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Abstract :  

In this paper, we make an attempt to investigate combined influence of magnetic field and 

dissipation on connective heat and mass transfer flow of a viscous chemically reacting fluid 

through a porous medium in the concentric cylindrical annulus with inner cylinder maintained at 

constant temperature and concentration on the other cylinder maintained constant heat flux. The 

equations governing the flow, heat. Mass and micro rotation are solved by employing Galerkin 

finite element analysis with quadratic approximation functions. The temperature, concentration and 

micro concentration distributions are analyzed for different values of Sr, , Ec, ,  and A. The rate 

of heat and mass transfer and couple stress are numerically evaluated for different variations of the 

governing parameters.  
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1. INTRODUCTION: 

The theory of micropolar fluids initiated by Erigen [3] exhibits some microscopic effects 

arising from the local structure and micro motion of the fluid elements. Further, they can sustain 

couple stress and include classical Newtonian fluid as a special case. The model of micropolar fluid 

represents fluids consisting of rigid randomly oriented (or sphenical) particles suspended in a 

viscous medium where the deformation of the particles is ignored. The fluid containing certain 

additives, some polymeric fluids and animal blood are examples of micropolar fluids. The 

mathematical theory of equations of micropolar fluids and application of these fluids in the theory 

of lubrication and porous media is presented by Lukaszewics [7]. Agarwal and Dhanpal [1] 

obtained numerical solution of micropolar fluid flow and heat transfer between two co-axial porous 

circular cylinders.Verma and Singh [16] have analyzed the behaviour of parametric fluid flow in a 

porous annulus in the presence of external magnetic field acting parallel to the common axis of the 

long co axial porous cylindrical tubes. Panja et al. [11] studied the flow of electrically conducting 

Reiner – Rivlin fluid between two non-conducting co axial circular cylinders with porous walls in 

the presence of uniform magnetic field. Shivashankar et al. [12] have obtained numerical solution 

to the MHD flow of micropolar fluid between two concentric porous cylinders; Murthy et al. [9] 

have considered study flow of micropolar fluid through a circular pipe and transverse with constant 

suction and injection. 

An enclosed cylindrical annular cavity formed by three vertical, concentric cylinders, 

containing a fluid through which heat is transferred by natural convection, is a simplified 

representation of a number of practical and experimental situations. Also, the annulus represents a 

common geometry employed in a variety of heat transfer systems ranging from simple heat 

exchangers to the most complicated nuclear reactors. Since, the flow and heat transfer in a 

cylindrical annular configuration contains all the essential physics that are common to all confined 
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natural convective flows, a complete understanding of the flow in such geometry is very essential. 

In addition, from a computational stand point, the annular configuration allows investigation of a 

wide range of geometrical effects. Convection is an important phenomenon in the crystal growth 

techniques as it can account for heat transfer in the liquid phase and can change the material 

properties.  

Gebhart and Mollendorf [6] have shown that viscous dissipation heat in the natural 

convective flow is important when the flow field is of extreme size at extremely low temperature or 

in high gravitational field. On the other hand Barletta [2] have pointed out that relevant effects of 

viscous dissipation on the temperature profiles and on Nusselt number my occur in the fully 

developed forced convection in tubes. In view of this several authors notably Soundalgekar and 

Pop [15]. Shivasankar et al. [13], Sreevani [14] and Barletta [2] have studied the effect of viscous 

dissipation on the convective flows past an infinite vertical plate and through vertical channels and 

ducts. The effect of viscous dissipation on natural convection has been studied for some different 

cases including the natural convection from horizontal cylinder embedded in a porous media by 

Fand and Brucker [7], Giampietrao Fabbri [5] and Sreevani [14]. They reported that the viscous 

dissipation may not be neglected in all cases of natural convection from horizontal cylinders and 

further that the inclusion of a viscous dissipation term in a porous medium may lead to more 

accurate correlation equations, the effect of viscous dissipation has been studied by Nakayama and 

Pop [10] for steady free convection boundary layer over a non-isothermal body of arbitrary shape 

embedded in porous media. They used the integral method to show that the viscous dissipation 

results in lowering the level of the heat transfer rate from the body. This observation has been 

pointed also by Murthy and Singh [8] for the natural connection flow along an isothermal wall 

embedded in a porous medium. They concluded that that the effect of viscous dissipation increases 

as we move from Non-Darcy regime to Darcy regime. Recently, Prasuna et al [17] have analysed 

the effect of dissipation and Soret effect on convective heat and mass transfer flow through a 

porous mediun in a concentric annulus. 

