Stc-M-injective and Stc-self-injective Modules

Mahdi SalehNayef

Department of Mathematics, College of education, University of Al-Mustansiriyah, Email: mahdisaleh773@uomustansiriyah.edu.iq.

ABSTRACT

In this paper we introduce the concepts Stc-M-injective and Stc-self-injective modules which are proper generalizations of M-injective and self-injective respectively. Numerous properties of these generalizations are given. Moreover, we discussed the relationship between Stc-injectivity and Rc-injectivity, also the relation with C-injectivity.

Key words: St-closed submodules, rationally closed submodules, closed submodules, Stc-M-injective modules, M-rc-injective modules, c-self-injective, quasi-injective modules.

Corresponding Author: Mahdi Saleh Nayef

1. INTRODUCTION

Throughout this paper, we assume every ring R to be an associative ring with identity and every R-modules are unitary right modules.

Let M be an R-module, a module A is called M-injective if for every submodule T of M, any R-homomorphism from T to A can be extended to an R-homomorphism from M to A. A module A is called injective if it is M-injective for every R-module M. An R-module M is called self(quasi)-injective, if it is M-injective[9].

A submodule T of an R-module M is called rational in M(briefly $T \le_r M$), if for every $x, y \in M$ with $x \ne 0$ there exist $r \in R$ such that $yr \in T$ and $xr \ne 0$ [8]. It is well known that a nonzero submodule T of M is called essential (briefly $T \le_e M$), if $T \cap K \ne 0$ for each nonzero submodule T of T is called semi-essential (briefly $T \le_{sem} M$), if $T \cap P \ne 0$ for each nonzero prime T-submodule T of an T-module T is called semi-essential if whenever T of T is called prime, if whenever T is called prime, if whenever T is T if T is called prime, if whenever T is T if T is called prime, if whenever T is T if T is called prime, if whenever T is T if T is T is called prime, if whenever T is T if T is T is T is T in T is T in T is T in T in T is T in T in

An R-module M is called fully prime, if every proper submodule of M is a prime submodule [4] .So we have the following implications:

Rational submodules \Rightarrow Essential submodules \Rightarrow Semi-essential submodules. In general, neither of the converses of implication is holds.

An R-module M is called monoform is every non-zero submodule of M is rational submodule of M[1]. An R-module M is called uniform(semi-uniform) is every non-zero submodule of M is essential(semi-essential) submodule of M[8][2]. So we have the following implications: $Monoform\ module \Rightarrow Uniform\ module \Rightarrow Semi-uniform\ module$.

A submodule H of an R-module M is called rationally closed in M (briefly $H \leq_{rc} M$), if H has no proper rational extension in M, i.e if $H \leq_r K \leq M$ then H = K [1]. A submodule H of M is called closed submodule (briefly $H \leq_c M$), if H has no proper essential extensions in M, i.e if $H \leq_e K \leq M$ then H = K [6]. A submodule H of an H-module H is called H has no proper semi-essential extensions in H, i.e if $H \leq_{sem} K \leq M$ then H = K [11].

Let M be R-module. In [5] an R-module A is called M-c-injective, if every R-homomorphism $\alpha: H \to A$, where H is a closed submodule of M, can be extended to an R-homomorphism $\beta: M \to A$. An R-module A is said to be self-c-injective if A is A-c-injective.

An R-module M is called C-quasi-injective if, any R-homomorphism $\varphi: H \to M$, where H is a closed submodule of M, can be extended to some $\alpha \in End(M)$ [14]. Obviously that, the concepts of self-c-injective and C-quasi-injective R-modules are the same.

In [2], Abbas, M. S., and Mahdi, S. N. introduced the concepts M-rc-injective and rc-quasi-injective modules. Let M_1 and M_2 be R-modules. Then M_2 is called M_1 -rc-injective if every R-homomorphism $f: H \to M_2$, where H is rationally closed submodule of M_1 , can be extended to an R-homomorphism $g: M_1 \to M_2$. An R-module M is called rc-injective, if M is N-rc-injective, for every R-module N. An R-module M is called m-quasi-injective or self-m-rc-injective, if m is m-m-rc-injective [2].

Thus we have the following implications:

Injective module \Rightarrow quasi-injective module \Rightarrow rc-quasi-injective module \Rightarrow c-quasi-injective module.

In general, neither of the converses of implication is hold[2].

