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Abstract 

Autocorrelation of error terms in the linear econometric model remain a major features of most 

time series data. The variety of scenario in which time series observations can be caused by 

autocorrelated disturbances are so many that in spite of numerous analytical and empirical 

contribution already made on this subject, the available diagnostics leave many questions yet to 

be answered. This effort is channeled towards the estimation of the parameters of the linear 

regression models when the above two assumptions are violated. 

In this work, we used the Bootstrap method to investigate the performance of five different 

estimation methods were considered in comparing the performance of one specification of 

explanatory variable in a Bootstrapping experiment with 50 replications and the sample sizes of 

20 and 60 with autocorrelation levels of 0.4. 0.8 and 0.9. 

The simulation results, were investigated under the finite sampling properties of Bias, Variance 

and Root Mean Squared Error, show that all estimators are adversely affected as 

autocorrelation coefficient(  ) is close to unity. In this regard, the estimators rank as follows in 

ascending order of performance: HILU, CORC, ML, MLGRID and. OLS 

This result helps in the choice of estimator in empirical work when the regressor and the error 

terms are not well behaved.  

KEYWORDS: Bootstrap Methods, Estimators, Autocorrelated Error Terms, Simulation, 

Replication 

__________________________________________________________________ 

 

Introduction 

In the classical statistical linear model 

Y=Xβ + U          (1) 

Where 

Y = N x 1 vector;  X = (N x k ) matrix of rank k  
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β=(k x 1) vector of parameters;  U = (N x 1) vector of disturbance terms  

Ordinary Least Square (OLS) method estimates the parameters and also to enable inferences to 

be made about these estimators, certain underlying assumptions are made. Two of them are the 

absence of autocorrelation of the error terms and that X is a matrix with nonstochastic elements 

and has rank k < N, hence Ui and Xj are independent for all i and j.  

This research is to investigate the behavoural pattern of autocorrelation estimators in the 

estimation of the parameters of the linear models when the usual two assumptions are  not hold.  

Consider the model: 

𝑌𝑖 = 𝑋𝛽 + 𝑈𝑖 ;  𝑈𝑡 =  𝑈𝑡−1 +  𝑖        𝑡 = 1 … . .𝑁    

𝑝 < 1, 𝐸 𝜖 = 0, 𝐸 𝜖 ′𝜀 =  𝜍𝜀
2𝐼, 𝐸 𝑈 = 0 𝑎𝑛𝑑  𝐸 𝑈′𝑈 =  𝜍2   (2) 

If we multiply the model (2) by some TxT nonsinglular transformation matrix P to obtain  

𝑃𝑌 = 𝑃𝑋𝛽 + 𝑃𝑈        (3) 

The variance matrix for the disturbance in Eq 3 is  

𝐸 𝑃𝑈𝑈𝑃′ =  2𝑃𝑃′ 𝑠𝑖𝑛𝑐𝑒 𝐸 𝑃𝑈 = 0 

Since we can specify P such that:  

𝑃𝑃′ = 1 

Then the resulting OLS estimates of the transformed variables PY and PX in Eq. 3 have all the 

optimal properties of OLS and could be validly subjected to the usual inference procedures. 

Applying OLS to Eq. 3 results in minimizing the quadratic form.  

𝑈′ 
−1𝑈 =  𝑦 − 𝑋𝛽 ′

−1  (𝑌 − 𝑋𝛽) 

With optimal solutions as 




  𝑈′ 

−1𝑈 =  𝑋′
−1

𝑋  − 𝑋′
−1

𝑌 = 0     (4) 

Which gives 

𝛽 (𝐺𝐿𝑆) =   𝑋′
−1

𝑋 
−1  

𝑋′
−1

𝑌       (5) 

With the variance-covariance matrix given by var() = 
2 𝑋′

−1
𝑋 

−1  

.This estimator is known 

as  𝛽  (GLS) the Aiken or Generalized Least Squares (GLS) estimator. If we assume normality for 

the error terms the Us, the likelihood function is given by: 

1  𝛽,
𝜍2

𝑌
 =  (2𝜋𝜍2)−𝑇/2 − 𝐼𝐼−1/2𝑒𝑥𝑝  

(𝑌−𝑋𝛽 )′−1(𝑌−𝑋𝛽)

