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ABSTRACT 

The study aims at determining the rank and subdegrees of the cyclic group, Cn= <(12…n)>  

acting on X
(r)

, the set of unordered  subsets of X={1, 2, …, n}. It has been shown that the  action 

of Cn on X
(r)

is transitive if and only ifr=1, r=n-1 orr=n. The rankfor transitive actions has been 

shown to ben. The number of self paired suborbits has been computed and conditions for paired 

suborbits discussed. The results have shown that the action of Cn on X is equivalent to that of Cn 

onX
(n-1)

. 
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INTRODUCTION 

The rank and subdegrees of Snacting on various r- element subsets of X={1, 2, …, n} have been 

studied ([5], [7], [8]). Kamuti et al.,[6] investigated some properties of Г∞ (the stabilizer 

ofinfinity inГ=PSL(2, ℤ)) acting on the set of integers. The dihedral groupDnacting on ordered 

and unordered subsets ofX has also been consideredwith regard to rank , subdegrees and 

suborbits[2], [3]. However, the study of the cyclic group has not received much attention. 

Section 2 outlines some preliminary results which have been used to compute the main results. 

Section 3 discusses the aspects of  transitivity, rank and subdegrees. Properties of suborbits have 

also been examined in this section. The results have been discussed and concluded in section 4. 

 

Notations and Preliminaries 

Notation 2.1 

The symbol G denotes the cyclic group Cn=<g=(12…n)>; |G|, the order of a group G; {1, 2, …, 

r}, an unordered r-element set; Gx={gG:gx=x}, the stabilizer of x in G, stabG(x); 

|Fix(g)|={xX: gx=x}, the number of elements in the fixed point set of g.  
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Definition 2.2 

Let G act on a set X and xX. The orbit of x  is the set;orbG(x)={gxX |gG}. If the action has 

only one orbit, then G is said to act transitively on X. 

Definition 2.3 

Let G be a group acting transitively on a set X. The Gx–orbits on X; 0={x}, 1, …, m-1are 

known as suborbits of G. The rank of Gin this case is m and the cardinalities, ∆𝑖  (𝑖 =

0, 1, … ,𝑚-1) are the subdegrees of G. It can be shownthat both m and the cardinalities of the 

suborbits are independent of the choice of x in X. 

Theorem 2.4 (Orbit-Stabilizer Theorem [9]. p. 72) 
Let G be a group acting on a finite set X with x in X. The size of the orbit of x in G is the index 

 𝐺: 𝑠𝑡𝑎𝑏𝐺(𝑥) . Thus,  𝑜𝑟𝑏𝐺(𝑥) =  𝐺: 𝑠𝑡𝑎𝑏𝐺(𝑥) . 
Theorem 2.5 (Cauchy-Frobenius Lemma [4]. p. 98) 
Suppose G is a group acting on a finite set X. The number of G-orbits on X is given by 
1

 𝐺 
  𝐹𝑖𝑥(g) . 

Definition 2.6 

Let G act transitively on a set X and let  be an orbit of Gxon X. Define *={gx| gG, xg}. 

Then * is also an orbit of Gxand is called the Gx-orbit paired with . If =*, then  is said to 

be self-paired. 

 

Theorem 2.7([1]) 

Let G act transitively on a set X, and suppose gG. The number of self-paired suborbits of G is 

given by 

                     
1

|𝐺|
 |𝐹𝑖𝑥(g2

g∈𝐺 )|. 

Definition 2.8 

Let (G1, S1) and (G2, S2) be permutation groups, where Gi acts on Si. The permutation 

isomorphism, (G1, S1)≅(G2, S2),means that there exists a group isomorphism  ф: G1→G2and a 

bijection ϴ: S1→S2 so that ϴ(gs)=ф(g)ϴ(s) forall gG1, s S1. 

 

MAIN RESULTS 

3.1 Transitivity, rank and suborbits of G=Cnon X
(r) 

The action of G on X
(r)

 is defined by;  

h{x1, x2, …, xr}={h(x1), h(x2), …, h(xr)}, for every h in G and {x1, x2, …, xr}in X
(r)

. 

Theorem 3.1.1 

The action of G on X
(r)

 is transitive if and only if  r=1, r=n-1 or r=n. 

Proof: 

 Let G act on X
(r) 

and suppose hG. Then h fixes an element in X
(r)

 if and only if h is the identity. 

The number of elements in X
(r)

 fixed by h, in this case, is  
𝑛
𝑟
 =

𝑛!

 𝑛−𝑟 !𝑟!
. Using Theorem 2.5, the 

number of G-orbits on X
(r)

   is 
1

𝑛
 

𝑛!

 𝑛−𝑟 !𝑟!
 =

 𝑛−1 !

 𝑛−𝑟 !𝑟!
. If the action is transitive, then 

 𝑛−1 !

 𝑛−𝑟 !𝑟!
= 1, 

 (n-1)!=(n-r)!r!, r=1 or r=n-1. Conversely, if r=1 or r=(n-1), then the number of G-orbits on 

X
(r)

 is 1 and the action is transitive. Clearly, every hG fixes 1 element inX
(n)

. The  number of G-

orbits on X
(n) 

,in this case,is 1 and the action is transitive. □ 

 However, the action of G on X
(n)

  is trivial and the study concentrates on the non-trivial actions. 
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3.1.2 Rank, subdegrees and suborbits of Gacting on X 

Theorem 3.1.2.1 

The rank of G  on X is n and the length of each suborbit is 1. 

