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ABSTRACT 

 

With the amazing progress of both computer hardware and software, a vast amount of data is 

generated and collected daily. There is no doubt that data is meaningful only when one can extract 

the hidden information inside them. Query facets give knowledge to the users about a query without 

browsing hundreds of pages. Query facets are multiple groups of words or phrases that explain and 

summarize the content covered by a query. But finding query facets is a challenging problem. We 

assume that important aspects of a query is usually presented and repeated in the query’s top 

retrieved documents. In this paper, we propose a solution called QDMiner, in order to mine the query 

facets. Using QDMiner, Query facets are mined automatically by extracting and grouping the 

frequent lists which are collected from the top search results. Our experimental results clearly tell that 

our proposed approach mines useful facets for the given query when compared with various primitive 

methods that are already available. 
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I. INTRODUCTION 
 

We address the problem of finding query facets are multiple groups of words or phrases that 

explain and summarize the content covered by a query. A query facet is a set of items which describe 

and summarize one important aspect of a query. A query may have multiple facets that summarize 

the information covered by a query from different perspectives. 

 

EXAMPLE 

1. Facets for the query “watches” cover the knowledge about watches in five unique aspects, 

including brands, gender categories, supporting features, styles and colours.  

 

2. The query “visit Beijing” has a query facet about popular resorts in Beijing (Tiananmen 

square, forbidden city, summer palace,....) 

 

We propose aggregating frequent lists within the top search results to mine query facets and 

implement a system called QDMiner. More specifically, QDMiner extracts lists from the top search 
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results, groups them into clusters[21], [23] based on the items they contain, then ranks the clusters 

and items based on how the lists and items appear in the top results. Two models, the Unique Website 

Model and the Context Similarity Model are proposed, to rank query facets. In the Unique Website 

Model, it is assumed that lists from the same website might contain duplicated information, whereas 

different websites are independent and each can contribute a separated vote for weighting facets. 

 

We propose Context Similarity Model, in which the fine-grained similarity between each pair 

of lists is modelled. Query facets provide interesting and useful knowledge about a query and thus 

can be used to improve search experiences in many ways: 

 

First, we can display query facets together with the original search results in an appropriate 

way. Thus, users can understand some important aspects of a query without browsing tens of pages. 

 

Second, query facets may provide direct information or instant answers that users are seeking. 

 

Third, query facets may also be used to improve the diversity of the ten blue links. 

 

       Query facets also contain structured knowledge covered by the query, and thus they can 

be used in other fields besides traditional web search, such as semantic search or entity search. The 

main goal of mining facets is different from query recommendation. The former is to summarize the 

knowledge and information contained in the query, whereas the latter is to find a list of related or 

expanded queries. However, query facets include semantically related phrases or terms that can be 

used as query reformulations or query suggestions sometimes. Different from transitional query 

suggestions, we can utilize query facets to generate structured query suggestions, i.e., multiple groups 

of semantically related query suggestions. This potentially provides richer information than 

traditional query suggestions and might help users find a better query more easily. 

 

EXAMPLES 

TABLE 1 

 

QUERY:  WATCHES 

FACETS 1. cartier, breitling, omega, citizen, tag heuer, bulova, casio, rolex, 

audemars, Piguet, Seiko, accutron, Movado,…. 

      2. men’s, women’s, kids, unisex 

        3. analog, digital, chronograph, analog digital, quartz, mechanical, . . . 

         4. Dress, casual, sport, fashion, luxury, bling, pocket, . . 

        5. black, blue, white, green, red, brown, pink, orange, yellow, . . . 

 

TABLE 2 

 

QUERY: LOST 

 FACETS  1. season 1, season 6, season 2, season 3, season 4, season 5 

 2. matthew fox, naveen andrews, evangeline lilly, josh holloway, jorge 

garcia,   Daniel dae kim, michael emerson 

 3. jack, kate, locke, sawyer, claire, sayid, hurley, desmond, boone, charlie, 

ben, juliet, sun, jin, . . . 

 4. what they died for, across the sea, what kate does, the candidate, the last 

recruit, everybody loves hugo, the end, . . . 
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II. RELATED WORK 
 

     Mining query facets is related to several existing research topics. In this section, we briefly 

review them and discuss the difference from our approach. 