2𝜍2
          (6) 
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Where II is the determinant of . Optimizing this likelihood function with respect to β means 

maximizing the weighted sum of squares to obtain:  

𝛽  𝐺𝐿𝑆 =   𝑋′
−1

𝑋 
−1  

𝑋′
−1

𝑌      (7) 

In obtaining 𝛽  𝑂𝐿𝑆  𝑎𝑛𝑑 𝛽  𝐺𝐿𝑆 , we assume is known. When  is not known, we resort to 

estimating  by   in which case, we obtain an Estimated Generalized Lest Squares (EGLS) or 

Estimated Generalised Maximum Likelihood (EGLM) estimator and therefore; 

𝛽  𝐺𝐿𝑆 =   𝑋′
−1

𝑋 
−1  

𝑋′
−1

𝑌      (8) 

For this model, in Eq. 5, the TxT covariance matrix of the error vector is  

𝐸 𝑈𝑈′ = 𝜍𝑈
2𝑉 =  𝜍𝑈

2

 
 
 
 
 

1 𝜌 𝜌2 … 𝜌𝑇−1

𝜌 1 𝜌 … 𝜌𝑇−2

𝜌2

…
𝜌𝑇−1

𝜌
…
…

1
…
…

… .
…
…

…
…
1  

 
 
 
 

    (9) 

Where  

𝜍𝑈
2 =  𝜍

2/(1 − 𝜌2) 

To search for a suitable transformation matric P*, we consider the following (T-1)xT matrix P* 

defined by  

∗ =   

−𝜌 1 0 … 0 0
0 −𝜌 1 … 0 0
0
0

0
0

−𝜌
0

…
…

…
−𝜌

…
1

  

Where  


−1 =  

1

1 − 𝜌2

 
 
 
 
 

1 −𝜌 0 …   0 0

−𝜌 1 + 𝜌2 𝜌       … 0 0

0
…
0

−𝜌
…
0

1 + 𝜌2 … 0 0
…         … … …

0     … −𝜌 1  
 
 
 
 

 𝑇−1 𝑥𝑇

 

P*‟P* gives (1-
2
)

-1
 with 

2
 instead of 1 as the first element. Next. We consider another 

transformation matrix P(TxT) obtained by adding a new first row with  1 − 𝜌2 in the first 

position and zero elsewhere 
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 𝑃 =  

 
 
 
 
  1 − 𝜌2 0 0 … 0 0

− 1 0 … 0 0
0
…
0

−
…
0

1 … 0 0
… … . . . …

0 … − 1 
 
 
 
 

𝑇𝑥𝑇

      (12) 

P‟P = (1-
2
)

-1
 

P* and P differ only in the treatment of the first observation P* is much easier to use provided 

we are prepared to put up with its treatment of the first observation. It has been shown that when 

T is large, the difference is negligible but in small samples such as in this study, the difference is 

significant. 

Such transformations give rise to different methods of estimation. These methods are broadly 

classified into those that use P* such as Cochrane-Orcutt (CORC) and Hildreth and LU (HILU) 

methods and those that use P for transformation such as Prais-Winstein (PW), Maximum 

Likelihood (ML) method of Beach and Mackinnon (1978) and Maximum Likelihood Gnd 

method (MLGRID) Nwabueze (2005a).  

Many researchers have worked on autocorrelated errors. They include the early work of Cochran 

and Orcutt (1949). Durbin and Watson (1950, 1951, 1971), HIldreth and Lu (1960), Rao and 

Griliche (1969), Beach and Mackinnon (1978), Kramer (1980). Busse et al., (1994) and Kramer 

and Hassler  (1998), to the recent works of Kleiber (2001), Kramer and Marmol (2002) and 

Olaomi and Ifederu (2006). Tests for detecting the presence of autocorrelation and alternative 

consistent methods of estimating linear models with autocorrelated disturbance terms have been 

proposed.  

The effect of certain types of trends on explanatory variables on the relative performance of 

estimators has been recognized by Maeshiro (1976), Kramer (1998), Kramer and Marmol 

(2002), Nwabueze (2005b) and Ifederu (2006). However, some are mainly concerned with 

asymptotic properties. Asymtotically disregarding the first observation makes no difference but 

in small samples it may make a substantial difference.  

