,\beta} f, \phi \rangle = \langle f, -M_{\alpha,\beta} \phi \rangle$$
, where ϕ belongs to

$$FH_{\alpha,\beta,1,a_k,A,a_k',A}$$
 or $FH_{\alpha,\beta,1}^{b_q,B,b_q',B'}$ or $FH_{\alpha,\beta,1,a_k,A,a_k',A'}^{bq,B,b_q',B'}$ and f belongs to

$$F\ H_{\alpha,\beta,a_{k},A,a_{k}',A^{'},H_{1}^{'}}^{'}\ or\ F\ H_{\alpha,\beta}^{b_{q},B,b_{q}',B^{'}}\\ or\ F\ H_{\alpha,\beta,a_{k},A,a_{k}',A^{'},H_{1}^{'}}^{b_{q},B,b_{q}',B^{'},H_{1}^{'}}\ .$$

On the other hand, $M_{\alpha,\beta}$ is defined as a generalized differential operator on the dual spaces by

$$\langle M_{\alpha,\beta} f, \phi \rangle = \langle f, -N_{\alpha,\beta} \phi \rangle$$
, where ϕ belongs to

$$F H_{\alpha,\beta,a_k,A,a_k',A'}$$
 or $F H_{\alpha,\beta}^{b_q,B,b_q',B'}$ or $F H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$ and f belongs to

$$F\ H_{\alpha,\beta,1,a_{k},A,a_{k}^{'},A^{'},H_{1}^{'}}\ or\ F\ H_{\alpha,\beta,a_{k},A,a_{k}^{'},A^{'},H_{1}^{'}}^{b_{q},B,b_{q}^{'},B^{'},H^{'}}\ .$$

Now invoking theorem due to Zemanian [6, p.21-23] and Theorems 4.2 and 4.1 to the above definitions, we get

Theorem 4.4: (a) The operation $f o N_{\alpha,\beta} f$ is a continuous linear mapping $F H_{\alpha,\beta,a_k,A,a_k',A',H'_1}$ into $F H_{\alpha,\beta,1,a_k,A,a_k',A'}$, if a_k satisfies (3.5), if b_q' satisfies (3.1).

$$FH_{\alpha,\beta}^{b_q,B,b_q',B',H'}$$
 into $FH_{\alpha,\beta,1}^{b_q,B,b_q',B'}$ if bq satisfies (3.4), and of $FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B',H'}$ into $FH_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$ if a_k satisfies (3.5) and b_q satisfies (3.4).

(b) The operation $f \to M_{\alpha,\beta} f$ is a continuous linear mapping $F H_{\alpha,\beta,1,a_k,A,a_k',A'}$ onto $F H_{\alpha,\beta,a_k,A,a_k',A'}$, $F H_{\alpha,\beta,1}^{b_q,B,b_q',B',H'}$ into $F H_{\alpha,\beta}^{b_q,B,b_q',B'}$ if b_q satisfies (3.4), and if a_k satisfies (3.5),

if b_q' satisfies (3.1), $F H_{\alpha,\beta}^{b_q,B,b_q',B',H}$ into $F H_{\alpha,\beta,1,a_k,A,a_k',A'}^{b_q,B,b_q',B',H'}$ into $F H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B',H'}$ if b_q satisfies (3.4).

(c) The operation $f \to \Delta_{\alpha,\beta} f$ is a continuous linear mapping of $FH_{\alpha,\beta,a_k,A,a_k',A',H_1'}$ onto $FH_{\alpha,\beta,a_k,A,a_k',A'}$ if a_k satisfies (3.5), $FH_{\alpha,\beta}^{b_q,B,b_q',B',H'}$ into $FH_{\alpha,\beta}^{b_q,B,b_q',B'}$ if b_q satisfies (3.4), and if a_k satisfies (3.5), if b_q' satisfies (3.4).

$$F H_{\alpha,\beta,a_{k},A,a_{k},A',H_{1}}^{b_{q},B,b_{q}',B'} into F H_{\alpha,\beta,a_{k},A,a_{k},A'}^{b_{q},B,b_{q}',B'}$$
 if b_{q}' satisfies (3.4).

