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Abstract 

Big data  is affected by the presence of noise which is unavoidable problem. To overcome such a problem, it is a 

favorable to reduce the high dimensions while retaining the most important and useful data. The dimension 

reduction method such as principal component analysis is achieved by projecting the input data via a subset of 

principal components that describes the most variance of the data. PCA based on Gaussian noise model is sensitive 

to the noise of large magnitude. In this paper, we propose  Gamma Principal Component Analysis instead of 

Gaussian PCA .We will utilize Gamma distribution to model noise where they consider effective PCA method to 

noise. The effectiveness of Gamma PCA model is studied using simulated data. In addition, the comparison with 

other noise models is discussed. 
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1. Introduction 

Principal Components Analysis (PCA) is linear technique for dimensionality reduction[7,8]. The goal of PCA is to reduce the number of 

interesting variables into a smaller set of components.  It seeks for a linear data pattern  where the variance of the data in the low-

dimensional representation is maximized [1]. PCA based on Gaussian noise model is sensitive to noise of large magnitude. 

Various studies discussed the weak of Gaussian noise and suggested another distribution to model noise. Such researches proposed 

Student-t distribution and Laplace distribution because they have heavy tailed compared to Gaussian noise model which make them 

suitable to robust PCA. Peel and McLachlan (2000) [4] replaced Gaussian distribution by the Student-t distribution to increas the robust of 

PCA. While Ke and Kanade (2005) propsed Laplace noise assumption[2].The Student-t distribution and Laplace distribution are suitable 

for modeling spiky noise with large magnitude as result to their heavy tailed. However, but both methods suffer of some problems. Khan 

and Dellaert (2004) and Archambeau et al. (2006) tried to modify PCA by Student-t distribution [4]. The Student-t distribution was very 

similar behave to the Gaussian PCA[3, 4] but works much worse on large noises than Laplace PCA. In other hand, Laplace  PCA cannot 

deal with dense noise. Pengtao and Eric (2014) discussed the capable of Cauchy noise assumption model and the effectiveness of Cauchy 

PCA[5].  

2. Concepts Of Principal Component Analysis 

2.1  PCA 

Principal component analysis is one of the most important and powerful methods that interested with explaining the variance-covariance 

structure of a set of variables through a few linear combinations of these variables.  PCA is a procedure that uses an orthogonal 

transformation to convert a number of correlated variables into a small number of independent linear combinations of those variables 

called principal components. PCA seeks the linear combinations of the original variables such that the derived variables capture maximal 

variance [7,8].   

2.2   Finding PCAs 

Given the D-dimensional random variable 𝑋 =  𝑋1, ⋯ , 𝑋𝐷 
𝑇 , the PCA find a lower dimensional representation of it,  𝑆 =  𝑆1 , ⋯ , 𝑆𝐷 

𝑇  

with d ≤ 𝐷 , that captures the content in the original data, according to some criterion. The components of  𝑆 are called the hidden 

components. Linear techniques result in each of the d ≤ 𝐷  components of the new variable being a linear combination of the original 

variables: 
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                                𝑆𝑖 = 𝑤𝑖 ,1𝑥1 + ⋯+ 𝑤𝑖 ,𝐷𝑥𝐷     𝑖 = 1,⋯ , 𝑑                                                                                                       (1) 

𝑆 = 𝑊𝑋, 
Where𝑊𝑑×𝐷   is the linear transformation weight matrix. Expressing the same relationship as: 

𝑋 = 𝐴𝑆 

with𝐴𝐷×𝑑 , note that the new variables 𝑆 are also called the hidden or the latent variable[6]. 

Let 𝑋 =  𝑋1, ⋯ , 𝑋𝐷 
𝑇  be a random vector has a probability density function 𝑓 𝑥  from multivariate Gaussian distribution with mean and 

variance denoted by 𝜇 and   , respectively. Assume that a sample of size 𝑁 is drawn from the random vector 𝑋, yielding data            

𝑍 =  𝑥1 , ⋯ 𝑥𝑁  𝜀 𝑅𝐷 , which are 𝑁 independent and identically distributed (iid) observations. The matrix 𝑍 has the following structure:  

𝑍 =

 
 
 
 
