Orthogonal Generalized Higher Reverse Derivations on Semiprime Γ -Rings

Salah Mehdi Salih and Entisar Majid Khzail

Department of Mathematic College of Education AL-Mustansiriyah University Baghdad

Abstract:

In this paper we present the concept of orthogonal generalized higher rever derivations on semiprime Γ -ring, also we prove the following resultes if D_n and G_n a orthogonal such that $x\alpha y\beta z=x\beta y\alpha z$, then the following relations hold:

$$(1) d_n(x)\alpha G_n(y) = G_n(x)\alpha d_n(y) = 0.$$

$$(2)d_n(x)\alpha G_n(y) = G_n(y)\alpha d_n(x) = 0.$$

$$(3)d_nG_n = G_nd_n = 0 \text{ and } g_nD_n = D_ng_n = 0.$$

In addition to demonstration other.

Key words:

semiprime Γ -ring , generalized higher reverse derivations, orthogonal generalized higher reverse derivations.

2010 AMS Subject Classification: 16W25, 16A72

1. Introduction:

The gamma ring is defined by Barnes in [2] as follows:

Let M and Γ be two additive abelian groups, if there exists mapping $M \times \Gamma \times M \to M$ (sending (x, α, y) into $x\alpha y$) for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$, satisfying the following conditions:

(i)
$$(x + y)\alpha z = x\alpha z + y\alpha z$$

$$x(\alpha + \beta)y = x\alpha y + x\beta y$$

$$x\alpha(y+z) = x\alpha y + x\alpha z$$

(ii)
$$(x\alpha y)\beta z = x\alpha(y\beta z)$$

Then M is called $a\Gamma$ – ring.

M is called a prime Γ – ring if $x \Gamma M \Gamma y = 0$, implies x = 0 or y = 0, M is called a semiprime Γ – ring if $x \Gamma M \Gamma x = (0)$ with $x \in M$ implies x = 0, M is called n- torsion free if nx = 0 for $x \in M$ implies x = 0, where n is positive integer.

F.J. Jing in [5] defined a derivation and Jordan derivation on Γ – ring as follows: for all $x, y \in M$ and $\alpha \in \Gamma$, then the additive mapping $d: M \to M$ is called a derivation if $d(x\alpha y) = d(x)\alpha y + x\alpha d(y)$, and d is called Jordan derivation if $d(x\alpha x) = d(x)\alpha x + x\alpha d(x)$.

Y. Ceven and M.A.Özturk in [3] defined a generalized derivation on Γ – ring M as follows: for all $x, y \in M$ and $\alpha \in \Gamma$, then $D(x\alpha y) = D(x)\alpha y + x\alpha d(y)$ where d is assosiative derivation with D.

M.A shraf and M.R.Jamal in [8] presented the concepts of orthogonal derivations on Γ – ring as follows let d and g are said to be derivations on Γ – ring M then d and g are said to be orthogonal if:

$$d(x)\Gamma M \Gamma g(y) = (0) = g(y)\Gamma M \Gamma d(x)$$
 for all $x, y \in M$

A.H. Majeed and N.N Suliman in [7] defined orthogonal generalized derivations on Γ – ring M as follows: let M be a Γ – ring two generalized derivations D and G of M associated with two derivations D and D of D are said to be orthogonal if

$$D(x)\Gamma M\Gamma G(y) = (0) = G(y)\Gamma M\Gamma D(x)$$
 for all $x, y \in M$.

K.k.Dey, A.C. Paul and I.S. Rakhimov in [4] defined reverse derivation on Γ – ring M as follows for all $x, y \in M$ and $\alpha \in \Gamma$ the additive mapping $d: M \to M$ is called reverse derivation if $d(x\alpha y) = d(y)\alpha x + y\alpha d(x)$, and their defined the orthogonal reverse derivation as follows let d and g be two reverse derivations on M if

$$d(x)\Gamma M\Gamma g(y) = (0) = g(y)\Gamma M\Gamma d(x)$$
 for all $x, y \in M$.