5. Fourier-Hankel type transformation of test functions:

In this section we consider the mapping of the aforesaid ultra differentiable functions by F $h_{\alpha,\beta}$. It is easily seen that the Fourier-Hankel transform F $H_{\alpha,\beta}$ ϕ exists for each test function ϕ in F $H_{\alpha,\beta,a_k,a_k'}$, F $H_{\alpha,\beta,a_k,A,a_k',A'}$, F $H_{\alpha,\beta}^{b_q,B,b_q',B'}$, F $H_{\alpha,\beta}^{b_q,B,b_q'}$, F $H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$ when $(\alpha - \beta) \ge -\frac{1}{2}$.

Theorem 5.1: If a_k , a_k' satisfy the condition (3.5) then for $(\alpha - \beta) \ge -\frac{1}{2}$ the conventional Fourier-Hankel type transform F $h_{\alpha,\beta}$ defined by (2.1) is a continuous linear mapping from the space F $H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B',b_q',B'}$ into the space F $H_{\alpha,\beta,a_k,A,a_k',A'}^{q_q,a_q^2,B_1'}$ where $A_1' = A'BH_q'^2$ and $B_q' = A'^2H_1'^6$.

Proof: Let K be a bounded set in $F H_{\alpha,\beta,a_k,A,a_k',A'}^{b_q,B,b_q',B'}$. Then every ϕ in K satisfies the inequality

$$\left| x^{k} D_{x}^{q} y^{k'} \left(y^{-1} D_{y} \right)^{q'} y^{2\beta - 1} \phi (x, y) \right| \leq C^{\alpha, \beta} (A + \delta)^{k} (B + \rho)^{q} (A' + \delta')^{k'} (B' + \rho')^{q'} \times a_{k} bq a_{k}' b_{q}$$

for all $q, q' \in \mathbb{N}_0$ and $k, k' = 0,1,2 \dots$

Let $\Phi(\xi,t) = F h_{\alpha,\beta} \phi(x,y)$. For any pair of non-negative integers k' and q', from Zemanian [6, p.139],

$$N_{\alpha,\beta,q^{'},k^{'}-1}\dots N_{\alpha,\beta,q}$$
 ϕ $(x,y)=y^{q^{'}}$ $N_{\alpha,\beta,q^{'}-1}\dots N_{\alpha,\beta}$ ϕ (x,y) and using q^{\prime} -times
$$F\ h_{\alpha,\beta,1}\left(-y\ \phi\right)=\ N_{\alpha,\beta}\ F\ h_{\alpha,\beta}\ \phi\ ,\ \text{we get}$$

$$N_{\alpha,\beta,q^{'},k^{'}-1}\dots N_{\alpha,\beta}\ \Phi\ =\ (-1)^{q^{'}}\ F\ h_{\alpha,\beta,q^{'}}\left(y^{q^{'}}\ \phi(x,y)\right).$$

Next apply k' –times, $F h_{\alpha,\beta} (N_{\alpha,\beta} \phi) = -(t) F h_{\alpha,\beta} \phi$, we get

$$N_{\alpha,\beta,q',k'-1} \dots \dots N_{\alpha,\beta} \Phi = (-1)^{q'} (-1/t)^{k'} F h_{\alpha,\beta,q',k'-1} \dots \dots N_{\alpha,\beta} \phi (x,y)).$$

So that

$$(-t)^{k'} N_{\alpha,\beta,q',k'-1} \dots N_{\alpha,\beta} \Phi(\xi,t) = \int_{-\infty}^{\infty} \int_{0}^{\infty} (-y)^{q'} [N_{\alpha,\beta,q',k'-1} \dots N_{\alpha,\beta} \phi(x,y)]$$

$$\times e^{i\xi x} y^{\alpha+\beta} J_{\alpha-\beta+q+k}(xy) dx dy.$$

Now, the proof is similar to the proof of Theorem 4.1.1 of Lee [3].