 

2. FORMULATION OF THE PROBLEM: 

We consider the steady flow of an incompressible, viscous, electrically conducting 

micropolar fluid through a porous medium in an annulus region between the concentric porous 

cylinders r = a and r = b (b > a) under the influence of a radial magnetic field
2

0

r

H
.  

The fluid is injected through the inner cylinder with radial velocity ua and flows outward 

through the outer cylinder with a radial velocity ub. We also take the viscous, Darcy and Ohmic 

dissipation into account 

 The velocity and micro rotation are taken in the form 

 vr = u(r), v = v = 0, vz = w(r) 

 r = 0,   = (r), z = 0               (1) 

The equations governing the flow and heat and mass transfer eqn.(1) 
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where u, w are the velocity components along O(r, z) directions, T is the temperature,  is the 

micro rotation, p is the pressure,  is the density,  is the dynamic viscosity, Cp is the specific heat 

at constant pressure, kf is the thermal conductivity, k1 is the permeability of the porous 

permeability,  is the electrical conductivity  is the magnetic permeability and k, r,  are the 

material constants. 

The boundary conditions are 

  u = ub,    w = 0,      = 0,  T = T0 + A0 z  , C = C0 + B0 z   on   r = a   

  u = ua,    w = 0,      = 0,  T = T1 + A0 z   , C =C1 + B0 z      on  r = b  

From the equation of continuity we obtain 

 ru = c,  constant  ru = aua = bub     
r

au
u a  

In view of the boundary condition on temperature and concentration, we may write 

 T = T0 + A0 (z) + (r) , C =C0 + B0(z) + (r)      

On introducing the non-dimensional variables r, w, , p  and N as 
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The non-dimensional boundary conditions are 

 w = 0,   = 1,   =1 N = 0  on r = 1 

 w = 0,   = 0,  =0 N = 0   on r = s          (10) 

 

3. METHOD OF SOLUTION: 

The finite element analysis with quadratic polynomial approximation functions is carried 

out along the radial distance across the circular cylindrical annulus. The behavior of the velocity, 

temperature and concentration profiles has been discussed computationally for different variations 

in governing parameters. The Gelarkin method has been adopted in the variation formulation in 

each element to obtain the global coupled matrices for the velocity, temperature and concentration 

in course of the finite element analysis. Choose an arbitrary element ek and let w
k
, 
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k
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values of w,  and N in the element ek. 
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Where w
k
, , 

k
 , 

k
 and  k

 are values of w,  and   in the arbitrary element ek. These are 

expressed as linear combinations in terms of respective local nodal values.  
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Where ,....., 21

kk   etc are Lagrange’s quadratic polynomials. 

Substuting eqn(15) in equations (11 – 14) and evaluating the resulting integral we get local stiffness 

matrices. These matrices are assembled into global matrix by using inter element continuity, 

equilibrium and boundary conditions. These global matrices are solved by iteration procedure. The 

iteration process is repeated until the convergence is obtained i.e. |ui+1-ui| < 10
-6

.  

 

4. NUSSELT NUMBER, SHERWOOD NUMBER: 

The rate of heat transfer (Nusselt number) is evaluated using the formula
1,2r
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The rate of mass transfer (Sherwood number) is evaluated using the formula 
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COMPARISON: In the absence of Heat sources (=0) the results are in good agreement with 

those of Prasuna et al[17]   

 

Table - 1 
Parameters Prasuna et al(28) Present results(=0) 

N Ec    Nu(1) Nu(2) Sh(1) Sh(2) Nu(1) Nu(2) Sh(1) Sh(2) 

1 0.01 0.5 1 0.1 2.8636 -5.1236 4.2065 -10.781 2.8632 -5.1237 4.2068 -10.780 

2 0.01 0.5 1 0.1 6.4175 -11.548 6.7759 -15.409 6.4173 -11.546 6.7756 -15.408 

-0.5 0.01 0.5 1 0.1 -0.8592 -1.5012 1.7038 -3.6098 -0.8591 -1.5011 1.7036 -3.6096 