S.M. Salih and M.R. Salih in [10] defined generalized reverse derivation on Γ – ring M as follows: let M be a Γ – ring and $f: M \to M$ be an additive mapping then f is called generalized reverse derivation on M if there exists a reverse derivation $d: M \to M$ such that $f(x\alpha y) = f(y)\alpha x + y\alpha d(x)$

M.R. Salih in [9] introduced the concept of higher revers derivations on $\Gamma - \operatorname{ring} M$ as follow: let $D = (d_i)_{i \in N}$ be a family of additive mappings of $\Gamma - \operatorname{ring} M$ into itself, then D is called a higher revers derivation of M if for every $x, y \in M$, and $\alpha \in \Gamma$ then $d_n(x\alpha y) = \sum_{i+j=n} d_i(y)\alpha d_j(x)$ and defined generalized higher revers derivation as follows: let M be a $\Gamma - \operatorname{ring}$ and $F = (f_i)_{i \in N}$ be a family of additive mappings of M such that $f_0 = id_M$, then F is called generalized higher revers derivation no M if there exists higher revers derivation $D = (d_i)_{i \in N}$ on M such that forever $x, y \in M$, and $\alpha \in \Gamma$, $n \in N$

$$f_n(x\alpha y) = \sum_{i+j=n} f_i(y)\alpha d_j(x)$$

In this paper, the definition of orthogonal generalized higher reverse derivations on Γ – ring M and we also investigate conditions for two generalized higher reverse derivations to be orthogonal, also we will extend these results to orthogonal generalized higher revers

derivations on Γ – ring M and obtain some results parallel to these earlier obtained by N. Argac, A. Nakajima and E. Albas in [1].

<u>2.</u> orthogonal generalized higher reverse derivations on Γ-rings

In this section we present the definition of orthogonal generalized higher reverse derivations on gamma rings as follows:

<u>Definition (2.1)</u>: let M be a Γ – ring, two generalized higher revers derivations $D = (D_i)_{i \in N}$ and $G = (G_i)_{i \in N}$ on M are called orthogonal if for every $n \in N$, $x, y \in M$ then

$$D_n(x)\Gamma M\Gamma G_n(y) = (0) = G_n(y)\Gamma M\Gamma D_n(x)$$

Where

$$D_n(x)\Gamma \mathsf{M}\Gamma G_n(y) = \sum_{i=1}^n D_i(x)\Gamma \mathsf{M}\Gamma G_i(y) = (0)$$

Example (2.2):

Let M be Γ – ring and d= $(d_i)_{i\in N}$, $g=(g_i)_{i\in N}$ be two higher revers derivations of M, we put $M=M\oplus M$ and $\Gamma=\Gamma\oplus\Gamma$ then the mappings $d=(d_i)_{i\in N}$ and $d=(d_i)_{i\in N}$ from M into itself which are defined by:

 $d_n((x,y)) = (d_n(x),0)$ and $g_n((x,y)) = (0,g_n(y))$, for all $(x,y) \in M$ are higher revers derivations of M moreover if (D_n,d_n) and (G_n,g_n) are generalized higher revers derivations of M and we defined mappings $D = (D_i)_{i \in n}$, $D = (D_i)_{i \in n}$ on $D = (D_n(x),0)$ and $D = (D_n(x),0)$ and $D = (D_n(x),0)$, for all $D = (D_n(x),0)$ and $D = (D_n(x),0)$ and $D = (D_n(x),0)$, for all $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ and $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ and $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n(x),0)$ and $D = (D_n(x),0)$ are generalized higher revers derivations of $D = (D_n($

Then $(\acute{D}_n, \acute{d}_n)$ and $(\acute{G}_n, \acute{g}_n)$ are generalized higher revers derivations of \acute{M} and \acute{D}_n , \acute{G}_n are orthogonal.

Lemma (2.3):[6]

Let M be a 2- torsion free semiprime Γ – ring and a,b the elements of M if for all $\alpha, \beta \in \Gamma$, then the following conditions are equivalent:

- (i) a α M β b = (0)
- (ii) b α M β a = (0)
- (iii) a α M β b+b α M β α = (0)

If one of these conditions are fulfilled then a α b = b α a = 0 for all $\alpha \in \Gamma$.

3. The Main Results:

The main results of the present paper states as follows:

Theorem (3.1):

Let $D=(D)_{i\in N}$ and $G=(G_i)_{i\in N}$ be generalized higher revers derivations of a 2-torsion free semiprime Γ -ring M, and $d=(d_i)_{i\in N}$, $g=(g_i)_{i\in N}$ are higher revers derivations, where D_n , G_n are commuting mappings if D_n and G_n are orthogonal such that $x\alpha y\beta z=x\beta y\alpha z$.