 
𝑥11

𝑥21

𝑥31

⋮
𝑥𝑁1

𝑥12

𝑥22

𝑥32

⋮
𝑥𝑁2

⋯
⋯
⋯
⋯
⋯

𝑥1𝑗

𝑥2𝑗

𝑥3𝑗

⋮
𝑥𝑁𝑗

⋯
⋯
⋯
⋯
⋯

𝑥1𝐷

𝑥2𝐷

𝑥3𝐷

⋮
𝑥𝑁𝐷  

 
 
 
 

 

this can be rewritten as:  

𝑍 =  
𝑥1
𝑇

⋮
𝑥𝑁
𝑇

 , 

where 𝐷 is the number of variables and 𝑁 is the number of observations [7]. Now, the joint density function of 𝑋1, 𝑋2, ⋯ , 𝑋𝑛  is given by 

𝑓 𝑥1 , ⋯ , 𝑥𝑛 =    
1

 2𝜋 
𝑝

2    
1

2

𝑒
− 𝑥𝑗−𝜇  

𝑡
 −1 𝑥𝑗−𝜇  

2  

𝑛

𝑗=1

, 

                               =   2𝜋 
−𝑛𝑝

2    
−𝑛

2 𝑒

−   𝑥𝑗−𝜇  
𝑡
 −1 𝑥𝑗−𝜇   

𝑛
𝑗=1

2
 .
 

Now, the maximum likelihood estimators of 𝜇 and ∑ are 𝜇 and   𝑀𝐿 , respectively. 

Where 

𝜇 =   
𝑥 1
⋮
𝑥 𝐷

 =

 

 

1

𝑁
 𝑥𝑖1
𝑁
𝑖=1

⋮
1

𝑁
 𝑥𝑖𝐷
𝑁
𝑖=1  

 =  
𝜇 1
⋮
𝜇 2

 , 

and 

  𝑀𝐿 =
1

𝑁
  𝑥𝑖 − 𝜇   𝑥𝑖 − 𝜇  

𝑇 .
𝑁

𝑖=1
 

and the sample variance matrix is given by  

  𝑠𝑎𝑚𝑝𝑙𝑒 =
1

𝑁 − 1
  𝑥𝑖 − 𝜇   𝑥𝑖 − 𝜇  

𝑇 =
𝑁

𝑁 − 1
  𝑀𝐿 .

𝑁

𝑖=1
 

Note that 𝜇  is an unbiased estimator of 𝜇 and   𝑠𝑎𝑚𝑝𝑙𝑒  is an unbiased estimator of∑ . An important characteristic of PCA is the 

decomposition of the variance of  𝑋. The illustration of decomposing the variance is presented below:  

 For the 𝑗𝑡𝑕eigenvector 𝛾𝑗of ∑ , one has 

 𝛾𝑗 = ג
𝑗
𝛾𝑗 ,     j = 1,⋯ , D,   

where ∑ is variance-covariance matrix and 𝛾𝑗  is one of the orthogonal eigenvectors𝛾1, ⋯ , 𝛾𝐷  of ∑ , and  ג  is one of the 𝐷 eigenvalues of 

∑ such thatג
1
≥ ג

2
≥ ⋯ ≥ ג

𝐷
> 0. 

Therefore, the eigenvectors is chosen corresponding to the largest eigenvalueג
𝑗
, which can be written as 

  𝛾1, ⋯ , 𝛾𝐷 =  𝛾1, ⋯ , 𝛾𝐷  
1ג
⋱

𝐷ג

 . 

Then, 

                                                            ᴦ = ᴦᴧ                                                                                                                         (2) 

∑= ᴦᴧᴦ−1 = ᴦᴧᴦ𝑇 , 

where, ᴦ transpose equals ᴦ inverse, meaning the columns of ᴦ are orthonormal. ᴧ = 𝑑𝑖𝑎𝑔 ג
1

, ⋯ , ג
𝐷
 is a diagonal matrix containing the 

ordered eigenvalues of ∑ , and ᴦ is an orthogonal matrix. The columns ofᴦ = 𝛾1 , ⋯ , 𝛾𝐷  are the eigenvectors of ∑ and are called principal 

component loadings. 

This decomposition is called the eigen-decomposition of  ∑ have 

ג
𝑗

= 𝑣𝑎𝑟 𝛾𝑗
𝑇𝑋 , 𝑗 = 1,⋯ , 𝐷. 

Which means thatג
𝑗
  provides some decomposition of variance, and, from Eq. (2), their sum is 

ג
1

+ ⋯+ ג
𝐷

= 𝑇𝑟 ᴧ . 