 

FACETED SEARCH 

 

    Most existing faceted search and facets generation systems [1], [2], [3], [8], [9], are built on 

a specific domain (such as product search) or predefined facet categories. For example, Dakka and 

Ipeirotis [9] introduced an unsupervised technique for automatic extraction of facets that are useful 

for browsing text databases. Facet hierarchies are generated for a whole collection, instead of for a 

given query. Li et al. proposed Facetedpedia [8], a faceted retrieval system for information discovery 

and exploration in Wikipedia. Facetedpedia extracts and aggregates the rich semantic information 

from the specific knowledge database Wikipedia. In this paper, it explores to automatically find 

query dependent facets for open-domain queries based on a general web search engine. Facets of a 

query are automatically mined from the top web search results of the query without any additional 

domain knowledge required 

 

DYNAMIC FACETED SEARCH IN STRUCTURED DATABASES 

 

Minimum-effort driven navigational techniques are proposed for enterprise database systems 

based on the faceted search paradigm. These proposed techniques dynamically suggest facets for 

drilling down into the database such that the cost of navigation is minimized. At every step, the 

system asks the user a question or a set of questions on different facets and depending on the user 

response, dynamically fetches the next most promising set of facets, and the process repeats. Facets 

are selected based on their ability to rapidly drill down to the most promising tuples, as well as on the 

ability of the user to provide desired values for them. These facet selection algorithms also work in 

conjunction with any ranked retrieval model where a ranking function imposes a bias over the user 

preferences for the selected tuples. 

 

AUTOMATIC EXTRACTION OF USEFUL FACET HIERARCHIES FROM TEXT 

DATABASES 

 

An unsupervised technique is presented for automatic extraction of facets useful for browsing 

text databases. In particular, through a pilot study, it is observed that facet terms rarely appear in text 

documents, showing that external resources are needed to identify useful facet terms. For this, 

important phrases in each document are identified at first. Then, each phrase is expanded with 

“context” phrases using external resources, such as WordNet and Wikipedia, causing facet terms to 

appear in the expanded database. Finally, the term distributions in the original database are compared 

with the expanded database to identify the terms that can be used to construct browsing facets. 

 

 

III. THE PROPOSED MINING QUERY FACTES USING QDMiner 

ALGORITHM 
 

In this section we mainly discuss about the proposed mining query facets using QD miner 

Aproach, where the proposed approach is clearly explained in the figure 3 and also the detailed 

explanation about the system is explained in the next section i.e. in modules phase. Now let us 
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discuss about this proposed method in detail: 

 

From the below figure 1, we  can clearly define the working flow of QDMiner, given a query 

q, we retrieve the top K results from a search engine and fetch all documents to form a set R as input. 

Then, query facets are mined by: 

 

1. List extraction Lists and their context are extracted from each document in R. “men’s 

watches, women’s watches, luxury watches, . . .” is an example list extracted. 

2. List weighting All extracted lists are weighted, and thus some unimportant or noisy lists, 

such as the price list “299.99, 349.99, 423.99, . . .” that occasionally occurs in a page, can be 

assigned by low weights. 

3. List clustering Similar lists are grouped together to compose a facet. For example, different 

lists about watch gender types are grouped because they share the same items men’s” and 

“women’s”. 

4. Facet and item ranking Facets and their items are evaluated and ranked.  

For example, the facet on brands is ranked higher than the facet on colours based on how 

frequent the facets occur and how relevant the supporting documents are. Within the query 

facet on gender categories, “men’s” and “women’s” are ranked higher than “unisex” and 

“kids” based on how frequent the items appear, and their order in the original lists. 

 

 

 
 

FIGURE. 1. THE ARCHITECTURE OF PROPOSED QDMiner ALGORITHM 
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IV. . IMPLEMENTATION AND ITS METHODOLOGY 

 

Implementation is the stage where the theoretical design is converted into programmatically 

manner. In this stage we will divide the application into a number of modules and then coded for 

deployment. We have implemented the proposed concept on Java programming language. The front 

end of the application takes JSP, HTML, CSS & Java Beans and as a Back-End Data base we took 

My SQL data base along with a Real time Products Data Set from a local web site which run under 

tomcat. The application is divided mainly into following 4 modules. They are as follows: 

 

1. List Extraction Module 

2. List Weighting Module 

3. List Clustering Module 

4. Facet and Item Ranking Module 

 

Now let us discuss about each and every module in detail as follows: 

 

1. LIST EXTRACTION MODULE 
 

Lists are extracted from the data for a given query. Whenever, a query is given, all the lists 

which are related to the query and which are in the top search results are extracted. These lists are 

then processed to remove useless data. We find that quality of query facets is affected by the quality 

and the quantity of search results. Using more results can generate better facets at the beginning, 

whereas the improvement of using more results ranked lower than 50 becomes subtle. 