Then the following relations hold:

(i)
$$D_n(x)\alpha G_n(y) = G_n(x)\alpha D_n(y) = 0$$

Hence: $D_n(x)\alpha G_n(y) + G_n(x)\alpha D_n(y) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$.

Proof: By the hypothesis, we have $D_n(x)\alpha z\beta$ $G_n(y)=0$ for all $x,y,z\in M$ and $\alpha,\beta\in\Gamma$ by Lemma (2.3)we get.

$$D_n(x)\alpha G_n(y) = G_n(x)\alpha D_n(y) = 0$$

Hence: $D_n(x)\alpha G_n(y) + G_n(x)\alpha D_n(y) = 0$

(ii) d_n and g_n are orthogonal higher revers derivations and $G_n(x)\alpha d_n(y) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$.

 $D_n(y)\alpha d_n(x) =$

proof:

since by (1) we get

$$D_n(x)\alpha G_n(y) = 0 = G_n(x)\alpha D_n(y)$$

$$\sum_{i=1}^{n} D_i(x) \alpha G_i(y) = 0$$

replace x by $x\beta z$ we get

$$\sum_{i=1}^{n} D_i(x\beta z)\alpha G_i(y) = 0$$

$$\sum_{i=1}^{n} D_i(z)\beta d_i(x)\alpha G_i(y) = 0$$

$$\sum_{i=1}^n d_i(x) \alpha G_i(y) \, \beta D_i(z) = 0$$

Replace $D_i(z)$ by $d_i(x)\alpha G_i(y)$

$$\sum_{i=1}^{n} d_i(x) \alpha G_i(y) \beta d_i(x) \alpha G_i(y) = 0$$

Replace β by βmy

$$\sum_{i=1}^{n} d_i(x) \alpha G_i(y) \beta my d_i(x) \alpha G_i(y) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} d_i(x) \alpha G_i(y) = 0 d_n(x) \alpha G_n(y) = 0 \qquad(1)$$

since G_n is commuting mapping therefore

$$G_n(x)\alpha d_n(y) = 0 \qquad \dots (2)$$

from (1) and (2) we get

$$d_n(x)\alpha G_n(y) = G_n(y)\beta d_n(x) = 0$$

(iii) g_n and D_n are orthogonal higher revers derivations and $g_n(x)\alpha D_n(y) = D_n(y)\alpha g_n(x) = 0$, for all $x, y \in M$ and $\alpha \in \Gamma$.

Where g_n is commuting mapping.

proof:

since
$$D_n(x)\alpha G_n(y) = 0 = G_n(x)\alpha D_n(y)$$
 by(i)

Replace x by $x\beta z$ in $g_n(x)\alpha d_n(y) = 0$

$$\sum_{i=1}^{n} G_i(x\beta z)\alpha D_i(y) = 0$$

$$\sum_{i=1}^{n} G_i(z)\beta g_i(y)\alpha D_i(y) = 0$$

$$\sum_{i=1}^{n} D_i(y)\beta g_i(x)\alpha G_i(z) = 0$$

Replace $G_i(z)$ by $D_i(y)\beta G_i(x)$

$$\sum_{i=1}^{n} D_i(y)\beta G_i(x)\alpha D_i(y)\beta G_i(x) = 0$$

Replace α by $\alpha m \gamma$

$$\sum_{i=1}^{n} D_{i}(y)\beta g_{i}(x)\alpha m\gamma D_{i}(y)\beta g_{i}(x) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} D_i(y)\beta g_i(x) = 0$$

$$\sum_{i=1}^{n} g_i(x)\beta D_i(y) = 0$$

$$g_n(x)\alpha D(y) = 0 \qquad \dots (1)$$

since g_n is commuting mapping.

Therefor
$$D_n(y)\alpha g_n(x) = 0$$
 ...(2)

From (1) and (2) we get

$$g_n(x)\alpha D_n(y) = D_n(y)\alpha g_n(x) = 0$$

(iv) d_n and g_n are orthogonal higher revers derivations.