-1.5 0.01 0.5 1 0.1 0.1787 -0.01638 -0.9098 -1.5997 0.1779 -0.01633 -0.9099 -1.5994 

1 0.03 0.5 1 0.1 1.8355 -3.3072 4.2058 -10.7794 1.8356 -3.3071 4.2055 -10.7796 

1 0.05 0.5 1 0.1 2.8756 -5.1236 4.2065 -10.8802 2.8754 -5.1233 4.2066 -10.9801 

1 0.01 1.5 1 0.1 2.8853 -5.1777 3.2232 -8.7041 2.8857 -5.1774 3.2229 -8.7042 

1 0.01 0.5 3 0.1 1.778 -5.2273 1.5148 -5.5912 1.779 -5.2271 1.5149 -5.5911 

1 0.01 0.5 5 0.1 1.035 -5.0836 4.0588 -8.4699 1.033 -5.0833 4.0589 -8.4696 

1 0.01 0.5 1 0.3 2.8636 -2.8052 3.0811 -6.5156 2.8633 -2.8051 3.0810 2.8636 

1 0.01 0.5 1 0.5 2.9613 -5.1236 3.4047 -9.5098 2.9611 -5.1233 3.4049 -9.5099 

 

5. RESULTS AND DISCUSSION: 

In this analysis we investigate the effect of thermo-diffusion, dissipation and chemical 

reaction  on mixed convective heat and mass transfer flow of a micro polar fluid through a porous 

medium in circular annulus between the cylinders r=a and r=b which are maintained at constant 

temperature and concentration. The non-linear coupled equations governing the flow heat and mass 

transfer are solved by Galerkin finite element analysis with quadratic approximation functions.  

 Fig.1 shows the effect of thermo-diffusion effect on w. It can be seen from the graphs that 

higher the thermo-diffusion effect larger w.Fig. 2 represents w with chemical reaction parameter γ. 

It is found that the magnitude of w reduces in  degenerating generating chemical reaction case and 
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enhances in the generating chemical reaction case .Also we find that w exhibits a reversal flow for 

1.5 and for (<0).The region of reversal flow enlarges with increase in The variation of w with 

buoyancy ration N is shown in Fig. 3. When the molecular buoyancy force dominates over the 

thermal force |w| enhances when the buoyancy forces are in the same direction and for the forces 

acting in opposite direction, |w| depreciates in the flow region. Also we find that w exhibits a 

reversal flow The effect of dissipation on w is exhibited in Fig.4. It is found that higher the 

dissipative effect smaller the magnitude of w. Fig.5 represents w with micropolar parameter().It 

can be seen from the profiles that the axial velocity reduces with increase in 1.5 and for higher 

2.0,we notice an enhancement in w in the entire flow region.  Fig. 6 represents w with suction 

parameter .It is found that |w| enhances with increase in .An increase in A enhances the 

magnitude of W(fig.7). 

 The non-dimensional temperature (θ) is exhibited in Figs. 8-14 for different parametric 

values. Higher the thermo-diffusion effects smaller the actual temperature in the flow 

region(fig.8).Fig. 9 represents θ with chemical reaction parameter γ. It is found that the actual 

temperature reduces with γ in both degenerating and generating cases. Fig. 10 represents θ with 

buoyancy ratio N. It can be seen from the profiles that the molecular buoyancy force dominates the 

actual temperature  reduces in the flow region, when the buoyancy forces are in the same direction 

and for the forces acting in opposite direction, it enhances in the flow region. The variation of θ 

with Eckert number Ec is shown in the Fig. 11. It is found that the actual temperature reduces with 

Ec in the entire flow region.Fig.12 shows the variation  with micropolar parameter .Higher the 

values of ,lesser the actual temperature in the flow region. The variation of θ with  is exhibited in 

Fig.13. It is found that the actual temperature experiences an enhancement with increase in suction 

parameter.Fig.14 exhibits  with micropolar parameter A.It can be seen from the graphs that the 

actual temperature enhances with increase in A. 