Thus, 
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ג
1

+ ⋯+ ג
𝐷

= 𝑇𝑟 ᴦ𝑇 ᴦ = 𝑇𝑟 ᴦ𝑇ᴦ   

The trace of the variance matrix is called the total variance. Therefore, 

ג
𝑗

ג
1

+ ⋯+ ג
𝐷

=
𝑣𝑎𝑟 𝛾𝑗

𝑇𝑋 

𝑇𝑉 𝑋 
, 

is the proportion of total variance explained by the𝑗𝑡𝑕  principal component. A software R package illustrates this decomposition by 

plotting  ג
𝑗
  versus 𝑗 using the scree-plot tool. 

Assume that PCA has been carried out on a data set 𝑍yielding𝜇, ∑ ,𝛾1, ⋯ , 𝛾𝐷 ; ג  
1

, ⋯ , ג
𝐷

. Then to compress the data 𝑍 to a smaller 

dimension 𝑑 ≤ 𝐷   means to project all data points 𝑁 onto the 𝑑-dimensional subspace spanned by the 𝑑 largest principal components: 

𝜙: Ɽ𝐷 → Ɽ𝐷 , 𝑥𝑖 →  𝛾1 , ⋯ , 𝛾𝐷 
𝑇 𝑥𝑖 − 𝜇 ,    𝑖 = 1,⋯ ,𝑁. 

The 𝜙 𝑥𝑖  ≡  𝑃𝑖are called scores. It is obvious that the original data will not be reconstructed exactly unless𝑑 = 𝐷 .[7]. 

The application of principal component analysis postulates implicitly some form of linearity (Einbeck, Evers, and Bailer-Jones, 2008)[8]. 

The first Principal Component (PC) is the linear combination with the largest variance. The second PC is the linear combination with the 

second largest variance and orthogonal to the first PC and so on. 

In essence, PCA seeks to reduce the dimension of the data by finding a few orthogonal linear combinations (the PCs) of the original 

variables with the largest variance. For many datasets, the first several PCs explain most of the variance, so that the rest can be 

disregarded with minimal loss of information[6]. 

2.3  Determine the Number Of Components 

There are many approaches of deciding how many principal components to use. These ways can detect a different number of components 

for the same data. The amount of accuracy of the work depended on how many principal components should use. In such cases, choose 

the most interpretable and logical solution for your data. 

Percentage of Variation Explained: Retain components that cumulatively explain a certain percentage of variation. Some research needs 

50% of the variance, rather than 40% or 60%. The Strategy is adding component until achieve the acceptable level of explained variance. 

Often, should chose component explain 70 to 80% of the variance at least percentage of variation explained 

Kaiser Method: Retain components with eigenvalues greater than 1. This approach called Kaiser Methodor eigenvalue one criterion 

Scree Plot: It is a graphical method; retain those components in the steep curve before the first point that starts the flat line trend. A scree 

plot displays the eigenvalues associated with a component in descending order versus the number of the component. Scree plots use in 

principal components analysis for visually estimate which components explain most of the variability in the data.  

3. Gamma PCA Modeling Noise 

This section illustrates location-scale family distributions. Some intuition of choosing Gamma distribution is presented to model noise by 

comparing its density curve with other distributions.  

3.1  Location-Scale Family PCA 

Location-scale family is a class of distributions parameterized by a location parameter and a scale parameter. The most important property 

of this family is that distributions are closed under linear transform. If  X is a random variable drawn from this family, then 𝑎X +  𝑏 is also 

from this family. This property provides convenience to model additive noise. In PCA setting, assume each entry of noise matrix E is from 

iid  location-scale family distribution 

                                                                                   𝐸𝑖𝑗 ~ 𝑝 𝐸𝑖𝑗 |0, 𝑠                                                                                                       (3) 

with location parameter zero and scale parameter s. According to the closure under linear transformation property and additive noise 

assumption  M =  L + E, observation matrix M can be modeled as 

                                                                                     𝑀𝑖𝑗~ 𝑝 𝑀𝑖𝑗 |𝐿𝑖𝑗 , 𝑠 .                                                                                                  (4) 

with shifted location parameter 𝐿𝑖𝑗 . L can be estimated by maximizing the likelihood of observations (or minimizing the negative log 

likelihood) with low rank constraint 

𝑚𝑎𝑥𝐿  𝑝 𝑀𝑖𝑗 |𝐿𝑖𝑗 , 𝑠 

𝑟𝑎𝑛𝑘  𝐿 ≤𝑘

. 