In this work, we introduce and study a proper generalization of *M*-injectivity and Self-injectivity, namely Stc- *M*-injective and Stc-self-injective modules respectively. Also, we will shows that the class of Stc-injectivity is a weak than the class of C-injectivity.

2. SOMERESULTSON St-CLOSEDSUBMODULES

In this section we introduce some results on St-closed submodule(briefly Stc-submodule) which needed in our work.

Definition 2.1: An R-module M is called STC-module if every submodule of M is Stc-submodule.

Remarks and Examples 2.2:

- (1) $M = Z_6$ as Z-module is STC-module.
- (2) M = Z as Z-module is not STC-module, since a submodule T = 5Z is not Stc-submodule of Z since T = 5Z is semi-essential submodule of Z (in fact Z is uniform (and hence Z is semi-uniform).

- (3) Every field is not STC-module, since every filed has only one prime submodule which is <0> implies <0> is semi-essential submodule. Therefor, <0> is not Stc-submodule. For example, the Z-modules: Z_2 , $Z_3,...Z_p$ (where p is prime number) are not STC-modules.
- (4) Follows [11], if D is a direct summand of an R-module M then not necessary D is Stc-submodule in M, for example: Consider the Z-module,

 $Z_{36} = 9Z \oplus 4Z$, it is clear that 9Z is a direct summand of Z_{36} but not Stc-submodule in Z_{36}

(5) Every St-closed submodule is rationally closed submodule.

Proof: Let T be an Stc-submodule of an R-module M. Then by [11,Remark(1.3)], T is closed submodule in M. Hence by [1], T is rationally closed submodule. \Box

(6) the converse of (5), may not be true in general. For example a submodule 2Z of Z-module Z_4 is rationally closed but not Stc-submodule, since 2Z is semi-essential submodule in Z_4 .

The following implication explain the relation between these submodules

St-closed submodules \Rightarrow Rational closed submodules.

The converses of this implication may not be true in general.

Proposition2.3: Every submodule in STC-module is direct summand.

Proof: Suppose that M be STC-module and H be any a submodule of M. Then, by [definition (2.1)], H is Stc-submodule of M and hence by [11, Reamark (1.3)], H is closed submodule of M. This implies that, every submodule of M is closed submodule, thus by [9, P.139], H is a direct summand in M, that means, every submodule of M is direct summand. \square

An R-module M is extending if and only if every closed submodule of M is direct summand [6].

Corollary 2.4: Every STC-module is semisimple R-module(and hence extending module).

The converse of Corollary (2.4) may not be true in general. For example, consider $M = Z_2$ as Z-module. It is well known that, M is semi-simple module(and hence extending module), but M is not STC-module, since < 0 > is not Stc-submodule of Z_2 .

An R-module M is called fully prime if every submodule of M is prime[4].

Theorem 2.5: For fully prime R-module M. The following statements are equivalent:

- (i) Mis STC-module.
- (ii) Mis semi simple module.

Proof: (i) \Rightarrow (ii) It is follows corollary (2.4).

(ii) \Rightarrow (i) Suppose that, M is semi simple module and T be any submodule of M. Then T is direct summand of M. It is well known that every direct summand is closed submodule, thus T is closed submodule in M. Since M is fully prime R-module then by [11,Remark (1.8)], T is Stcsubmodule in M. Therefore, M is STC-module. \square

Recall that a singular submodule defined by $Z(M) = \{m \in M: ann(m) \le_e R\}$. M is called the singular module, if Z(M) = M, and M is called a nonsingular module, if Z(M) = 0 [8].

In the following results we explain when the converses of the implication of remark ((2.2)(6)) is true.

Firstly, we need the following lemmas which appeared in [11] and [1] respectively.

Lemma2.6: If an R-module M is fully prime, then every nonzero closed submodule in M is an St-closed submodule.

Lemma2.7:If an R-module M is non-singular, then every nonzero rationally closed submodule in M is an closed submodule.

Proposition 2.8: Let Mbe non-singular fully prime R-module, and T be non-zero submodule of M. Then the following statements are equivalent:

- (i) T is St-closed submodule
- (ii) T is closed submodule
- (iii) T is rationally closed submodule.