Thus, we can write:

$$(-1)^{k^{'}+q^{'}}\,\xi^{k}\,D_{\varepsilon}^{q}\,t^{k^{'}}(t^{-1}\,D_{t})^{q^{'}}\,t^{2\beta-1}\,\Phi\left(\xi,t\right)$$

$$= \int_{-\infty}^{\infty} \int_{0}^{\infty} y^{4\alpha+k'+2q'} x^{k} D_{x}^{q} y^{k'} (y^{-1}D_{y})^{q'} y^{2\beta-1} \phi(x,y) e^{i\xi x} (yt)^{-\alpha+\beta-q'} J_{\alpha-\beta+q'+k'}(yt) dxdy$$

Now, we assume that ν, ν' are positive integers such that $\nu' \geq 4\alpha$, set $n = \nu + 2q + k$ and use the fact that $\left|z^{-\alpha+\beta-q'} {} {}^{(z)} {}_{\alpha-\beta+q'+k'} \right| \leq C$, and the estimate from [4, p.107] and the Theorem 3.11.1 from [4, p.107],

 $\left|\xi^k D_{\xi}^q \Phi(\xi,t)\right| \leq C A^q (1+\delta)^{q+2} (2\beta)^k a_q b_k$ for all $k,q \geq \nu$, we obtain the following estimate.

$$\left| (-1)^{k'+q'} \xi^k D_{\xi}^q t^{k'} (t^{-1} D_t)^{q'} t^{2\beta-1} \Phi(\xi, t) \right|$$

$$\leq C A^q (1+\delta)^{q+2} (2\beta)^k a_q b_k C_1^{\alpha,\beta} (B'+\rho')^{q'} q_q'$$

$$\times \left[(A' + \rho')^{k' + 2q'} a'_{k+2q} + (A' + \delta')^{n+2} a_{n+2} \right]$$

$$\leq C A^{q} (1+\delta)^{q+2} (2\beta)^{k} a_{q} b_{k} C_{1}^{\alpha,\beta} (B'+\rho')^{q'} q_{q}' (H_{1}'(A'+\delta'))^{k'+2q'} a_{k}' + 2q'$$

$$\times \left[1 + R_{q}^{'}(A + \delta)^{k'} H_{q}^{'\nu + 2q'} a_{\nu' + 2q'}\right]$$

$$\leq C A^{q} (1+\delta)^{q+2} (2B)^{k} a_{q} b_{k} C_{2}^{\alpha,\beta} (B'+\rho')^{q'} q_{q}' (H_{1}'(A'+\delta'))^{k'+2q'} a_{k'+2q'}$$

$$\leq C A^{q} (1+\delta)^{q+2} (2B)^{k} a_{q} b_{k} C_{2}^{\alpha,\beta} R_{q}^{'2} (A^{'}B^{'}H_{1}^{'2}+\rho^{'})^{k^{'}} a_{k^{'}} b_{q^{'}} (A^{'2}H_{1}^{'6}+\delta^{'})^{q^{'}} a_{q^{'}}^{2}.$$

Thus proof is completed.

Theorem 5.2: If a_k , $a_{k'}$ satisfy the condition $a_p \leq R_q H_q^p \min a_q a_{p-q'} p \in \mathbb{N}_0$, $0 \leq q \leq p$ then for $(\alpha - \beta) \geq -\frac{1}{2}$, $F h_{\alpha,\beta}$ is continuous linear mapping from the space $F H_{\alpha,\beta,a_k,A,a_k',A'}$ into the space $F H_{\alpha,\beta}^{a_q,a_q^{-1},B'}$,

where
$$B'_{q} = A'^{2} H'_{q}^{6}$$
.

Proof: Following the procedure of the proof of the above theorem we get

$$\begin{split} \left| (-1)^{k'+q'} \xi^k \ D_{\xi}^q \ t^{k'} (t^{-1}D_t)^{q'} \tau^{2\beta-1} \Phi(\xi, t) \right| \\ & \leq C \ A^q \ (1+\delta)^{q+2} \ (2B)^k \ a_q \ b_k \ C_{k'}^{\alpha,\beta} \ (A^2 \ H_1^6 + \ \delta') \ q' \ a_{q'}^2 \ . \end{split}$$

6. Generalized Fourier-Hankel transformation of the Ultra-Distributions and its Inversion:

For $(\alpha - \beta) \ge -\frac{1}{2}$, we define the generalized F-H transformation $F h'_{\alpha,\beta}$ on each of the dual

spaces
$$FH'_{\alpha,\beta,\alpha_k,\alpha_k}$$
, $FH_{\alpha,\beta,\alpha_k,A,\alpha_k',A'}$, $FH^{b_q,B,b'_q,B'}_{\alpha,\beta}$, $FH^{b_q,B,b'_q}_{\alpha,\beta}$ and $FH^{b_q,B,b'_q,B'}_{\alpha,\beta,\alpha_k,A,\alpha_k',A'}$ as

follows:

$$\langle F, \Phi \rangle = \langle f, \phi \rangle \tag{6.1}$$

where $\Phi = F \ h_{\alpha,\beta} \ \phi$, $F = f \ h_{\alpha,\beta}^{'} \ \phi$, $\phi \in F \ H_{\alpha,\beta}$ and f belongs to the corresponding dual space.