However, in spite of these tests and estimation methods, a number of questions in connection 

with the estimation of the classical regression linear model with autocorrelated error terms and 

non-zero covariance between the explanatory variable and the error terms remained unanswered. 

These include the most appropriate method in the above named specification of the explanatory 

variable, the effect of the degree of correlation of the disturbance term, the effect of the degree of 

correlation of explanatory variable and the error terms, the effect of sample size and the sampling 

properties of the various estimation methods.  

The answers to most of these questions would allow for correct influences to be made in linear 

models plagued by the scenario depicted earlier.  

 

 

 



International journal of advanced scientific and technical research                               Issue 2 volume 4, August 2012          

Available online on   http://www.rspublication.com/ijst/index.html                                                     ISSN 2249-9954 

 Page 13 
 

Materials and Methods 

This study used the Bootstrap method for the investigation due to the non-zero covariance 

between the explanatory variable and the error terms. The problem is near intractable by 

analytical procedure.  

The Bootstrapping is a relatively new statistical technique, which permits the assessment of 

variability in an estimate using the data at hand (see Efron 1979). The ideal is to resample the 

original observations in a suitable way, to construct “pseudo-data” on which the estimator of 

interest is exercised. More specifically, the theoretical distribution of a disturbance term is 

approximately by the empirical distribution of a set of residual. Measures of variability, 

confidence intervals, and even estimates of bias may then be calculated.  

In the regression case, the bootstrap is useful for investigations when mathematical analysis can 

give only asymptotic result. Within the scope of the bootstrap are non normal errors, log 

structures, and generalized least squares with estimated covariance matrices. This work 

compares the performance of conventional asymptotic estimates of standard error to the 

performance of a bootstrap procedure in the setting of a single econometric equation. 

The bootstrap procedure is appropriate better than the conventional asymptotic, when applied to 

the finite-sample situation. For a partial explanation, see Berran (1983) or Singh (1981).  

In a bootstrap experiment, the experiment is artificially sets up a system and specified values for 

the parameters and all the independent variables, values are then generated for the random 

disturbances on the basis of the assumed model for some specified sample size using these 

values, estimates are the computed for the dependent variables at each sample point. Next, 

pretending as if the parameters are unknown, and using only the values of the dependent and 

independents variables at each sample points, one or more estimators are applied to obtain an 

associated estimate of parameters. The process of generating values for the disturbances, 

calculating values for the independent variables and estimating parameter build up empirical 

distribution of parameter estimates which are then used in evaluating the relative performance of 

the estimators in estimating the parameter values. 

The design of the bootstrap studies may be summarized as follow: 

1) The researcher specifies a model and ascribe specific numerical values to it 

parameter. 

2) The researcher also specifies the distribution of the U‟s 

3) The experimenter also specifies X~U(0,1) for independent variable. 

4) Then the experimenter uses the distribution of the U‟s and with random drawings 

from these distributions, he obtain values for all U‟s of each equation  

5) Given the true parameters (assumed), the selected values of     the explanatory 

variables and the chosen values of the random term, the experimenter solves the 

equations of the model and obtains value for the dependent variables (Y). These 

values are called generated values of dependent variable. For each randomly drawn 

value of the U‟s, a new generated value of the dependent variable is obtained with 

above procedure, the experimenter forms small samples (of generated observations of 
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dependent variables) which, together with the selected X values are used to estimate 

the coefficient by various econometric methods. 

This  experiments are repeated many times and thus the experimenter obtains a large number of 

estimates from which he obtains the coefficients for each estimation method. Furthermore, given 

that the true parameters are „known‟ (because they have been defined in the first stage of the 

experiment) the bias, variances and mean square errors can be computed for the estimates of 

each method. 

The following four Generalized Least Square (GLS) estimators, CORC, HILU, ML and 

MLGRID and OLS estimation methods, chose in the light of the earlier study are used. These 

estimators are equivalent with identical asymptotic properties. Kramer and Hassler (1998). But in 

small samples, such as in this study, Park and Mitchell (1980) have argued that those that use the 

T transformation matric (ML, MLGRID) are generally more efficient than those that use T* 

transformation matrix (CORC, HILU).  