Proof: (i) \Leftrightarrow (ii) follows [11, the remarks (1.3)] and [Lemma (2.6)]

- $(ii) \Leftrightarrow (iii)$ follows [1, definition (1.5)] and [Lemma (2.7)]
- $(i) \leftarrow (iii)$ Suppose that T is rationally closed submodule M. Since M is non-singular then by [Lemma (2.7)], T is closed submodule. So that, by [Lemma (2.6)], T is St-closed submodule. \Box

3. Stc-M-INJECTIVE and Stc-self-INJECTVE MODULES

Definition 3.1: Let M and A be R-modules. Then A is called Stc - M-injective if every R-homomorphism $\varphi: T \to A$, where T is St-closed submodule of M, can be extended to an R-homomorphism $\theta: M \to A$. An R-module A is called Stc-injective, if A is Stc - M-injective, if A is Stc - M-injective, if A is Stc - M-injective.

Remark and Examples 3.2:

- (1) It is easy to show that, if A injective module then A is also Stc-injective module.
- (2) The converse of (1) is not true in general, as following example:
- Let $A=Z_2$ as Z-module. Since A is the only St-closed submodule of A , hence A is Stc-injective module. But, on other hand $A=Z_2$ is not divisible Z-module , $0=2Z_2\neq Z_2$. Therefore, Z_2 is not injective.
- 3) Every semi-uniform (and hence every uniform) *R*-module is Stc-self-injective module.

Proof:- let A is semi-uniform R-module, then every submodule of A is semi-essential submodule. So, that A is the only St-closed submodule in A. Therefore, A is Stc-self-injective. \Box

- (4) Every self-injective *R*-module is Stc-self-injective module.
- (5) The converse of (4) is not true in general. Consider the module Z as Z-module. It is well known that, Z is not quasi-injective. But, since Z is semi-uniform (in fact Z is uniform), hence by (3), Z is Stc-self-injective. This show that, Stc-self-injective is proper generalization of quasi-
- (6) It is obvious that if A_2 is A_1 -c-injective (and hence A_1 -c-injective) then A_2 is also Stc- A_1 -injective (this means that, Stc-injectivity is weak than c-injectivity). Thus we get the following implication:

Injective \Rightarrow Quasi-injective \Rightarrow RC-quasi-injective \Rightarrow C-quasi-injective \Rightarrow Stc-quasi-injective In the following proposition we will shows when the concepts Rc-injectivity, c-injectivity and Stc-injectivity are equivalents.

Proposition 3.3: Let Mbe non-singular fully prime R-module and A be any R-module. Then the following statements are equivalent:

- (i) A is rc M-injective
- (ii) A is c M-injective
- (iii) A is Stc M-injective.

Proof: $(i) \Rightarrow (ii) \Rightarrow (iii)$ It is clear.

(iii) \Rightarrow (i) Suppose that, Ais Stc - M-injective. Let K be rationally closed submodule of M with $\theta: K \to A$ be a homomorphism. Since Mbe non-singular fully prime R-module, then by [proposition (2.8)], K is St-closed submodule of M. So that, by Stc - M-injectivity of A, there is an R-homomorphism $f: M \to A$ such that extend θ . This means, Ais rc - M-injective. \square

Corollary 3.4: Let Abe non-singular fully prime R-module. Then the following statements are equivalent:

- (i) A is rc Self-injective
- (ii) A is c Self-injective
- (iii) A is Stc Self-injective.

In the following results we introduce some general properties of Stc - M —injectivity and Stc - self- injectivity.

Proposition 3.5:Let K, T be two isomorphic R-modules and M be any R-module. If K is Stc-M-injective then T is Stc-M-injective.

Proof: The proof is routine.□

Proposition 3.6: Let Mand $A_i (i \in I)$ be R-modules. Then $A = \prod_{i \in I} A_i$ is Stc - M-injective if and only if A_i is Stc - M-injective, for every $i \in I$.

Proof: First direction: Assume that, $\prod_{i \in I} A_i$ is Stc - M-injective. Let $\tau: T \to A_i$ be an R-homomorphism(where T is St-closed submodule of M). Now, consider the following mapping $\pi_i \colon \prod_{i \in I} A_i \to A_i$ and $\sigma_i \colon A_i \to \prod_{i \in I} A_i$ (where, π_i is the natural projection of A into A_i and σ_i is the natural injection from A_i into A, for every $i \in I$.). Since $\sigma_i \circ \tau$ is an R-homomorphism from T into A and we have A is Stc - M-injective then there exists an R-homomorphism $\theta \colon M \to A$ such that $\sigma_i \circ \tau = \theta \circ \mu$ (where μ is inclusion map from T into M). Claim that, there exists an R-homomorphism $f \colon M \to A_i$ such that $f \circ \mu$, to show this, for every $f \in T$, $f \circ f \circ f$ and $f \circ f \circ f$ and $f \circ f \circ f \circ f$ are injective, for every $f \circ f \circ f \circ f$. Therefore, this show that, $f \circ f \circ f \circ f \circ f \circ f$ injective, for every $f \circ f \circ f \circ f \circ f \circ f \circ f$.

