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Abstract 

The definition of operations “, + and Cartesian product” have been modified for 

Intuitionistic Fuzzy Graphs with one or more common vertices and their complement graphs are 

studied. 
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1. Introduction 

Euler (1736) introduced the concept of graph theory. Atanassov (1983) introduced the 

concept of intuitionistic fuzzy set. In his work, he defined a new concept, the degree of non 

membership in addition to the degree of membership as intuitionistic fuzzy sets, such that their 

sum is less than or equal to one. Rosenfeld (1975) introduced the concept of fuzzy graph. He 

developed the structure of fuzzy graphs and obtained several graph theoretical concepts. Later 

Bhattacharya gave some remarks on fuzzy graphs. Some operations on fuzzy graphs were 

introduced by Mordeson and Peng (1994). The complement of a fuzzy graph was defined by 

Mordeson and further studied by M.S. Sunitha and A. Vijaya Kumar (2002). Parvathi et. al 

(2009) gave a new definition for operations on intuitionistic fuzzy graphs. 

 In this article, we redefine the operations union, sum and cartesian product of 

intuitionistic fuzzy graph. Throughout this paper we consider the underlying set V as the finite 

set. Also the membership and non-membership of vertex set and edge set are chosen so as to 
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satisfy the definitions. Also the operations on intuitionistic fuzzy graphs are considered for two 

intuitionistic fuzzy graphs with one or more vertices in common.  

2. Preliminary Definitions: 

Definition: 2.1 [3] 

A Minmax Intuitionistic fuzzy graph (IFG) is of the form G:(V, E) where  

(i) V = {1, 2,….n} such that µ1 : V  [0,1] and γ : V  [0,1] denotes the degree of 

membership and non membership of the elements i  V respectively and 0≤µ1(i)+γ1(i) ≤ 1 for 

every i V; ( i = 1,2…..n). 

(ii) E VxV where µ2 : VxV  [0 ,1] and 2 :VxV  [0,1] are such that 

 µ2 (i, j) ≤ min{µ1(i), µ1(j)}  

 γ2 (i, j) ≤ max{γ1(i), γ1(j)} 

  and 0≤ µ2(i,j) + γ2 (i, j) ≤ 1 for every (i, j)E 

Here the triple (i, µ1i, γ1i) denotes the degree of membership and non membership of the 

vertex i. The triple (eij, µ2ij, γ2ij) denotes the degree of membership and degree of non- 

membership of the edge relation eij = (i ,j ) on V. 

Definition:2.2 [3] 

Degree of the vertex d(i) =    µ
 
         

   
         ,     γ

 
         

   
         and µ2(i,j)  = γ2(i,j) = 0 for 

i,j  E. 

Definition:2.3 [3] 

The min µ degree is µ(G ) = {dµ(i) / iV} 

The max µ degree is Δµ(G) = {dµ(i) / iV} 

The min γ degree is γ(G) = {dγ(i) / i V} 

The max γ degree is Δγ(G) = {dγ(i) / i V} 

The max degree of G is  (G) = {dμ(i), d(i) / iV} 

Definition:2.4 [5] 

       The complement of IFG  :( ,  ) of an IFG G:(A, B) is defined by  

(i) μA(x) = μA(x);  A(x) = A(x)   xA 
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(ii) μB(xy)=  
  μ

 
     μ

 
     μ

 
           

 μ
 
     μ

 
                             

               

B(xy)=  
                          
                                     

   

Example:2.5 [5] 

Consider the graph G with V={1,2,3,4,5} and E={12,13,23,24,35,45}. Let A be the intuitionistic 

fuzzy set on V and B be the intuitionistic fuzzy set on E. 

 

By routine computation of  :( ,  ), it can be observed that  :( ,  ) = G :(A, B ). 

Definition:2.4 [6] 

 A IFG is called strong IFG if μB(xy) = μA(x)μA(y) and B(xy) = A(x) A(y). 

Definition:2.4 [9] 

An intuitionistic fuzzy graph is self-complementary if G is isomorphic to  . (i.e.) G   . 