Proof: 
Let G1 act on X. From Theorem 3.1.1, G1is the trivial group. The number of G1-orbits on Xis then 

n and the size of each suborbit is 1. Clearly, the subdegrees are; 1, 1, …, 1(n ones). The n 

suborbits of G on X are as follows; 0={1}, 1={2}, …, n-1={n}, where i={i+1}, i=0, 1, …, n-

1. □ 

Theorem 3.1.2.2 

Let G act on X. If ∆i and ∆j areorbits of G1 on X, then ∆i and ∆jare paired if and only ifi+j=0 mod 

n.
 

 

Proof: 

Suppose ∆i and ∆jare paired suborbits of G. Then there existg
k
in G, such that g

k
∆0=∆jand 

g
k
∆i=∆0, from Definition 2.6.Now, g

k
 maps every element t in ∆i to t+k mod n. It follows, 

1+k=j+1 and i+1+k=1mod n, ⟹i+j=0 mod n. Conversely, if i+j=0 mod n, then, g
j
∆0=∆j and 

g
j
∆i=∆0. Hence, ∆iand ∆jare paired suborbits. 

Corollary 3.1.2.3 

Let G act on X. Then ∆i is self- paired if and only if i=0 or i=n/2 mod n. 

Proof: 

From Theorem 3.1.2.2, ∆i is self- paired ifand only ifi=jmod n. It follows,i=0 or i=n/2 mod n. 

Theorem 3.1.2.4 

The number of self- paired suborbits of Gon Xis 1 when n is odd and 2 when n is even. 

Proof:  
Let xX and hG. When n is odd, h

2
 fixes x if and only ifh is the identity. Thus,   |𝐹𝑖𝑥 ℎ2 | =

𝑛. By Theorem 2.7, the number ofself -paired suborbits is 1.  

When n is even, h
2
 fixes x if his the identity or h is a rotation of 180

0
. Hence,  |𝐹𝑖𝑥 ℎ2 | = 2𝑛, 

and the number of self- paired suborbits is 2.  

3.1.3 Rank, suborbits and subdegrees of Gacting on X
(n-1)

 

Theorem 3.1.3.1 
The rank of G on X

(n-1)
 is n and the length of each suborbit is 1. 

Proof: 

Suppose {1,2, …, n-1}X
(n-1)

 and G{1, 2, …, n-1} is the stabilizer of {1, 2, …, n-1} in G. From 

Theorem 3.1.1, G{1, 2, …, n-1}  is the trivial subgroup of G. The number of G{1, 2, …, n-1}-orbits is n 

and the length of each suborbit is 1. □  

The n suborbits of G on X
(n-1) 

are as follows; 

0={1, 2, …, n-1}, 1={2, 3, …, n-1, n}, …, n-1={n, 1, 2, …, n-2}, where i={i+1, i+2, …, i-

1}. Clearly, the subdegrees are; 1, 1, …, 1 (n ones). 

Theorem 3.1.3.2  

Let G act on X
(n-1)

. Then i and j are paired suborbits of Gif and only if i+j=0 mod n. 

Proof: 

Suppose iand j are paired suborbits of G. Then there existg
k
in G such that g

k
0=jand g

k
i=0, 

by Definition 2.6. It follows, 1+k=j+1 and i+1+k=1, 2+k=j+2 and i+2+k=2, …, n-1+k=j-1 and i-

1+k=n-1 modn. Hence, i+j=0 mod n. Conversely, ifi+j=0 mod n,then g
j
0=jand g

j
i=0. It 

follows,i and j are paired. 
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Corollary 3.1.3.3 

Let G act on X
(n-1)

. Then ∆i is a self- paired suborbit of G if and only if i=0 or i=n/2. 

Proof: 

From Theorem 3.1.3.2, ∆i is self-paired if and only ifi=j mod n. It follows, if i=0 or i=n/2 mod n.  

Theorem 3.1.3.4 

The number of self- paired suborbits of G acting on X
(n-1)

 is 1 when n is odd and 2 when n is 

even. 

Proof:  

Let AX
(n-1)

 and hG. Now, h
2
 fixes A if and only if h

2
 is the identity. When n is odd, this is 

possible only if h is the identity. Thus,   |𝐹𝑖𝑥 ℎ2 | = 𝑛. By Theorem 2.7, the number ofself- 

paired suborbits is 1.  

When n is even, h
2
 fixes A if his the identity or h is a rotation of 180

0
. It follows,  |𝐹𝑖𝑥 ℎ2 | =

2𝑛. The number of self- paired suborbits, in this case, is 2. 

 

RESULTS, DISCUSSION AND CONCLUSION 

The action of G on X induces a corresponding action of G on X
(n-1)

. FromTheorem 3.1.1,it has 

been shown that the stabilizer of a point in each of the two actions is the identity, 

whereGx=GX/x.It has also been revealed that the rank of G is n, in each of the actions, as proved 

in Theorems 3.1.2.1and 3.1.3.1. Properties of suborbits of G on X correspond to thoseof G on X
(n-

1)
, as evidenced in Theorems 3.1.2.2 and 3.1.3.2 respectively. The correspondence is 

alsoclearfrom Theorems 3.1.2.4 and 3.1.3.4 respectively.The following conclusion suffices. 

Theorem 4.1 

The action of G on X is equivalent to the action of G on X
(n-1)

. 

Proof: 

Let (G1, X) and (G2, X
(n-1)

) be the action of G on X and the action of G on X
(n-1)

, 

respectively.Using Definition 2.8, the map ф: G1→G2 is such that ф(g)=g, for all gG1. Define 

ϴ: X→X
(n-1) 

such thatϴ(x)=X|x, for all xX. Now, ϴ(gx)=X|gx=g(X|x)=ф(g)ϴ(x). □ 
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