The degree of autocorrelation affects the efficiency of the estimators. Nwabueze (2000). 

Consequently, we investigated the sensitivity of the estimators to the degree of autocorrelation 

by varying rho () from 0.4 to 0.8 and 0.9. The effects of sample size on the estimators were also 

investigated by varying the samples size from 20 to 60 each replicated 50 times. Evaluation of 

the estimators was then done using the finite sampling properties of Bias (BIAS), Minimum 

Variance (VAR) and Minimum Root Mean Squared Error (RMSE). 

The model 

We assume a simple linear regression model:  

𝑌𝑡 =  𝛽0  + 𝛽1𝑋𝑡 + 𝑈𝑡  where  𝑈𝑡 =  𝜌𝑈𝑡−1 +  𝜀𝑡 ,    

 /𝜌/< 1,𝑋𝑡 = exp 0,4𝑡 , 𝑈𝑡 → 𝑁 0,
𝜍2

1−𝜌2     (13) 

t = 1, 2,….T, β0 and β1=(1,1)  

Where  

Yt = The dependent variable and the exponential trended 

Xt = The explanatory variable with Ut autoregressive of order one 

t = Normally distributed with zero mean and constant variance 
2
.  

= Stationarity parameter while the model parameters are assumed to be unity. 

 Nwabueze (2005b) and Olaomi and Ifederu (2006) had used this explanatory variable 

specification. It is chosen to allow for comparison of results.  
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Data Generation 

A total of 27 data sets spread over three sample sizes (20 and 60) each replicated 50 times were 

used in generating the data for the study. Using model (13), a value U0 was generated by drawing 

a random value 0 from N(0, 1) and dividing by  (1 − 𝜌2). Successive values of 1 drawn from 

N(0,1) were used to calculate Ut Xt was generated as defined in (13). The procedure is repeated 

as many times as necessary to obtain 50 replications for a desired autocorrelation level, 

significance level and sample size. Olaomi eta‟ll (2004) had shown that in most Monte-carlo 

studies, magnitudes such as bias, variance and root mean square are not usually remarkable 

sensitive to the number of replications. Replication just shows the stability of estimates. Yt is 

thus computed for the chosen Ut and Xt using eq. 13. The computations are made using the 

Microsoft Office Excel package, different estimation methods are then applied to the data using 

the AR procedure of the TSP (2005) package.  

Performance Criteria and Tables 
The summary of principal calculations for each model, estimation procedure, degree of 

autocorrelation of the error term and each sample size are presented in table 1 to 3 

These include the bias (BIAS), variance (VAR) and the root mean square error (RMSE) of the 

fifty estimates of each parameter in each model for each autocorrelation coefficient e . Also 

calculated and displayed are the absolute sum of bias (SBIAS), the sum of variance (SVAR), 

sum of root mean squared error (SRMSE). These results are discussed below basing the 

comparison on the following properties: BIAS (SBIAS), VAR(SVAR),RMSE (SRMSE). For 

any parameter, the i
th

 estimate is denoted by  1̂  and the true value by 1 . 

Therefore, we have 

    
50

1

1ˆ ˆ
50

i i i

i

BIAS   


      ----------------------------------- 14 

    
1

50 22

1

1ˆ ˆ
50

i i i

i

RMSE   


 
  
 

    ------------------------------15 

    
250

1

1ˆ ˆ ˆ
50

i i i

i

VAR   


    -------------------------------------16 

Where  
50

1

ˆ ˆ1
50 i

i

 


   

In the model, the independent variable is specified as 1t tX X  . Below is the summary of the 

experimental result for sample sizes 20 and 60 for   = 0.4, 0.8 and 0.9  in the tables below. 
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Table 1 BIAS FOR ESTIMATORS OF   

0 1 1 0 1, , 50, (1,1)t t t tY X X X R          

N = 20 N = 60 
  Estimator 

0  
1  SBIAS 

0  
1  SBIAS 

 

 