Gaussian PCA , Laplace PCA and Cauchy PCA (Candes et al., 2009; Ke  &  Kanade, 2005; Xie & Xing; 2014) are special cases of the 

general framework by specifying the distribution in Eq.(3) to Gaussian , Laplace ,Cauchy,and Gamma distribution respectively. 

3.2  Vision on Gamma PCA with the Previous Studies 

PCA technique assumes that the noise has a Gaussian model that is sensitive to noise of large magnitude. There are number of 

improvements have been proposed, such as Student-t distribution that has heavy tails that can reasonably explain data far away from the 

mean. Thus, they are suitable for modeling spiky noises with large magnitude. Gaussian PCA is limited to small noise and Laplace PCA is 
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only suitable for sparse noise. Once noise is both large and dense, neither of the two PCA methods will be sufficed.  In practice, the 

Student-t methods have very similar performance as the Gaussian PCA [5].  

On the other hand, in many problems, noise patterns are mixed. Gaussian PCA and Laplace PCA are not applicable in this case since 

neither of them are able to deal with the two types of noise simultaneously. Therefore, will study an alternative probabilistic PCA method 

called Gamma PCA to discover its effectiveness to model noise and derive Gamma PCA under maximum likelihood estimation. 

Given Gamma distribution with location parameter zero to model noise E 

                                                                                       p Eij =
xk−1

θ
k k

e−
x
θ                                                                                                 (5) 

where 𝑘 is a shape parameter and 𝜃 is the scale parameter. The likelihood function of Gamma distribution is: 

                                                                         𝐿 𝑥 = 𝜃−𝑛𝑘  k  
−𝑛

  𝑥𝑖
𝑛
𝑖=1  𝑘−1𝑒−

 𝑥𝑖
𝑛
𝑖=1
𝜃                                                                         (6) 

The maximum likelihood is  𝜃 =
𝑥 

𝛼
 . 

Now will introduce the comparative study between the Gamma PCA, Gaussian PCA, Laplace PCA, Logistic PCA and Cauchy PCA to 

show their resistance to noise. 

Figure 1(a) shows the density curves of univariate Gaussian, Laplace, Logistic, Cauchy and Gamma distributions. To enable a clear 

comparison, density curves are aligned to the same location and peak. The motivation of aligning their peaks is to inspect an interesting 

phenomenon: if we put the same amount of probability on the mode of each distribution, how much probability will each distribution 

allocates for other values? This can give a good sense of heavy-tail-ness. As data points get far away from the center, Gaussian probability 

drops quickly to zero while Gamma has a heavy tail than Gaussian and Logistic as shown in Figure 1(b), thus means Gamma consider 

best from Gaussian probability. In addition, Laplace and Cauchy probabilities remain a certain amount. In other words, Laplace and 

Cauchy density curves have longer tails than others.  

 In terms of noise modeling under a probabilistic framework, large noises can be reasonably explained by heavy tail distribution. Thereby, 

Laplace PCA and Cauchy PCA naturally possess the ability of dealing with large noise due to their heavy-tail-ness. At the same location 

(Figure 1(c)), Laplace distribution is not differentiable. The non-smoothness property induces sparsity, which makes Laplace distribution 

unsuitable to model dense noise. Gamma distribution has smooth property that makes it best than Laplace in dealing to model dense noise. 

It is suitable to model dense noise. Gamma distribution and Logistic distribution highly resembles Gaussian distribution in shape except a 

slightly heavier tail. Therefore, its behavior in modeling noise should be very similar to Gaussian distribution. Among the five, Cauchy 

distribution owns two appealing advantages. First, it is a smooth then it is suitable for modeling dense noise. Second, it has a much 

heavier tail than others, thus it is highly capable of modeling large noise. 

4. Experimental Results 

A simulation study is performed to evaluate the Gamma PCA to the noise with two scenarios.  

Firstly:  

A data matrix of 100 observations are generated from Gamma ditribution  with paramters (𝛼 = 9 , 𝛽 = .5) which is a symmetric 

Gamma curve.  To study the effecting of Gamma noise, we corrupt the data with noise rate 10%  of sample size. Next, the Gamma PCA is 

performed to both the original and new data.  