Second direction: Assume that, A_i is Stc-M-injective, for every $i \in I$. Let $g: T \to A = \prod_{i \in I} A_i$ be an R-homomorphism(where T is St-closed submodule of M). Then, by assumption and for every homomorphism $\pi_i \circ g$ from T into A_i , there exists an R-homomorphism $\beta_i: M \to A_i$ such that $\pi_i \circ g = \beta_i \circ \mu$ thus by [9, Theorem (4.1.6)] there exists an R-homomorphism $\beta: M \to A$ with $\pi_i \circ \beta = \beta_i$. It is not hard to shoe that $g = \beta \circ \mu$. Therefore, $\prod_{i \in I} A_i$ is Stc-M-injective. \square As an immediate consequence of propositions (3.6) there is the following corollary.

Corollary3.7: Let $A = T \oplus T'$. If A is Stc - M —injective module, then T is Stc - M —injective.

Recall that an R-module M is called chained, if for each sub modules A and B of M either $A \le B$ or $B \le A$ [12].

Lemma3.8: [11]

- (i) For a chained R-module M. If $A \leq Stc$ B and $B \leq Stc$ M, then $A \leq Stc$ M.
- (ii) The intersection of two Stc-submodules is also Stc-submodule.
- (iii) For a fully prime R-module M. If $(0) \neq A \leq Stc B$ and $B \leq Stc M$, then $A \leq Stc M$. Now, we are ready to consider the following results.

Proposition 3.9: Let M be a chained R-module and W be any R-module with W is Stc-M-injective. Then the following statements hold.

- (i) If $T \leq_{Stc} M$ then W is Stc T-injective.
- (ii) If $T \leq_{Stc} M$ and $K \leq_{Stc} M$ then W is $Stc T \cap K$ injective.

Proof:((i) Let $T \leq_{Stc} M$, $L \leq_{Stc} T$ and $\varphi \colon L \to W$ be R-homomorphism. By [Lemma(3.8)(i)] we have $L \leq_{Stc} M$, hence by Stc - M- injectivity of W, there exists a R-homomorphism $f \colon M \to W$ such that $fi_Ti_L = \varphi$ where $i_L \colon L \to T$ and $i_T \colon T \to M_1$ are inclusion maps.Let $\beta = g \circ i_H$. Clearly, β is R-homomorphism, and $\beta = fi_L = fi_Ti_L = \varphi$. Therefore, W is Stc - T injective. \square

(ii)It is clearly, follows from statement (i) and [Lemma(3.8)(ii)]. □

Corollary 3.10:Let A_1 and A_2 be any R-modules. If $A_1 \oplus A_2$ is Stc - self - injective, then A_1 and A_2 are both Stc - self - injectives. \square

Corollary 3.11: An R-module M is Stc - self -injective if M is Stc - B -injective for every Stc-submodule B of M.

Proof: It follows from proposition (3.9). \Box

Proposition 3.12: A non-zero direct summands of Stc-self-injective fully prime R-module is Stc-self-injective.

Proof: Let M be fully prime module with M is Stc-self — injective and $(0) \neq T$ be any direst summand of M. Hence $M = T \oplus T'$ for some submodule T' of M. Let K be an Stc-submodule in T and $f: K \to T$ be any R-homomorphism. Since, every direct summand is closed submodule then T is closed submodule in M, hence by [Lemma (3.8)(iii)], T is an Stc-submodule in M, implies K is an Stc-submodule in M then by Stc-self — infectivity of M, there exists R-homomorphism $\beta: M \to M$ such that $\beta i_T i_k = j_T f$, where j_T is injection mapping from T to M and i_k is inclusion from K into T. Let $\rho: M \to T$ be the projection map. Define $g: T \to T$ by $g(t) = \rho(\beta(t))$ for any $t \in T$. Follows that, for each $x \in K$, $g(x) = gi_k(x) = \rho\beta i_K(x) = \rho j_A \circ f(x) = f(x)$. Hence T is Stc-self — injective.

Proposition3.13:Let M be a chained R-module and W be any R-module. WisStc - M-injective if and only if every direct summand K of W is Stc - T-injective for every Stc-submoduleT of M.