 The concentration distribution (C) is exhibited in Figs.15-21. Fig.15 shows the variation of 

C with Soret parameter So.Higher the thermo-diffusion effects larger the actual concentration in the 

flow region.From fig.16 we find that the actual concentration experience a depreciation in both the 

degenerating and generating chemical reaction cases. The variation of C with buoyancy ratio(N) is 

shown in fig.17.It can be seen from the profiles that when the molecular buoyancy force dominates 

over the thermal buoyancy force the actual concentration reduces irrespective of the directions of 

the buoyancy forces. The actual concentration reduces with increase in micropolar 

parameters,(fig.19) and A(fig.21). The variation of θ with  is exhibited in Fig.20 shows the 

variation of C with suction parameter . It is found that the actual temperature experiences an 

enhancement with increase in suction parameter. 

 The micro rotation (ω) is shown in Figs. 22-28 for different parametric values. Fig.23 

represents ω  with chemical reaction parameter γ. It is found that the micro rotation the magnitude 

of ω enhances in both the degenerating and generating cases. Higher the thermo-diffusion effects  

larger the magnitude of the angular velocity(fig.22). Fig. 24 represents with ω buoyancy ratio N. It 

is found that the magnitude of ω increases with |N| irrespective of the directions of the buoyancy 

forces. Higher the dissipation lesser |ω|  in the entire flow region. An increase in micropolar 

parameter  reduces  |ω|  in the region(1.1,1.5) and increases in the region(1.6,1.9)(fig.26).An 

increase in suction parameter  enhances |ω| in the flow region(fig.27).From fig.28 we find that |ω| 

enhances wit increase in micropolar parameter A. 

            The rate of heat transfer (Nusselt number) (Nu) at r=1 and r=2 is shown in Tables 2 for 

different parametric values. |Nu| enhances at r=1 and reduces at r=2 with increase in |N| . An 

increase in suction parameter  reduces |Nu| at the outer cylinder at r=1. The variation of Nu with 

micro rotation parameter A and viscosity ratio parameter Δ shows that |Nu| enhances with A and 

depreciates with Δ at r=1 and 2. The variation of Nu with Ec shows that higher the dissipative heat 
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smaller |Nu|.Also |Nu| experiences and enhances at r=1 and 2, with increase in the chemical 

reaction parameter γ. 

 The rate of mass transfer (Sherwood number) at r=1 and 2 is exhibited in Tables 2 for different 

parametric values.The variation of Sh with buoyancy ratio N shows that when the molecular buoyancy 

force dominates over the thermal buoyancy force |Sh| enhances at r=1 and reduces at r=2 when the 

buoyancy forces are in the same direction and for the forces acting in opposite direction it depreciates at 

r=1 and increases at r=2. We find that the rate of mass transfer enhances with λ and reduces with Ec at  

r=1 and 2.An increase in  reduces at r=1 and enhances at r=2 while it enhance4s with A at both 

cylinders. Higher the thermo-diffusivity smaller |Sh|  at both the cylinders. With respect to γ we find 

that |Sh| reduces at both the cylinders in degenerating and generating chemical reaction cases.  

 
Fig.1 Variation w with S0   Fig.2: Variation of w with  

=0.5,N=1,=0.5,=0.3,A=0.5  S0=0.5,N=1,=0.5,=0.3,A=0.5 

 
Fig.3 Variation w with N    Fig.4: Variation of w with Ec 

S0=0.5,=0.5, =0.5,=0.3,A=0.5   S0=0.5, =0.5,N=1,=0.5,=0.3,A=0.5 

 

 
Fig.5 Variation w with    Fig.4: Variation of w with  

S0=0.5,=0.5,N=1, =0.3,A=0.5  S0=0.5, =0.5,N=1,=0.5, A=0.5 
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Fig. 1 : Variation of w with S0 

G=2, D-1=0.2, Sc=1.3, =2, =0.5, N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 2 : Variation of w with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 3 : Variation of w with N 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5, =0.5, Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 4: Variation of w with Ec 

G=103, D-1 = 102, M = 2,  = 0.5, S=0.3, N=1 
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Fig. 5 : Variation of w with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, N=1,  Pr=0.71, =0.3, A=0.5 
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Fig. 6 : Variation of w with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, N=1,  Pr=0.71, =0.5, A=0.5 
 