3. Operations on Intuitionistic Fuzzy Graphs: 

In this section, the operations Union, Sum and Cartesian product on IFG are redefined. In [6] and 

[9] the authors have analyzed on the operations of IFG with non- intersecting vertex sets of two 

graphs G1 and G2 [12=]. In this section, we define the operations “”, “+” and Cartesian 

product between two IFGs G1:(A1, B1) and G2:(A2, B2) which has one or more vertices in 

common between G1 and G2. The operations “” and “+” are found to be complementary to 
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each other and are substantiated with relevant examples. Also it has been shown that Cartesian 

product is distributive over union. 

Definition: 3.1 

Let G1:(A1, B1) and G2:(A2, B2) be two IFGs with one or more vertices in common.  Then the 

union of G1 and G2 is another IFG G:(A, B)=G1  G2 defined by, 

(i) μA(x) =  
μ
  
          

μ
  
          

              and    A(x) =  
            
            

  

(ii) μB(xy) =  
μ
  
            

μ
  
            

   and    B(xy) =  
              
              

  

Definition: 3.2 

Let G1:(A1, B1) and G2:(A2, B2) be two IFGs with one or more vertices in common.  The sum   

G1 + G2 is another IFG G:(A, B) defined by, 

(i) μA(x) =  
μ
  
          

μ
  
          

              and    A(x) =  
            
            

  

(ii) μB(xy) =  
μ
  
            

μ
  
            

   and    B(xy) =  
              
              

  

(iii) There exists a strong edge between every pair of non-common vertices in G1 and G2. 

Remark:  The condition (iii) in above definition can be explained as follows: 

 If G = {1, 2, 3, 4} and G2 = {3, 4, 5, 6}, the vertices 3 and 4 are common in G1 and G2.  

Hence there exist edges between vertex pairs (1, 5), (1, 6), (2, 5) and (2, 6). These edges 

are strong implies their membership is the minimum of memberships of their adjacent vertices 

and non-membership is the maximum of non-membership of their adjacent vertices. 

Example:3.3 

Consider two IFGs G1:(A1, B1) and G2:(A2, B2) with corresponding  vertex and edge sets           

A1 = {1, 2, 3}, A2 = {1, 2, 4, 5}, B1 = {12, 13, 23} and B2 = {12, 14, 25, 45}.             
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Fig. 3   1:( 1,  1) 
Fig. 4   2:( 2,  2) 

Fig. 5  G1  G2 Fig. 6  G1 + G2 
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From the Fig. 7 and Fig. 10,       = 1+ 2 and from Fig: 8 and Fig. 9,       =  1 2. This 

result holds true for all types of IFGs. Hence “” and “+” are complementary to each other 

according to our definition for union and sum of IFGs with one or more common vertices. As a 

special case of the above statement, if both the IFGs have the same set of vertices, then the 

following theorem holds true. 

 

Theorem: 3.4 

If G1:(A1, B1) and G2:(A2, B2) are two IFGs, then G1  G2 = G1 + G2 if and only if A1  A2 or   

A2  A1. 

Proof: Let G1  G2 = G1 + G2 then, condition (iii) of definition: 4.16 is zero.  

Fig. 7         Fig. 8         

Fig. 10    1 +  2 Fig. 9   1   2 
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 There doesn’t exist any non-common vertex between G1 and G2. Hence either of the vertex 

set should be the subset of the other.  A1  A2 or A2  A1. 

Conversely, if A1  A2 or A2  A1 then from definition: 4.15 and definition: 4.16 it is obvious 

that G1  G2 = G1 + G2. 

Theorem: 3.5 

Let G1:(A1, B1) and G2:(A2, B2) be two IFGs with one or more common vertices in G1 and G2 

then (a)           1   2  

        (b)           1 +  2. 

Proof: Consider the identity map I: V1V2  V1V2. 

To prove (a) we have to show that,  

(1)   (i) ( 
  
  

  
)(x) = (  1A   2A)(x)     (ii) (     )(x) = ( 1A  2A)(x) 

(2)   (i) ( 
  
  

  
)(xy) = ( 1B  2B)(xy)   (ii) (     )(xy) = ( 1B  2B)(xy) 

(1), (i): consider ( 
  
  

  
)(x) = ( 1A +  2A)(x) [ by definition of complement] 

  =  
 
  
           

 
  
           

  

  =  1A(x)   2A(x) 

          =  1A(x)   2A(x) 

      = (  1A   2A)(x). 