Where d_n and g_n are commuting mappings.

proof:

since by (i) we get

$$D_n(x)\alpha G_n(y) = 0 = G_n(x)\alpha D_n(y)$$

$$\sum_{i=1}^{n} D_i(x) \alpha G_i(y) = 0$$

Replace x by $x\beta z$ and y by $y\delta w$

$$\sum_{i=1}^{n} D_{i}(x\beta z)\alpha G_{i}(y\delta w) = 0$$

$$\sum_{i=1}^{n} D_i(z)\beta d_i(x)\alpha G_i(w)\delta g_i(y) = 0$$

Replace $D_i(z)$ by $g_i(y)$ and $G_i(w)\delta$ and by $d_i(x)\beta$

$$\sum_{i=1}^{n} g_i(y) \beta d_i(x) \alpha d_i(x) \beta g_i(y) = 0$$

Replace α by $\alpha m \gamma$

$$\sum_{i=1}^{n} d_i(x) \beta g_i(y) \alpha m \gamma d_i(x) \beta g_i(y) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} d_i(x) \beta g_i(y) = 0$$

Hence d_n and g_n are orthogonal.

(v)
$$d_nG_n = G_nd_n = 0$$
 and $g_nD_n = D_ng_n = 0$

proof:

since by (ii) we get

$$d_n(x)\alpha G_n(y) = 0$$

$$\sum_{i=1}^n d_i(x)\alpha g_i(y) = 0$$

$$\sum_{i=1}^n G_i(d_i(x)\alpha G_i(y)) = 0$$

$$\sum_{i=1}^n G_i(G_i(y))\alpha g_i(d_i(x)) = 0$$

Replace $G_i(y)$ by $d_i(x)$ and $d_i(x)$ by $G_i(x)$

$$\sum_{i=1}^{n} G_i(d_i(x))\alpha g_i(G_i(x)) = 0$$

$$\sum_{i=1}^{n} G_i(d_i(x)) \alpha G_i(g_i(x)) = 0$$

Replace $g_i(x)$ by $d_i(x)$ and α by $\alpha z\beta$

$$\sum_{i=1}^{n} G_i(d_i(x)) \alpha Z \beta \ G_i(d_i(x)) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} G_i(d_i(x)) = 0G_n d_n = 0$$

since by (ii) we get

$$G_n(x)\alpha d_n(y) = 0$$

$$\sum_{i=1}^n G_i(x)\alpha d_i(y) = 0$$

$$\sum_{i=1}^n d_i (G_i(x)\alpha d_i(y)) = 0$$

$$\sum_{i=1}^n d_i (d_i(y))\alpha (d_i (G_i(x))) = 0$$

Replace $d_i(y)$ by $G_i(x)$

$$\sum_{i=1}^{n} d_i (G_i(x)) \alpha d_i (G_i(x)) = 0$$

Replace α by $\alpha z \beta$ we get

$$\sum_{i=1}^{n} d_i (G_i(x)) \alpha z \beta \ d_i (G_i(x)) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} d_i \left(G_i \quad (x) \right) = 0 \ d_n G_n = 0$$

and

since by (ii) we get

$$g_n(x)\alpha D_n(y) = 0$$

$$\sum_{i=1}^n g_i(x)\alpha D_i(y) = 0$$

$$\sum_{i=1}^n D_i(g_i(x)\alpha D_i(y)) = 0$$

$$\sum_{i=1}^n D_i(D_i(y))\alpha d_i(g_i(x)) = 0$$

Replace $D_i(y)$ by $g_i(x)$ and $g_i(x)$ by $D_i(x)$

$$\sum_{i=1}^{n} D_i (g_i(x)) \alpha d_i (D_i(x)) = 0$$

$$\sum_{i=1}^{n} D_i (g_i(x)) \alpha D_i (d_i(x)) = 0$$

Replace α by $\alpha z \beta$ and $d_i(x)$ by $g_i(x)$ we get

$$\sum_{i=1}^{n} D_i (g_i(x)) \alpha z \beta D_i (g_i(x)) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} D_{i}(g_{i}(x)) = 0 D_{n}g_{n} = 0$$

and

since $D_n(x)\alpha g_n(y) = 0$

$$\sum_{i=1}^{n} D_i(x) \alpha g_i(y) = 0$$

$$\sum_{i=1}^{n} g_i (D_i(x) \alpha g_i(y)) = 0$$

$$\sum_{i=1}^{n} g_i(g_i(y)) \alpha g_i(D_i(x)) = 0$$

Replace $g_i(y)$ by $D_i(x)$ we get

$$\sum_{i=1}^{n} g_i (D_i(x)) \alpha g_i (D_i(x)) = 0$$

Replace α by $\alpha z \beta$

$$\sum_{i=1}^{n} g_i (D_i(x)) \alpha z \beta \ g_i (D_i(x)) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} g_i (D_i(x)) = 0 \ g_n D_n = 0$$