DOI : https://dx.doi.org/10.26808/rs.st.i8v1.12                                                                                                                

International Journal of Advanced Scientific and Technical Research                Issue8 volume 1 January-February  2018  

Available online on http://www.rspublication.com/ijst/index.html                                                            ISSN 2249-9954 

©2017 RS Publication, rspublicationhouse@gmail.com Page 107 
 

 
Fig.7 Variation w with A   Fig.8: Variation of  with S0 

S0=0.5,=0.5,N=1,=0.5,=0.3  =0.5,N=1,=0.5,=0.3,A=0.5 

 
Fig.9 Variation  with    Fig.10: Variation of  with N 

S0=0.5, N=1,=0.5,=0.3,A=0.5  S0=0.5, =0.5, =0.5,=0.3,A=0.5 

 
Fig.11 Variation  with Ec   Fig.12: Variation of  with  

S0=0.5,=0.5,N=1,=0.5,=0.3,A=0.5 S0=0.5, =0.5,N=1, =0.3,A=0.5 

 
Fig.13 Variation  with     Fig.14: Variation of  with A 
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Fig. 7 : Variation of w with A 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, N=1,  Pr=0.71, =0.5, =0.3 
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Fig. 8 : Variation of  with S0 

G=2, D-1=0.2, Sc=1.3, =2=0.5,  

N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 9 : Variation of  with  

                G=2, D-1=0.2, Sc=1.3, =2, S0=0.5, N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig.10 : Variation of  with N 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 11: Variation of  with Ec 

G=2, D-1 = 0.2, M = 2,  = 0.5, S=0.3, N=1,So=0.5, =0.5, =0.3, A=0.5 
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Fig. 12: Variation of  with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,=0.5, N=1,  Pr=0.71, =0.3, A=0.5 
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Fig. 13 : Variation of  with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,=0.5, N=1,  Pr=0.71, =0.5, A=0.5 
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Fig. 14 : Variation of  with A 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5, =0.5, N=1,  Pr=0.71, =0.5, =0.3 
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S0=0.5,=0.5,N=1,=0.5, A=0.5   S0=0.5, =0.5,N=1,=0.5,=0.3 

 

 
Fig.15 Variation C with S0   Fig.16: Variation of C with  

=0.5,N=1,=0.5,=0.3,A=0.5  =0.5,N=1,=0.5,=0.3,A=0.5 

 
Fig.17 Variation C with N   Fig.18: Variation of C with Ec 

S0=0.5,=0.5, =0.5,=0.3,A=0.5  S0=0.5, =0.5,N=1,=0.5,=0.3,A=0.5 

 
Fig.19 Variation C with   Fig.20: Variation of C with  

S0=0.5,=0.5,N=1,=0.3,A=0.5  S0=0.5, =0.5,N=1,=0.5, A=0.5 

 
Fig.21 Variation C with A   Fig.22: Variation of  with S0 

S0=0.5,=0.5,N=1,=0.5,=0.3  =0.5,N=1,=0.5,=0.3,A=0.5 
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Fig. 15 : Variation of C with S0 

G=2, D-1=0.2, Sc=1.3, =2=0.5,  

N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 16 : Variation of C with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5, N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 17 : Variation of C with N 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,=0.5, Pr=0.71, =0.5, =0.3, A=0.5 
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Fig.18: Variation of C with Ec 

G=2, D-1 =0.2,   = 0.5, =0.2, N=1,So=0.5,=2 
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Fig. 19 : Variation of C with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, N=1,  Pr=0.71, =0.3, A=0.5 
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Fig. 20: Variation of C with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5, =0.5, N=1,  Pr=0.71, =0.5, A=0.5 
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Fig. 21 : Variation of C with A 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5, =0.5, N=1,  Pr=0.71, =0.5, =0.3 
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Fig. 22 : Variation of  with S0 

G=2, D-1=0.2, Sc=1.3, =2=0.5,  

N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig.23 Variation  with    Fig.24: Variation of  with N 