0.4 

OLS -0.0029 0.00074768 0.007738 0.031080 -0.00022 0.03122 

COC 0.005556 0.050055 0.055611 0.044609 0.044609 0.089218 

HILU 0.005556 0.005556 0.055611 0.038838 0.825139 0.863971 

MLGRID -3.5E-05 0.047164 0.0471675 0.031863 0.828411 0.860274 

ML -3.5E-0.5 0.047164 0.0471675 0.031863 0.828411 0.860274 

 

 

0.8 

 

OLS -1.09944 -0.3774 1.47684 -0.02230 -0.00300 0.0253 

COC -1.20353 -0.16945 1.37298 -0.04029 -0.04027 0.08054 

HILU -1.20207 -0.15142 1.35349 -0.04058 1.014889 1.055469 

MLGRID -1.19772 -0.17639 1.37411 -0.04862 1.018774 1.067394 

ML -1.18448 -0.2206 1.40508 -0.04862 1.018774 1.067394 

 

 

0.9 

OLS -2.13227 -1.39017 3.52244 -0.10223 0.00340 0.1057 

COC -2.19647 -1.16941 3.36588 -0.03676 -0.03676 0.07352 

HILU -2.19647 -1.16941 3.36588 -0.03676 1.031726 1.065402 

MLGRID -2.19201 -1.17633 3.36834 -0.2206 3.158013 3.378613 

ML -2.15801 -1.22243 3.38231 -0.04681 1.036738 1.083548 

Table 2: VARIANCE FOR ESTIMATORS OF   

0 1 1 0 1, , 50, (1,1)t t t t tY X U X X R         

 

N = 20 N = 60 
  Estimator 

0  1  SVAR 
0  1  SVAR 

 

 

0.4 

OLS 0.30923 0.844325 0.75248 0.312001 0.320201 0.632202 

COC 0.308315 0.622255 0.93057 0.317391 0.392708 0.710018 

HILU 0.096743 0.624467 0.72121 0.100634 0.151424 0.252058 

MLGRID 0.280878 0.770701 1.051579 0.321949 0.383823 0.705772 

ML 0.280878 0.170701 1.051579 0.321949 0.385823 0.705772 

 

 

0.8 

 

OLS 0.331236 0.844102 1.175338 0.412230 0.771002 1.183232 

COC 0.123845 0.736939 0.860784 0.411313 0.773283 1.184596 

HILU 0.124155 0.75311 0.877265 0.168919 0.584051 0.75297 

MLGRID 0.314068 0.83852 1.152568 0.415855 0.742647 1.058527 

ML 0.817771 0.311578 1.29349 0.415855 0.742647 1.58527 

 

 

0.9 

OLS 0.328301 0.336666 0.664961 0.512003 0.982231 1.494234 

COC 0.125081 0.733654 0.858735 0.506198 0.997864 1.503838 

HILU 0.125081 0.733654 0.858735 0.256237 1.013172 1.269409 

MLGRID 0.316182 0.836998 1.15318 0.512973 0.986582 1.499555 

ML 0.381775 0.819481 1.201256 0.512973 0.986582 1.49955 
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Table 3: RMSE FOR ESTIMATORS OF   

0 1 1 0 1, , 50, (1,1)t t t t tY X U X X R           

                             N = 20    N = 60 

  Estimator 
0  

1  SRMSE 
0  

1  SRMSE 

 

 

0.4 

OLS 0.556092 0.921908 1.478000 0.30854 0.001200 0.30974 

COC 0.555289 0.790418 1.345707 0.565138 0.62825 1.193388 

HILU 0.311086 0.790252 1.101338 0.319598 0.912293 1.231891 

MLGRID 0.529979 0.879162 1.409141 0.568299 1.03445 1.602749 

ML 1.334372 1.229496 2.563868 0.568299 1.03445 1.602749 

 

 

0.8 

 

OLS 1.240966 0.993242 2.234208 0.75892 0.002011 0.760931 

COC 1.253929 0.875016 2.128945 0.642601 0.880287 1.522888 

HILU 1.252653 0.880931 2.133584 0.412997 1.270453 1.68348 

MLGRID 1.322344 0.932533 2.255973 0.646698 1.334372 1.98107 

ML 1.309412 0.930825 2.240237 0.646698 1.334372 1.98107 

 

 