The generalized Fourier transform of $f \in D'$ is defined to be the element of $F \in Z'$ such that the generalized Parseval relation

$$\langle F, \psi \rangle = (2\pi)^{n} \langle f, \phi^{\nu} \rangle , \quad \text{where } f \in F \ H_{\alpha,\beta}^{'} , \qquad \phi^{\nu} \in F \ H_{\alpha,\beta} \ .$$

$$\Phi = f \ h_{\alpha,\beta} \ \phi \quad , \qquad F = f \ h_{\alpha,\beta}^{'} \ f \quad \text{and}$$

$$\Phi \in F \ H_{\alpha,\beta} \ , \ \phi^{\nu} \in F \ H_{\alpha,\beta} \ .$$

Thus, $f h_{\alpha,\beta}$ on $F H'_{\alpha,\beta}$ is the adjoint of the mapping $\Phi \to (2\pi)^n \phi^{\nu}$.

Since $f^{-1}[f] = (2\pi)^{-n} [f(f^{\nu})]$ and

$$h_{\alpha,\beta}^{'}=h_{\alpha,\beta}^{-1}$$
 , we also have
$$\langle f\,h_{\alpha,\beta}^{'}\,f,\Phi\rangle=(2\pi)^{-1}\,\langle f,\,f\,h_{\alpha,\beta}^{'}\,\Phi\rangle \eqno(6.2)$$

The inverse Fourier-Hankel type transform can therefore be defined as:

$$f = (f h'_{\alpha,\beta})^{-1} F$$
, $(\alpha - \beta) \ge -\frac{1}{2}$.

Now, applying theorem due to Zemanian [6, pp. 21-23] to Theorems 5.1 and 5.2 above and in view of definition (6.2) above, we can state the following theorems.

Theorem 6.1: Let $(\alpha - \beta) \ge -\frac{1}{2}$. If a_k , a_k' satisfy the condition (3.5), then the generalized Fourier-Hankel type transform $f(h_{\alpha,\beta})$ is a continuous linear mapping from the dual space

$$F \; H'^{a_q,q_{q^2,B_1^2}}_{\alpha,\beta,b_k,B'} \; into \; F \; H'^{b_q,B,b'_q,B'}_{\alpha,\beta,a_k,A} \; , \qquad where \; A_1^{'} = \; A' \; B' \; H_1^{'2} \; and \; B_1^{'} = \; A'^2 \; H_1^{'6} \; .$$

Theorem 6.2: Let $(\alpha - \beta) \ge -\frac{1}{2}$. If a_k , a_k' satisfy the condition (3.5), then the generalized Fourier-Hankel type transform $f(h_{\alpha,\beta}')$ is a continuous linear mapping from the dual space $F(H_{\alpha,\beta,b_k,B,a_k',b_k',A_1'}^{a_q,a_{q'}^2,B_1'})$ into $F(H_{\alpha,\beta,a_k,A,a_k',A_1'}^{b_q,B,b_q',B_1'})$ where $A_1' = A'B'H_1'^2$ and $B_1' = A'^2H_1'^6$.

7. An operational calculus:

The distributional Fourier-Hankel type transform generates an operational calculus by means of which certain differential equations involving generalized functions can be solved. We now consider the differential equation:

