ON THE BI-QUADRATIC DIOPHANTINE EQUATION

WITH THREE UNKNOWNS $7(x^2 - y^2) + x + y = 8z^4$

A.Vijayasankar #1, M.A.Gopalan #2 and V.Krithika #3

^{#1} Assistant Professor, Department of Mathematics, National College, Trichy-620001, Tamilnadu, India.

^{#2} Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu,India.

^{#3} Research Scholar, Dept. of Mathematics, National College, Trichy-620001, Tamilnadu, India

ABSTRACT

We obtain infinitely many non-zero integer triples (x, y, z) satisfying the non-homogenous biquadratic equation with three unknowns. Various interesting properties among the values of x, y, zare presented. Some relations between the solutions and special numbers are exhibited.

KEY WORDS: Integral solutions, Bi-quadratic equation with three unknowns, Special numbers.

MSC Classification:11D25

Corresponding Author: Krithika.V

INTRODUCTION

There is a great interest for mathematicians since ambiguity in homogeneous and non-homogeneous Bi-Quadratic Diophantine Equations [1-4]. In this context, one may refer [5-14] for varieties of problems on the bi-quadratic Diophantine equations with three or four variables. In this paper, bi-quadratic equation with three variables given by $7(x^2 - y^2) + x + y = 8z^4$ is analyzed for its non-zero distinct integer solutions. A few interesting relations between the solutions and special numbers are exhibited.

METHOD OF ANALYSIS

The non-homogeneous bi-quadratic Diophantine equation to be solved for its distinct non-zero integral solution is

$$7(x^2 - y^2) + x + y = 8z^4 \tag{1}$$

Pattern I:

Introduction of the transformations

$$x = 4u^{2} + v, y = 4u^{2} - v, z = u, u \neq v \neq 0$$
 (2)

in (1) leads to

$$u^2 = 14v + 1 \tag{3}$$

whose fundamental solution is

$$u_0 = 13, v_0 = 12 \tag{4}$$

Assume
$$u_1 = h - u_0$$
, $v_1 = v_0 + h$ (5)

Substituting (5) in (3), we get

$$h = 14 + 2u_0 \tag{6}$$

and thus

$$u_1 = u_0 + 14, v_1 = 2u_0 + v_0 + 14$$
 (7)

Repeating the above process, we obtain

$$u_n = u_0 + 14n$$

$$v_n = 2nu_0 + v_0 + 14 * n^2$$
(8)

In view of (2), the corresponding non-zero distinct integral solutions to (1) are given by

$$x_n = 4u_0^2 + 114nu_0 + v_0 + 798n^2$$

$$y_n = 4u_0^2 + 110nu_0 - v_0 + 770n^2$$

$$z_n = u_0 + 14n$$

Pattern II:

Introducing the transformations

$$x = 4u^2 + v^2, y = 4u^2 - v^2, z = u, u \neq v \neq 0$$
 (9)

in (1), it leads to

$$u^2 = 14v^2 + 1 \tag{10}$$

whose general solution is found to be

$$u_n = \frac{f_n}{2}$$

$$v_n = \frac{g_n}{2\sqrt{14}}$$
(11)

where
$$\begin{aligned} f_n &= (15 + 4\sqrt{14})^{n+1} + (15 - 4\sqrt{14})^{n+1} \\ g_n &= (15 + 4\sqrt{14})^{n+1} - (15 - 4\sqrt{14})^{n+1} \ , n = -1,0,1,2,... \end{aligned}$$

Substituting (11) in (9), the corresponding non-zero distinct integer solutions to (1) are obtained as

$$x_{n} = f_{n}^{2} + \frac{g_{n}^{2}}{56}$$

$$y_{n} = f_{n}^{2} - \frac{g_{n}^{2}}{56}$$

$$z_{n} = \frac{f_{n}}{2}$$
(12)

The recurrence relations satisfied by x and y are given by

$$x_{n+2} - 898x_{n+1} + x_n = -1760$$

 $y_{n+2} - 898y_{n+1} + y_n = -1824, n = -1,0,1,2....$

A few numerical examples are given below:

Table 1: Examples

n	x_n	\mathcal{Y}_n	\mathcal{Z}_n
-1	4	4	1
0	916	884	15
1	820804	792004	449
2	737079316	711216884	13455

Properties:

$$4 \cdot 57 y_n = 55 x_n + 8$$

•
$$28(x_n - y_n)$$
 is a perfect square.

•
$$z_n^2 = 7Y_n + 1$$
, where $Y_n = (x_n - y_n)$

& Each of the following expressions represents a nasty number:

$$> 3(x_n + y_n)$$

$$> 84(x_n^2 - y_n^2)$$

$$> \frac{2}{19} (56x_{2n+1} + 4)$$

❖ Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of parabolas which are presented in the Table below.

Table 2: Parabola

Parabola	(X_{n},Y_{n})	
$14X_n^2 = 51300Y_n - 1169600$	$(449x_n - x_{n+1} - 880, 56x_{2n+1} + 4)$	
$14X_n^2 = 49500Y_n - 10890000$	$(449y_n - y_{n+1} - 912, 56y_{2n+1} - 4)$	
$14X_n^2 = 4.13685252 * 10^{10}Y_n$	$(403201x_n - x_{n+2} - 792000, 56x_{2n+1} +$	
$-9.432023746*10^{12}$	$(403201x_n - x_{n+2} - 792000, 30x_{2n+1} + 4)$	

Employing linear combinations among the solutions of (1), one may generate integer solutions for other choices of hyperbolas which are presented in the Table below.