$$(\mathbf{vi}) D_n G_n = G_n D_n = 0$$

Proof:

since $D_n(x)\alpha G_n(y) = 0$

$$\sum_{i=1}^{n} D_i(x) \alpha G_i(y) = 0$$

$$\sum_{i=1}^{n} G_i (D_i(x) \alpha G_i(y)) = 0$$

$$\sum_{i=1}^{n} G_i(G_i(y)) \alpha g_i(D_i(x)) = 0$$

$$\sum_{i=1}^{n} G_i(G_i(y)) \alpha D_i(g_i(x)) = 0$$

Replace $G_i(y)$ by $D_i(x)$ and $g_i(x)$ by $G_i(x)$

$$\sum_{i=1}^{n} G_i(D_i(x)) \alpha D_i(G_i(x)) = 0$$

$$\sum_{i=1}^{n} G_i(D_i(x)) \alpha G_i(D_i(x)) = 0$$

Replace α by $\alpha\beta z$

$$\sum_{i=1}^{n} G_i(D_i(x)) \alpha z \beta \ G_i(D_i(x)) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} G_i(D_i(x)) = 0$$

Therefore $G_n D_n = 0$

since $G_n(x)\alpha D_n(y) = 0$

$$\sum_{i=1}^{n} G_i(x) \, \alpha D_i(y) = 0$$

$$\sum_{i=1}^{n} D_i \big(G_i(x) \alpha D_i(y) \big) = 0$$

$$\sum_{i=1}^{n} D_i (D_i(y)) \alpha d_i (G_i(x)) = 0$$

$$\sum_{i=1}^{n} D_i (D_i(y)) \alpha G_i (d_i(x)) = 0$$

Replace $D_i(y)$ by $G_i(x)$ and $d_i(x)$ by $D_i(x)$

$$\sum_{i=1}^{n} D_i (G_i(x)) \alpha G_i (D_i(x)) = 0$$

$$\sum_{i=1}^{n} D_i (G_i(x)) \alpha D_i (G_i(x)) = 0$$

Replace α by $\alpha z \beta$

$$\sum_{i=1}^{n} D_i (G_i(x)) \alpha z \beta \ D_i (G_i(x)) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} D_i \big(G_i(x) \big) = 0 D_n G_n = 0$$

<u>Lemma(3.2)</u>:

Let M be a semiprime Γ -ring, let U be an ideal of M and V=Ann(U), if $D=(D_i)_{i\in N}$ is generalized higher revers derivations associated with $d=(d_i)_{i\in N}$ higher revers derivations of M and d_n is commuting mappings such that .

$$D_n(M), d_n(M) \subset U$$
, then $D_n(V) = d_n(V) = 0$

Proof:

If
$$\in V$$
, then $x\alpha U = (0)$

by the hypothesis we have

 $d_n(M) \subset Ud_n(U)$, hence for all $y \in U$

$$0 = D_n(x\alpha y) = \sum_{i=1}^n D_i(y) \alpha d_i(x)$$

Replace y by $y\beta x$ we get

$$\sum_{i=1}^{n} D_i(y\beta x)\alpha d_i(x) = 0$$

$$\sum_{i=1}^{n} D_i(x) \beta d_i(y) \alpha d_i(x) = 0$$

Replace

 $d_i(x)$ by $D_i(x)$ we get

$$\sum_{i=1}^{n} D_i(x)\beta \ d_i(y) \ \alpha D_i(x) = 0$$

since M is semiprime $\sum_{i=1}^{n} D_i(x) = 0$ $D_n(x) = 0$

since $D_n(x) \in U \cap V$ we get $D_n(V) = 0$

Similarly:

If $\in V$, then $x\alpha U = (0)$

$$D_n(M) \subset UD_n(u) \subset U$$

Hence $d_n(x\alpha y) = 0$

$$\sum_{i=1}^{n} d_i(y) \, \alpha d_i(x) = 0$$

Replace y by $y\beta x$ we get

$$\sum_{i=1}^{n} d_i(y\beta z)\alpha d_i(x) = 0$$

$$\sum_{i=1}^{n} d_i(y\beta z)\alpha d_i(x) = 0$$
$$\sum_{i=1}^{n} d_i(x)\beta d_i(y)\alpha d_i(x) = 0$$

since M is semiprime $\sum_{i=1}^{n} d_i(x) = 0$

 $d_n(x) \in U \cap V$ we get

$$d_n(x) = 0$$
 then $d_n(V) = 0$

Lemma(3.3):