Proof: Suppose that, W is Stc - M- injective. Let K is a direct summand of W then by [Corollary (3.7)], K is Stc - M-injective. Now, let H is Stc-submodule of T then by [Lemma

(3.8)(i)], H is Stc-submodule of M, hence it is clear that by [Proposition(2.9)], K is Stc-T-injective. Conversely, it is directly from first direction, since we have W is direct summand of W and M is Stc-submodule of M. \square

In general, not every Stc-submodule is direct summand[11]. For example, the submodule 6Z is Stc-submodule of Z_{12} as Z-module, but clear that, 6Z is not direct summand of Z_{12} .

In the following results we show that when the Stc-submodule is direct summand

Proposition3.14:Let A be a Stc-self-injective R-module and let T be an Stc-submodule of A. If $T \cong A$ then T is a direct summand of A.

Proof: In a similar way of [2], we can prove it. \Box

In the following proposition, we give a characterization of Stc - M-injective modules.

Proposition3.15: Let $M = A_1 \oplus A_2$ where A_1 and A_2 be two R-modules. Then the following statements are equivalent:

- (i) A_2 is $Stc A_1$ -injective
- (ii) For every (St-closed) submodule T of M such that the intersection of T with A_2 equal zero and $\pi_1(T)$ is St-closed submodule of A_1 (where π_1 is the natural projection of M into A_1), there exists a submodule T' of M such that $T \leq T'$ and $M = A' \oplus A_2$.

Proof: (i) \Rightarrow (ii) Assume that, T be submodule of M such that $T \cap A_2 = 0$ and let A_2 is $Stc - A_1$ -injective. Let $\pi_i \colon M \to A_i$, (i = 1,2) be the projective mapping and $\pi_1(T)$ is St-closed submodule of A_1 . As $H \cap N_2 = 0$, the restriction of π_1 to H is an R-isomorphism between H and $\pi_1(T)$. Define $g \colon \pi_1(T) \to A_2$ such that $g(x) = \pi_2[(\pi_1)^{-1}(x)]$ (where, $\forall x \in \pi_1(T)$), $\exists t \in T$ such that $x = \pi_1(t)$). It is easy to check that g is well-define and g-homomorphism. Since $g \colon A_1 \to A_2$ and $g \colon A_1 \to A_2$ befine $g \colon A_1 \to A_2$. Define $g \colon A_1 \to A_3 \to A_4$. Clearly, $g \colon A_1 \to A_4 \to A_4$. So, since $g \colon A_1 \to A_4 \to A_4 \to A_4 \to A_4$ where $g \colon A_1 \to A_2 \to A_4 \to A_$

(i) \Leftarrow (ii), Assume that, the statement (ii) holds. Let $W \leq_{Stc} N_1$ and let $\psi: W \to A_2$ be an R-homomorphism. Define $T = \{w - \psi(w), w \in W\}$. Clearly, T is a sub module of M such that $T \cap A_2 = 0$. It is easily to check that $\pi_1(T) = W$ and so that $\pi_1(T) \leq_{Stc} A_1$. Then by (ii), there exists a submodule T of M such that $T \leq T$ and $M = T' \bigoplus A_2$. Let $\pi_2: M \to A_2$ denote the projection with $\ker \pi_2 = T'$ and let $\phi: A_1 \to A_2$ be the restriction of π to A_1 . For every $w \in W$, $\phi(w) = \pi(w) = \pi[w - \psi(w) + \psi(w)] = \pi(w - \psi(w)) + \pi(\psi(w)) = \psi(w)$ and, therefore, ϕ extends ψ . Thus A_2 is $Stc - A_1$ -injective. \square

In the following, we characterize injective R-modules in terms of *Stc*-injectivity.

Proposition3.16: For an R-module A. Ais injective if and only if A is Stc - B- injective for any R-module B.

Proof: (i) \Longrightarrow (ii) It is clearly.

(ii) \Rightarrow (i)As the same way of proof proposition (2.10). \Box

Recall an *R*-module *M* be projective, if for each epimorphism $\theta: B \to A(A)$ and *B* be any two *R*-module) every *R*-homomorpism $\alpha: M \to A$ there is a homomorphism $\beta: M \to B$ with $\alpha = \theta\beta$ [9, p117].

Theorem 3.17: Let W be Stc - B- injective for any projective R-module. Then the following statements holed.