      (ii): Similar to above proof it can be shown that (     )(x) = ( 1A  2A)(x). 

(2), (i):  Consider  

( 
  
  

  
)(xy) =  

  
  
  

  
        

  
  

  
        

  
  

  
             

  
  
  

  
        

  
  

  
                                                  

  

                          =  
   

  
    

  
       

  
    

  
       

  
  

  
          

   
  
    

  
       

  
    

  
                                              

  

                          =    

[ 
1A
 x    

2A
 x ] [ 

1A
 y    

2A
 y ]- 

1 
 xy                                             ;xy 1

[ 
1A
 x    

2A
 x ] [ 

1A
 y    

2A
 y ]- 

2 
 xy                                             ;xy 2

[ 
1A
 x    

2A
 x ] [ 

1A
 y    

2A
 y ]- [ 

1A
 x  

2A
 y ]             ;xA1 and yA2

[ 
1A
 x    

2A
 x ] [ 

1A
 y    

2A
 y ]                                                           ;xy 
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                          =    

                                                                           
                                                                           

                                                       
                                                                                                               
                                                                                                               

  

                          =    

                                                                         
                                                                                     

                                                                         
                                                                                      

  

                          =    

 
  
                  

 
  
                  

                      

               

                          =  (  1B   2B)(xy). 

     (ii): (     )(xy) = ( 1B  2B)(xy) can be proved similar to (2), (i). 

 

Definition: 3.6 

Let G1: (V1, E1) and G2: (V2, E2) be two intuitionistic fuzzy graphs then their Cartesian product 

G1 x G2  is an intuitionistic fuzzy graph G:(V, E) with  

V = {(xy) for all xV1 and yV2} and  

E = {(xu, yv), (xv, yu) for all xyE1 and uvE2} where 

i. μA(xy) = min{μA(x), μA(y)} and νA(xy) = max{νA(x), νA(y)} 

ii. μB(xu, yv) = μB(xv, yu) = min{μB(xy), μB(uv)} and  

νB(xu, yv) = νB(xv, yu) = max{νB(xy), νB(uv)}. 

Example: 3.7 
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Proposition: 3.8 

 

Cartesian product is distributive over union. [i.e. (G1G2)G3= (G1G3)(G2G3) ]. 

Proof 

i. Let xy(G1G2)G3 

 xG1G2 and yG3 

 xG1 or G2 and yG3 

 xyG1G3 or xyG2G3 

 xy(G1G3)(G2G3) 

If xy(G1G3)(G2G3)  xy(G1G3) or xy(G2G3) 

 xG1 and yG3 or xG2 and yG3 

 xG1 or G2 and yG3 

 xy(G1G2)G3 

(G1G2)G3= (G1G3)(G2G3) 

ii. Let (xu, yv) (G1G2)G3  xyG1G2 and uvG3 

 xyG1 or xyG2 and uvG3 

(xu, yv) G1G3 or (xu, yv) G2G3 

(xu, yv)(G1G3)(G2G3) 

If (xu, yv)(G1G3)(G2G3) 

(xu, yv)G1G3 or (xu, yv)G2G3 

xyG1 and uvG3 or xyG2 and uvG3 

 xy(G1G2) and uvG3 

(xu, yv) (G1G2)G3 

(G1G2)G3= (G1G3)(G2G3). 
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Example: 3.9 

Consider the following intuitionistic fuzzy graphs G1, G2 and G3 given below. 
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From the above graphs it can be seen that (G1 G2)  G3= (G1 G3)  (G2 G3). 

4. Conclusion 

     In this paper, the operation Cartesian product has been modified and the operations “” and 

“+” have been analyzed for the sets with one or more common vertices with relevant examples. 

Further extension can be made for composition and intersection of two intuitionistic fuzzy 

graphs. Also intuitionistic fuzzy lines, complete intuitionistic fuzzy graphs etc can be studied 

based on our modified definition. 
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