Let D = $(D_i)_{i \in N}$ be generalized higher revers derivations of semiprime Γ -ring M associative with $d=(d_i)_{i\in \mathbb{N}}$ higher reverse derivations. If $D_n(x)\alpha D_n(y)=0$, for all $x, y \in M$, $\alpha \in \Gamma$. Then $D_n = d_n = 0$

Proof: by the hypothesis, we have

 $\sum_{i=1}^{n} D_i(x) \alpha D_i(y) = 0$, replace y by $x\beta y$

$$\sum_{i=1}^{n} D_i(x) \alpha D_i(x\beta y) = 0$$

$$\sum_{i=1}^{n} D_i(x) \alpha D_i(y) \beta d_i(x) = 0$$

Replace $D_i(x)$ by $d_i(x)$ we get

$$\sum_{i=1}^{n} d_i(x) \alpha D_i(y) \beta d_i(x) = 0$$

Since M is semiprime

$$\sum_{i=1}^{n} d_i(x) = 0 \, d_n = 0$$

by hypothesis, we have

$$\sum_{i=1}^{n} D_i(x)\alpha D_i(y) = 0$$

replace x by $x\beta y$ we get

$$\sum_{i=1}^{n} D_i(x\beta y)\alpha D_i(y) = 0$$

$$\sum_{i=1}^{n} D_i(y) \beta d_i(x) \alpha D_i(y) = 0$$

since M is semiprime

$$\sum_{i=1}^{n} D_i(y) = 0 D_n(y) = 0$$

We get $D_n = d_n = 0$

Theorem (3.4):

Let $D=(D_i)_{i\in N}$ and $G=(G_i)_{i\in N}$ be generalized higher revers derivations of a2- torsion free semiprime Γ -ring M, and $=(d_i)_{i\in N}$, $g=(g_i)_{i\in N}$ are higher revers derivations. Then D_n and G_n are orthogonal iff for all , $y\in M$, then

(a)
$$D_n(x)\alpha G_n(y) + G_n(x)\alpha D_n(x) = (0)$$

(b)
$$d_n(x)\alpha G_n(y) + g_n(x)\alpha D_n(x) = (0)$$

Where D_n , G_n are commuting mappings.

Proof:

Suppose that D_n , G_n are orthogonal.

To prove (a)

Then $\sum_{i=1}^{n} D_i(x) \alpha z \beta$ $G_i(y) = 0$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

By Lemma(2.3) we get

$$\sum_{i=1}^{n} D_i(x)\alpha \ G_i(y) = \sum_{i=1}^{n} G_i(x)\alpha \ D_i(y) = (0)$$

Thus $\sum_{i=1}^{n} D_i(x) \alpha G_i(y) + \sum_{i=1}^{n} G_i(x) \alpha D_i(y) = (0)$

Hence
$$\sum_{i=1}^{n} D_i(x) \alpha G_i(y) + G_i(x) \alpha D_i(x) = (0)$$

Now, to prove (b)