0.9 

OLS 2.207909 1.664106 3.872015 1.523320 0.000015 1.523335 

COC 2.224763 1.449544 3.67307 0.712524 0.999608 1.723858 

HILU 2.224763 1.449544 3.674307 0.507532 1.441399 1.9491522 

MLGRID 2.26298 1.490218 3.75326 0.717749 1.43576 2.153509 

ML 2.244726 1.521123 3.765849 0.717749 1.43576 2.153509 

 

Discussion of Results 
In our estimates, we observe that the SBIAS of the OLS is lower than the SBIAS of the GLS 

methods for N=20 and 60 and for increasing value of  . Although the sum of bias of the GLS 

methods compare favourably with one another especially for large sample N=60, for small 

sample N=20 especially when   is large (  = 0.8 and 0.9), COC and HILU have edge over 

MLGRID and ML in respect of this property. 

It is observed that both OLS and GLS are negatively biased for 0̂ (.) and 1̂ (.) when N = 20, N 

= 60 and  = 0.8 and 0.9. The pattern is mixed up for decreasing value of  For increased 

sample, the SBIAS for the estimators decreases and increases as the sample size increases. It is 
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also observed that the estimates 1̂ are very close to the parameter values for both the OLS and 

the GLS estimators. 

A more significant results is that the SVAR for HILU of OLS for N = 20 and   = 0.4 is much 

smaller than, SVAR of COC, MLGRID and ML from table 2, we find that at N = 20,  = 0.9, 

the SVAR of COC and HILU equal the same thing. While the SVAR of OLS = 0.512003, 

MLGRID = 1.1538 and ML = 1.201256. 

We note that the SVAR of OLS is 0.664961 as against 0.858735 and 1.15318 for CO, HILU and 

MLGRID respectively. This implies that OLS dominate COC, HILU and MLGRID. 

This result is not expected because one would expect COC or HILU to be more efficient than 

OLS in finite samples when there is autocorrelation in the error terms. However, the result 

confirms the works of Park and Mitchel (1980). In the sequel, the word dominate is used to 

qualify a magnitude which is smaller than another one and therefore it is preferred. The meaning 

is going to remain the same throughout this work. 

For large sample, we also notice that the picture is quite similar as N – increases for (N = 60 and 

 = 0.9), the SVAR of COC = 1.503838, HILU = 1.269409, and OLS = 1.024431. 

This implies that OLS dominates HILU and other estimator. 

The HILU on the other hand have some edge over OLS for small value of   (   = 0.4 and 0.8) 

but as  increases, the other GLS estimators increases in their superiority over for all the sample 

sizes considered. 

From table 3, for N = 60 and  = 0.4 we notice that on the basis of minimum RMSE, SRMSE of 

OLS has slight edge over other estimators. 

From these estimates of SRMSE, we observe that COC and HILU mostly dominates OLS even 

when  = 0.9 and N = 20, which suggests that in this respect, the effect of decreasing 

autocorrelation on the comparative performance of the estimators is significant. 

It can therefore, be reasonably assumed that small autocorrelation, COC and HILU significantly 

dominate OLS. 

In our summary, the major conclusion which could be drawn from our experiments for the model 

are the following: - 

a. For both large and small values of autocorrelation, the GLS methods are inferior to OLS 

in respect of SBIAS property. 

b. On the basis of VAR and RMSE properties, the OLS dominates for large sample with 

= 0.9 but for small value of autocorrelation  COC and HILU dominate OLS especially as 

the degree of autocorrelation decreases. 
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c. Another important conclusion is that the scope coefficients of the estimators are very 

close to their parameter values for both the OLS and the GLS methods and they are less 

sensitive to the degree of autocorrelation than the constant term. 

We found that the estimators conform to the asymptotic properties of estimates considered. This 

is seen at all levels of autocorrelation and at all significant levels. The estimators rank in the 

decreasing order of conformity with the observed asymptotic behavior as follows: OLS,ML, 

MLGRID, HILU and CORC. This ranking is contrary to that of Olaomi (2006).  

We also note that ML and MLGRID have very similar behavioral pattern, the same for CORC 

and HILU as observed in the finite sampling properties of Bias, Variance and the RMSE. ML 

and MLGRID are better than both CORC and HILU as also observed by Park and Mitchell 

(1980).  
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