Figure 2 displays the scree plots of Gaussian PCA implementation for both two cases of the data. The scree plots illustrate the effect of 

noise data on the variation of each component after adding the Gamma noise data. Table 1 presents the cumulative proportion for 

components before and after adding noise data. It is obvious that components 1 and 2 explain 88% of the total variation before existing 

any noise in data, as displayed in Table 1 [b1]. While after adding the noise points, Table 1 [b2] presents that the cumulative proportion of 

the components 1 and 2 explain 82% of the total variation. Therefore, one can notice there is a little bit difference between the two cases 

but also still have a reasonable sense of interpretation of the data.  

Secondly:  

A Gaussian data matrix (𝑚 × 𝑚) is generated with parameters (𝜇 = 3.5 , 𝜎 = 1.25) with sample size 100 observations. Then corrupt 

them with noise that has rate 10%.  The Gamma PCA is implemented for both data cases, before and after adding Gamma noise.  

Hence, the scree plots in Figure 6 present the PCA components. We can recognize that components 1 and 2 explain 87% of the total 

variation before existing any noise in data, as displayed in Table 2 [b1]. While 72% of the variation is explained by both components 1 

and 2 after adding Gamma noise data .  

To sum up, both scenarios provide that Gamma PCA technique has a suitable behaved on the data with noise points. One can conclude 

that Gamma PCA technique able to skip the noise in the data efficiently. Which means that Gamma PCA technique can able to reduce the 

dimensions actively and exclude the data that cause the noise. While in a simulation of Gaussian PCA, it is sensitively appeared to the 

noise compared to Gamma distribution. 
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5. Conclusion 

The aim of this paper was to provide  a new approach to model noise via Gamma distribution. It is known that the Gaussian model is 

sensitive to noise of large magnitude. Our approach aims to overcome that issue and deal with dense noise. Obviously, Gamma 

distribution with  (𝛼 = 9 , 𝛽 = .5) appears longer tail than Gaussian. From the experimental results, one can conclude that Gamma PCA 

technique able to skip the noise in the data efficiently. Especially when noise data with 10% of data is considered as a big rate. Therefore, 

this means Gamma PCA technique can able to reduce the dimensions well and exclude the data that cause the noise.  Gamma PCA 

technique has acceptable behave with data has noise and in some cases, it could resistant noising in data efficiently 

 

. 
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Fig 1: Density curves of Gaussian, Laplace, Logistic, Cauchy and Gamma distribution over different ranges of random variable X. 

 

 

[a1] 

 

[a2] 

Fig 2: Gamma PCA at N=100; [a1] Scree plot for  data before noising , [a2] Scree plot when 10% noising done. 

 

    Importance of components: 

                                      Comp.1    Comp.2     Comp.3       Comp.4  

Standard deviation       1.665661  1.28938   0.7040613    0.2595484      

Proportion of Variance  0.55488  0.33250   0.0991404   0.0134730     

Cumulative Proportion  0.55488   0.8873    0.9865269    1.000000 

[b1] 

  Importance of components: 

                                    Comp.1       Comp.2       Comp.3     Comp.4 

Standard deviation         1.51070  1.365398 0.717915    0.5814121  

Proportion of Variance   0.45644  0.372862  0.1030804  0.0676080  

Cumulative Proportion   0.45644  0.829311   0.932392   1.0000000 

[b2] 

Table 1: Summary table of the implementation of Gamma PCA at N=100; [b1] before nosing, [b2] when noising done. 

 

 

[a1] 

 

[a2] 

Fig 3: Gaussian PCA at N=100; [a1] scree plot for data before noising [a2] scree plot when 10% gamma noising 

 

    Importance of components: 

                                        Comp.1     Comp.2     Comp.3    Comp.4  

Standard deviation        1.70817    1.20357    0.5988074   0.524392  

Proportion of Variance 0.58357    0.28971    0.0717140   0.054997  

Cumulative Proportion  0.58357   0.87328    0.9450026 1.0000000  

 [b1] 

  Importance of components: 

                                    Comp.1     Comp.2     Comp.3     Comp.4 

Standard deviation        1.4304     1.26121    1.08293    0.43630500  

Proportion of Variance 0.4092      0.31813   0.23454    0.03807241  

Cumulative Proportion  0.4092     0.727379    0.96192    1.00000000  

[b2] 

Table 2: Summary table of the implementation of Gamma PCA on Gaussian data (N=100); [b1] before nosing, [b2] when noising done. 
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