- (i) $\frac{W}{T}$ is Stc B- injective (where T is any submodule of W).
- (ii) Any Stc-submodule of B is projective

Proof: (i) \Rightarrow (ii) Suppose that T is any submodule of W such that $\frac{W}{T}$ is Stc - B- injective. Now, Let M be injective R- module and $\frac{M}{F}$ be any factor module of M with an R-epimorphism : $M \to \frac{M}{F}$. Clearly that, $\frac{M}{F}$ is Stc - B- injective. Suppose that L is an Stc- submodule of B, then by B-rc-injectivity of $\frac{M}{F}$, every R-homomorphism $\beta: L \to \frac{M}{F}$ can be extended to an R-homomorphism $\tau: B \to \frac{M}{F}$. Since B is projective, then there exists an R-homomorphism $f: B \to M$ lifts τ . Thus obviously, $f|_{L}$ lifts β . This implies that L is projective submodule of B.

(ii) \Longrightarrow (i) Let L is Stc- submodule of B, then L is projective. Let $\frac{W}{T}$ and W be two R-modules with an R-homomorphism $\tau \colon W \to \frac{W}{T}$. Consider $\rho \colon L \to \frac{W}{T}$ is an R-homomorphism and W is Stc - B -injective. Then by projectivity of L, there exists an R-homomorphism $\theta \colon L \to W$ lifts ρ . Since W is Stc - B -injective, then there exist an R-homomorphism $\beta \colon B \to W$ extends θ . Thus, clearly $\theta \beta \colon B \to \frac{W}{T}$ extends $\rho \colon D$

If every submodule of M is a projective then the R-module A is called a hereditary module [7.]. Then the following result follows theorem (2.17).

Corollary 2.18:Let A be a hereditary R-module .Then any factor R-module of an Stc-A-injective R-module is Stc-A-injective. \Box

REFERENCES

- [1] Abbas., M. S., and Ahmed, M. A. (2011), "Rationally Extending and Strongly Quasi-Monoform Modules", Al-Mustansiriya J. Sci. Vol. (22), No (3), pp. (31-38).
- [2] Abbas, M. S., and Nayef, M. S. (2015), "M-RC-injective and RC-quasi injective Modules", Int. J. of Math. Sci., Vol. (35) No. (2), PP. (1772-1779).
- [3] Ali. S. M., and N. K. Abdullah, (2009) "Semi-essential sub module and semi-uniform modules", J. of Kirkuk University-Scientific studies, Vol. (4) No. (1),.
- [4] Behboodi M. Karamzadeh O. A. S, and Koohy H. (2004), "Modules whose certain sub module are prime", Vietnam J. of Mathematics, Vol. 32 No.(3): (303-317),.
- [5] Clara, C. S., Some Generalizations of Injectivity, (1998), "Ph.D. dissertation", University of Glasgow.
- [6] Dung, N., V., Huynh, D. V., Smith, P. F., & Wisbauer., R., (1994). "Extending Modules", Pitman Research Note Mathematics Series, Longman, Harlow.
- [7] Dung N. V. and Smith, P. F.,(1992), "Hereditary CS-modules", Math. Scand. 71, (173-180).

DOI: <u>https://dx.doi.org/10.26808/rs.st.i8v1.03</u>

International Journal of Advanced Scientific and Technical Research Available online on http://www.rspublication.com/ijst/index.html

Issue8 volume 1 January-February 2018 ISSN 2249-9954

- [8] Goodearl, K., R. (1976). "Ring Theory, Non-singular Rings and Modules", Marcel Dekker. Inc. New York.
- [9] Kasch, F., (1982)," Modules and Rings", Academic Press Inc. London.
- [10] Muna A. Ahmed, and Maysaa, R. Abbas, (2015). "On semi-essential sub modules", Ibn Al-Haitham J. for Pure & Applied Science, Vol. 28 (1), 179-185.
- [11] Muna A. A., and Maysaa, R. A., (2015)" St-closed sub modules ", Journal of Al-Nahrain University, Vol. 18 (3), (141-149).
- [12] Osofsky, B.L. (1991) "A construction of nonstandard uniserial modules over valuation domain". Bulletin Amer. Math. Soc25: (89-97).
- [13] Saymeh S. A., (1979) "on prime R-sub modules", Univ. Ndc. Tucuma'n Rev. Ser. A29, (129-136).
- [14] TiwariA.K.,et al.,(1979), "Generalization of Quasi-injectivity", Progress of Math.,13:1.(31-40).