S0=0.5, N=1,=0.5,=0.3,A=0.5  S0=0.5, =0.5, =0.5,=0.3,A=0.5 

 
Fig.25 Variation  with Ec  Fig.26: Variation of  with  

S0=0.5,=0.5,N=1,=0.5,=0.3,A=0.5 S0=0.5, =0.5,N=1, =0.3,A=0.5 

 
Fig.27 Variation  with    Fig.28: Variation of  with A 

S0=0.5,=0.5,N=1,=0.5, A=0.5  S0=0.5, =0.5,N=1,=0.5,=0.3 

Table –2 : Nusselt Number(Nu), Sherwood Number (Sh) 
N So  Ec   A Nu(1) Nu(2) Sh(1) Sh(2) 

1 0.5 0.5 0.01 2 0.2 0.5 27.5626 -39.4221 23.8952 -2.2822 

2 0.5 0.5 0.01 2 0.2 0.5 27.5632 -39.4198 23.8968 -2.28153 

-0.5 0.5 0.5 0.01 2 0.2 0.5 27.5617 -39.4252 23.8922 -2.28306 

-1.5 0.5 0.5 0.01 2 0.2 0.5 27.5614 -39.4261 23.8912 -2.28329 

1 1.0 0.5 0.01 2 0.2 0.5 27.5939 -39.7369 24.0929 -2.49708 

1 1.5 0.5 0.01 2 0.2 0.5 27.6093 -39.9767 24.3374 -2.77969 

1 0.5 1.5 0.10 2 0.2 0.5 27.5545 -39.3852 23.8942 -2.28126 

1 0.5 -0.5 0.01 2 0.2 0.5 27.5341 -39.2921 23.8921 -2.27886 

1 0.5 -1.5 0.01 2 0.2 0.5 27.4928 -39.1051 23.8878 -2.27405 

1 0.5 0.5 0.03 2 0.2 0.5 27.5078 -39.4056 23.9456 -2.30456 

1 0.5 0.5 0.05 2 0.2 0.5 27.5989 -40.0234 23.9987 -2.33456 

1 0.5 0.5 0.01 4 0.2 0.5 27.1435 -34.4998 23.8866 -2.30144 

1 0.5 0.5 0.01 6 0.2 0.5 27.1567 -34.5078 23.8076 -2.31245 

1 0.5 0.5 0.01 2 0.4 0.5 27.5879 -39.4567 23.9966 -2.28998 

1 0.5 0.5 0.01 2 0.6 0.5 27.6089 -39.4998 24.0345 -2.29134 

1 0.5 0.5 0.01 2 0.2 1.0 28.0345 -39.4689 24.0134 -2.30234 

1 0.5 0.5 0.01 2 0.2 1.5 28.1234 -39.9996 24.5678 -2.32456 
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Fig. 23 : Variation of  with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

N=1,  Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 24 : Variation of  with N 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, Pr=0.71, =0.5, =0.3, A=0.5 
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    Fig. 25 : Variation of  with Ec 

     G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

    =0.5, Pr=0.71, =0.5, =0.3, A=0.5 
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Fig. 26 : Variation of  with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, N=1,  Pr=0.71, =0.3, A=0.5 
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Fig. 27: Variation of  with  

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, N=1,  Pr=0.71, =0.5, A=0.5 
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Fig. 28 : Variation of  with A 

G=2, D-1=0.2, Sc=1.3, =2, S0=0.5,  

=0.5, N=1,  Pr=0.71, =0.5, =0.3 
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6. CONCLUSIONS: 
 The velocity reduces in the degenerating chemical reaction case and enhances in the generating 

case , the temperature and concentration reduces and the micro rotation enhances in both 

generating and degenerating chemical reaction cases. 

 An increasing suction parameter  enhances w, , C and the angular velocity ω. 

 The velocity and microrotation enhances and temperature ,Concentration reduces with 

increasing N>0 and while for N<0,the axial velocity, Concentration reduces, the the 

temperature and microrotation enhances in the flow region. 

 An increasing Eckert number Ec reduces the velocity, temperature, concentration and 

microrotation. 

 Higher the thermo-diffusion effect larger the velocity, concentration and microrotation while 

smaller the temperature in the flow region. 

 , reduces and |Nu| & |Sh| enhances at r=1 and r=2 with increase in Soret parameter So. 

 An increasing the micropolar parameter λ enhances |Nu|, |Sh| at both the cylinders. 

 Higher the dissipative heat smaller  |Sh| and |Nu| at r=1 and 2 
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