Table 3: Hyperbola

Hyperbola	$(X_{n,}Y_{n})$
$900Y_n^2 - 14X_n^2 = 11696400$	$(449x_n - x_{n+1} - 880, 56x_n - 110)$
$725763600 Y_n^2 - 14X_n^2 = 9.432023746 *10^{12}$	$(403201x_n - x_{n+2} - 792000, 56x_n - 110)$
$900Y_n^2 - 14X_n^2 = 10890000$	$(449y_n - y_{n+1} - 912, 56y_n - 114)$

Pattern III:

By introducing the linear transformation

$$x = y + t \tag{13}$$

in (1), it results in

$$7t^2 + t(14y+1) + (2y-8z^4) = 0$$

Which is a quadratic in t and solving for t,

$$t = \frac{1}{14} \left\{ -(14y+1) \pm \sqrt{(14y-1)^2 + 224z^4} \right\}$$
 (14)

Let
$$\alpha^2 = 224z^4 + (14y - 1)^2$$

and it is satisfied by

$$14y-1 = 224r^2 - s^2$$

$$\alpha = 224r^2 + s^2$$

$$z^2 = 2rs$$
(15)

As the values of y and z are to be in integers, choosing $r = 2^{2\beta-1} * (14u+1)$, it is seen that

$$y = (14u^{2} + 2u)(56 * 2^{4\beta} - 1) + 2^{4\beta + 2}$$

$$z = 2^{\beta}(14u + 1)$$
(16)

In view of (13), we obtain

$$x = (14u^{2} + 2u)(56 * 2^{4\beta} + 1) + 2^{4\beta + 2}$$
(17)

Therefore, (16) and (17) forms the corresponding non-zero distinct integer solutions to (1).

Properties:

- $x(u,\beta) y(u,\beta) t_{58,u} \equiv 0 \pmod{31}$, $t_{m,n}$ Polygonal number of rank n with size m.
- $x(u,\beta) + y(u,\beta) 2^{8\beta+9} t_{100,u} \equiv 0 \pmod{5}$
- $6\{z(2+14*2^{\beta},\beta)-(2^{\beta}-1)\}$ is a nasty number.

Conclusion:

In this paper, we have made an attempt to find different patterns of non-zero distinct integer solutions to the bi-quadratic equation with three unknowns given by $7(x^2 - y^2) + x + y = 8z^4$. As bi-quadratic equations are rich in variety, one may search for integer solutions to other choices of bi-quadratic equations with multivariates along with suitable properties.

References:

- I. L.J.Mordell, Diophantine Equations, Academic press, New York, 1969.
- II. Carmichael, R.D. 1959. The Theory of Numbers and Diophantine Analysis, New York, Dover.
- III. Dickson, L.E. 2005. History of Theory of Numbers, vol.2, Diophantine Analysis, New York, Dover.
- IV. Telang.S.G., Number Theory, Tata Mc Graw Hill Publishing Company, NewDelhi (1996)
- V. M.A.Gopalan, S.Vidhyalakshmi, S.Devibala., Ternary bi-quadratic Diophantine equation $2^{4n+3}(x^3-y^3)=z^4$, Impact J.Sci.Tech, Vol.4 (3), 57-60,2010.
- VI. M.A.Gopala, G.Sangeetha, Integral solutions of ternary non-homogeneous bi-quadratic equation $x^4 + x^2 + y^2 y = z^2 + z$, Actaciencia Indica, Vol.XXXVIIM, No.4, 799-803,2011.

International Journal of Advanced Scientific and Technical Research Available online on http://www.rspublication.com/ijst/index.html

- M.A.Gopalan, S.Vidhyalakshmi, G.Sumathi, Integral solutions of ternary bi-quadratic non-VII. homogeneous equation $(\alpha + 1)(x^2 + y^2) + (2\alpha + 1)xy = z^4$, JARCE, Vol.6(2), 97-98, July-Dec 2012.
- VIII. M.A.Gopalan, G.Sumathi, S.Vidhyalakshmi, Integral solutions of ternary non-homogeneous bi-quadratic equation $(2k+1)(x^2+y^2+xy)=z^4$, Indian Journal of Engineering, Vol. 1(1), 37-39, 2012.
 - M.A.Gopalan, G.Sumathi, S.Vidhyalakshmi, On the ternary bi-quadratic non-homogeneous IX. equation $x^2 + ny^3 = z^4$, Cayley J.Math Vol. 2(2), 169-174,2013.
 - M.A.Gopalan, Sivakami.B, Integral solutions of quartic equation with four unknowns X. $x^3 + y^3 + z^3 = 3xyz + 2(x + y)w^3$, Antactica J.Math., 10(2), 151-159, 2013.
 - M.A.Gopalan, S.Vidhtyalakshmi, K.Lakshmi, On the bi-quadratic equation with four XI. unknowns $x^2 + xy + y^2 = (z^2 + zw + w^2)^2$, IJPAMS, 5(1), 73-77, 2012.
- XII. M.A.Gopalan, S.Vidhyalakshmi, A.Kavitha, Integral solutions to the bi-quadratic equation with four unknowns $(x + y + z + w)^2 = xyzw + 1$, IOSR, Vol. 7(4), 11-13,2013.
- K.Meena, S.Vidhyalakshmi, M.A.Gopalan, AarthyThangam.S, On the bi-quadratic equation XIII. with four unknowns, International Journal of Engineering Research Online, Vol. 2(1), 57-60, 2014.
- XIV. M.A.Gopalan, V.Sangeetha, Manjusomanath, Integer Solutions of non-homogeneous biquadratic equation with four unknowns $4(x^3 - y^3) = 31(k^2 + 3s^2)zw^2$, Jamal Academic Research Journal, Special Issue, pp:296-299, 2015.