since $D_n(x)\alpha G_n(y) = (0)$

$$\sum_{i=1}^{n} D_i(x)\alpha G_i(y) = (0)$$

$$\sum_{i=1}^{n} d_i (D_i(x)\alpha G_i(y)) = (0)$$

$$\sum_{i=1}^{n} d_i \big(G_i(y) \big) \alpha \ d_i \big(D_i(x) \big) = (0)$$

Replace $D_i(x)$ by $G_i(x)$

$$\sum_{i=1}^{n} d_i (G_i(y)) \alpha d_i (G_i(x)) = (0)$$

$$\sum_{i=1}^{n} d_i \big(G_i(y) \big) \alpha \ G_i \big(d_i(x) \big) = (0)$$

Replace $G_i(y)$ by x and $d_i(x)$ by y we get

$$\sum_{i=1}^{n} d_i(x) \alpha G_i(y) = (0)$$

$$d_n(x)\alpha G_n(y) = (0)$$

and

since
$$G_n(x)\alpha D_n(y) = (0)$$

$$\sum_{i=1}^{n} G_i(x) \alpha D_i(y) = (0)$$

$$\sum_{i=1}^{n} g_i \big(G_i(x) \alpha D_i(y) \big) = (0)$$

$$\sum_{i=1}^{n} g_i(D_i(y)) \alpha g_i(G_i(x)) = 0$$

Replace: $G_i(x)$ by $D_i(y)$

$$\sum_{i=1}^{n} g_i(D_i(y)) \alpha g_i(D_i(y)) = 0$$

$$\sum_{i=1}^{n} g_i (D_i(y)) \alpha D_i (g_i(y)) = 0$$

Replace: $D_i(y)$ by x and $g_i(y)$ by y we get

$$\sum_{i=1}^{n} g_i(x) \alpha D_i(y) = (0)$$

Hence $g_n(x) \alpha D_n(y) = (0)$, we get

$$d_n(x)\alpha G_n(y) + g_n(x) \alpha D_n(y) = (0)$$

Conversely:

Suppose that (a)we get

$$D_n(x)\alpha G_n(y) + G_n(x) \alpha D_n(y) = (0)$$

Replace x by $y\beta x$ we get

$$\sum_{i=1}^{n} D_i(y\beta x) \alpha G_i(y) + G_i(y\beta x) \alpha D_i(y) = (0)$$

$$\sum_{i=1}^{n} D_{i}(x) \beta d_{i}(y) \alpha G_{i}(y) + G_{i}(x) \beta g_{i}(y) \alpha D_{i}(y) = (0)$$

Replace: $g_i(y)$ by $d_i(y)$ we get

$$\sum_{i=1}^{n} D_{i}(x) \beta \ d_{i}(y) \alpha G_{i}(y) + G_{i}(x) \beta \ d_{i}(y) \alpha \ D_{i}(y) = (0)$$

By lemma (2-3) we get

$$\sum_{i=1}^{n} D_i(x) \beta \ d_i(y) \alpha \ G_i(y) = 0$$

$$\sum_{i=1}^{n} G_i(x) \beta d_i(y) \alpha D_i(y) = 0$$

 D_n , G_n are orthogonal.

Theorem (3.5):

Let $D=(D_i)_{i\in N}$ and $G=(G_i)_{i\in N}$ be generalized higher revers derivations of a 2- torsion free semiprime Γ -ring M, and $d=(d_i)_{i\in N}$, $g=(g_i)_{i\in N}$ are higher revers derivations, then D_n , G_n are orthogonal if and only if $D_n(x)\alpha G_n(y)=d_n(x)$ and $G_n(y)=(0)$ for all $x,y\in M$ and $G_n(y)=(0)$ are commuting mappings.

Proof: Suppose that D_n , G_n are orthogonal.

since by Theorem (3.1) (i)we get

$$D_n(x)\alpha G_n(y) = (0)$$

$$\sum_{i=1}^n D_i(x) \alpha G_i(y) = (0)$$

$$\sum_{i=1}^n d_i (D_i(x)\alpha G_i(y)) = (0)$$

$$\sum_{i=1}^n d_i (G_i(y)) \alpha d_i (D_i(x)) = (0)$$

Replace: $D_i(x)$ by $G_i(x)$ we get

$$\sum_{i=1}^{n} d_i \left(G_i(x) \alpha \ d_i \left(G_i(x) \right) \right) = (0)$$

$$\sum_{i=1}^{n} d_i (G_i(y)) \alpha G_i (d_i(x)) = (0)$$

Replace: $G_i(y)$ by x and $d_i(x)$ by y

$$\sum_{i=1}^{n} d_i(x) \alpha G_i(y) = (0)d_n(x)\alpha G_n(y) = (0)$$

Conversely:

since $D_n(x) \alpha G_n(y) = (0)$

Replace x by $y\beta x$ we get

$$\sum_{i=1}^{n} D_i(y\beta x) \alpha G_i(y) = (0)$$

$$\sum_{i=1}^{n} D_i(x) \beta d_i(y) \alpha G_i(y) = (0)$$

$$\sum_{i=1}^{n} G_i(x) \beta d_i(y) \alpha D_i(y) = (0)$$

Hence

$$\sum_{i=1}^{n} D_i(x) \beta \ d_i(y) \alpha \ G_i(y) = (0) = \sum_{i=1}^{n} G_i(x) \beta \ d_i(y) \alpha \ D_i(y)$$

Thus D_n and G_n are orthogonal.