$$P\left(D_x^k, \Delta_{\alpha,\beta,\nu}^{k'}\right) u = g \tag{7.1}$$

where p(x,y) is a polynomial having no zeros on $-\infty < x,y < 0$, g is a given member of $FH_{\alpha,\beta,a_k,a_k'}^{'}$ or $FH_{\alpha,\beta,a_k,a_k',A'}^{'}$ or $FH_{\alpha,\beta}^{'b_q,B,b_q',B'}$ or $FH_{\alpha,\beta}^{'b_q,B,b_q',B'}$ or $FH_{\alpha,\beta,a_k,A,a_k',A'}^{'b_q,B,b_q',B'}$ or $FH_{\alpha,\beta,a_k,A,a_k',A'}^{'b_q,B,b_q'}$ or $FH_{\alpha,\beta,a_k,A,a_k',A'}^{'b_q,B,b_q'}$ or $FH_{\alpha,\beta,a_k,A,a_k',A'}^{'b_q,B,b_q'}$ or $FH_{\alpha,\beta,a_k,A,a_k',A'}^{'b_q,B,b_q'}$

$$P\left((-i\xi), (-t^2)\right) \neq 0$$

and u is an unknown generalized function which is to be determined. Using

$$\mathcal{F} h'_{\alpha,\beta} \left(\left(D_x^k, \Delta_{\alpha,\beta,y}^{k'} \right) f \right) = (-i\xi)^k (-t^2)^{k'} F h'_{\alpha,\beta} (f)$$
 and applying

 $\mathcal{F} h'_{\alpha,\beta}$ to (7.1), we obtain

$$(P(-i\xi)^{k}(-t^{2})^{k'})U(\xi,t) = G(\xi,t)$$
(7.2)

where U and G are distributional Fourier-Hankel type transforms of u and g respectively.

Since
$$(P(-i\xi)^k, (-t^2)^{k'})$$
 is a multiplier in $FH_{\alpha,\beta,a_k,a_k'}$, $FH_{\alpha,\beta,a_k,A,a_k',A'}$, $FH_{\alpha,\beta}^{'b_q,B,b_q',B'}$,

 $FH_{\alpha,\beta}^{'b_q,B,b_q'}$, $FH_{\alpha,\beta,a_k,A,a_k',A_k'}^{'b_q,B,b_q',B_k'}$, $1/P(-i\xi)^k$, $(-t^2)^{k'}$) is a multiplier in the corresponding dual space for

 a_k , $a_k^{'}$ satisfying the condition (3.5) and b_q , $b_q^{'}$ satisfying the condition (3.1) .

Therefore,

$$U(\xi,t) = G(\xi,t) / P((-i\xi)^k, (-t^2)^{k'})$$
.

By taking the generalized inverse Fourier-Hankel type transform $\left(Fh'_{\alpha,\beta}\right)^{-1}$, the solution is given by

$$u(x,y) = (Fh'_{\alpha,\beta})^{-1} F(\xi,t) / P((-i\xi)^{k}, (-t^{2})^{k'}).$$

This means that for each testing function ϕ belonging to one of the spaces

$$FH_{\alpha,\beta,a_k,a_k'}$$
 or $FH_{\alpha,\beta,a_k,A,a_q',A'}$ or $FH_{\alpha,\beta}^{'b_q,B,b_q',B'}$, $FH_{\alpha,\beta}^{'b_q,B,b_q'}$, $FH_{\alpha,\beta,a_k,A,a_k',A'}^{'b_q,B,b_q'}$ P is a polynomial such that $P(-i\xi,-t^2) \neq 0$, the unknown u belonging to the corresponding dual space is given by

$$\langle u, (Fh'_{\alpha,\beta})^{-1} \Phi \rangle = \langle F(\xi,t)/P((-i\xi)^k, (-t^2)^{k'}), \Phi(\xi,t) \rangle$$
$$= \langle F(\xi,t) \Phi(\xi,t)/P((-i\xi)^k, (-t^2)^{k'}) \rangle,$$

where $\Phi = \mathcal{F} h_{\alpha,\beta} \phi$.

References:

- 1. I.M. Gelfand and G.E.Shilov, Generalized Functions, Vol. 2, Academic press, New York, (1968).
- 2. H. Komatsu, J. Fac. Sci. Uni. Tokyo See. IA 20 (1973), 25-105.
- 3. W.Y. Lee, Siam. J. Math. Analysis, 5(2) (1974), 336-48.
- 4. R.S. Pathak, Integral Transformations of Generalized Functions and their Applications, Gordon and Breach Science Publishers, Amsterdam (1997).
- 5. C. Roumieu, J. d' Analyse Math., 10 (1962-63), 153-92.
- 6. A.H. Zemanian, Generalized Integral Transformations, Interscience Publication, New York, (1968).