Theorem (3.6):

Let $D=(D_i)_{i\in N}$ and $G=(G_i)_{i\in N}$ be generalized higher revers derivations of a 2- torsion free semiprime Γ -ring M, associated respectively with higher reverse derivations $d=(d_i)_{i\in N}$ and $g=(g_i)_{i\in N}$, then D_n , G_n are orthogonal if and only if $D_n(x)\alpha G_n(y)=(0)$ for all $x,y\in M$ and $d_nG_n=d_ng_n=0$, where G_n commuting mappings.

Proof: Suppose that D_n , G_n are orthogonal.

By Theorem(3.1) (i) we get $D_n(x)\alpha G_n(y) = (0)$ and by (ii) $G_n(x)\alpha d_n(y) = (0)$

$$\sum_{i=1}^{n} d_i \big(G_i(x) \alpha \ d_i(y) \big) = (0)$$

$$\sum_{i=1}^{n} d_i (d_i(y)) \alpha d_i (G_i(x)) = (0)$$

Replace: $d_i(y)$ by $G_i(x)$ and x by $\alpha z\beta$ we get

$$\sum_{i=1}^{n} d_i (G_i(x)) \alpha z \beta \ d_i (G_i(x)) = (0)$$

Replace: z by $d_i(z)$

$$\sum_{i=1}^{n} d_i \big(G_i(x) \big) \alpha \ d_i(z) \ \beta \ d_i \big(G_i(x) \big) = (0)$$

since M is semiprime we get $\sum_{i=1}^{n} d_i (G_i(x)) = 0$

$$d_nG_n=(0)$$

by Theorem (3.1) (iv)

 d_n , g_n are orthogonal higher revers derivations.

Thus
$$d_n g_n = (0)$$

Conversely:

Suppose that $d_n G_n = 0$

$$\sum_{i=1}^{n} d_i G_i(x\alpha y) = 0$$

$$\sum_{i=1}^{n} d_i (G_i(y)\alpha g_i(x)) = 0$$

$$\sum_{i=1}^{n} d_i (g_i(x)) \alpha d_i (G_i(y)) = 0$$

$$\sum_{i=1}^{n} d_i (g_i(x)) \alpha G_i (d_i(y)) = 0$$

Replace: $g_i(x)$ by x and $d_i(y)$ by y

$$\sum_{i=1}^{n} d_i(x) \, \alpha G_i(y) = 0$$

 $d_n(x) \alpha G_n(y) = 0$, by(ii) we get

 D_n , G_n are orthogonal.

References:

- I. N. Argac and A. Nakajima and E. Albas, "On Orthogonal Generalized Derivations of Semiprime Rings" Turk. J. Math., 28,pp.185-194, 2004.
- II. W.E. Barners, "On the Gama Rings Of Nobusawa", pacific J. Math. Vol.18, pp.411-422, 1966.
- III. Y. Ceven and M.A.Özturk, "On Jordan Generalized Derivations in Gama Rings", Hacettepe of Mathematics, and statistics, vol.33, pp.11-14, 2004.
- IV. K.k.Dey, A.C. Paul and I.S. Rakhimov, "Semiprime Gama Rings with Orthogonal Revers Derivations", International Journal of Pure and Applied Mathematics, vol.83, No.2, pp.233-245, 2013.
- V. F.J. Jing , "On Derivations of Γ ring "QUFU Shi FanDaxueXuebeoZiranKexue Ban, vol.13, No.4, pp.159-161, 1987.

- VI. M.A. Özturk, M. Sapanci, M. Soyturk and K.H. Kim, "Symmetric b_i Derivations on Prime Gamma -ring", Sci. math., vol.3 (2), pp.273-281, 2000.
- VII. A.H. Majeed and N.N. Suliman, "On Orthogonal Generalized Derivations of Semiprime Gamma Rings", International Journal of Computational Science and Mathematics, Vol. 4, No. 2 (2012), pp. 113-122.
- VIII. M.A shraf and M.R. Jamal , " Orthogonal Derivation in $\Gamma\textsc{-Ring}$ " , Advances in Algebra , Vo 13 , No. 1 , 1-6 , 2010
 - IX. M.R. Salih, "On Revers Derivations on Prime Γ ring ", M. SC. Thises College of education AL-Mustansiriyah University, 2014.
 - X. S.M. Salih and M.R. Salih, "On Jordan Generalized Reverse Derivations on $\Gamma Rings$ ", Iraqi Journal of secince, 2015, Vol. 56, No. Ic, pp. 833-838.