 

2. LIST WEIGHTING MODULE 

 

Some of the extracted lists are not informative or even useless. Some of them are extraction 

errors. These types of lists are useless for finding facets. So these lists must be ignored, and rely more 

on better lists to generate good facets. A good list contains items that are informative to the query. 

Therefore, aggregating and sorting of all lists of a query by their weights is implemented in this 

project. Important lists are commonly supported and they repeat in the top search results, whereas 

unimportant lists just infrequently appear in results. This makes it possible to distinguish good lists 

from bad ones, and to further rank facets in terms of importance.  

 

Suppose, If “watches” is the search query and if the extracted lists contain items such as 

ratings, feedback, price etc., these items in the list are not so important and have low weights and are 

ignored later.  

 

EXAMPLE 

 

QUERY: WATCHES 

 

LISTS 

 

1) cartier, breitling, omega, citizen, tag heuer, bulova, casio, rolex, audemars piguet, seiko, 

accutron, movado, . . . 

2) men’s, women’s, kids, unisex 

3) analog, digital, chronograph, analog digital, quartz, mechanical, . . . 
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4) dress, casual, sport, fashion, luxury, bling, pocket, . . . 

5) black, blue, white, green, red, brown, pink, orange, yellow, . . . 

6) good one, nice design, nice color, low price, budget piece 

7) rating 4.5, rating 2, 3, 1 , 3.5,….. 

8) good one, citizen, kids, analogue white, rating 4,……. 

9) 2999.99, 3000.66, 900.7, 2600.56,…… 

  

Here, in the above example, the first 5 lists are good lists. Because, these lists gives details 

such as watch brands, gender, types of watches, style of watches and colors.  

But, list 6 contains details like watches feedback. This data may not be that important to be 

considered as a list in the process of mining facets. 

 List 7 contains data such as ratings that is numerical data. Even this data may not be that important to 

be considered as a list for mining facets. 

List 8 contains mixed data. This list is an extraction error. This list is also useless. 

List 9 contains data such as prices. This type of numbers is also useless 

So, from the above lists, lists 1-5 have higher weight and are found useful. These are considered as 

good lists. 

And the lists 6-9 have lower weights and are found useless. These lists are considered as bad list and 

are ignored.  

 

3. LIST CLUSTERING MODULE 

Individual weighted lists are not used as query facets because:  

 

(1) An individual list may inevitably include noise. 

(2) An individual list usually contains a small number of items of a facet and  thus it is far 

from complete; 

(3) Many lists contain duplicated information. They are not exactly same, but share 

overlapped items. 

To conquer the above issues, Similar lists are grouped together to compose facets. 

Two lists can be grouped together if they share enough items. 

We define distance dl (l1, l2) between two lists l1 and l2 as  

dl (l1, l2)= 1-((l1∩l2)/min{│l1│, │l2│}).  

Here l1∩l2 is the number of shared items within l1 and l2 

This means that two groups of lists can only be merged together when every two lists of them are 

similar enough.  

 

We use a modified QT (Quality Threshold) clustering algorithm to group similar lists. QT is a 

clustering algorithm that groups data into high quality clusters. Compared to other clustering 

algorithms, QT ensures quality by finding large clusters whose diameters do not exceed a user-

defined diameter threshold. This method prevents dissimilar data from being forced under the same 

cluster and ensures good quality of clusters. In QT, the number of clusters is not required to be 

specified [15]-[18]. The QT algorithm assumes that all data is equally important, and the cluster that 

has the most number of points is selected in each iteration. In our problem, lists are not equally 

important. Better lists should be grouped first. We modify the original QT algorithm to first group 

highly weighted lists. The algorithm, which we refer to as WQT (Quality Threshold with Weighted 

data points), is described as follows. 
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STEP 1: Choose a maximum diameter Diamax and a minimum weight W min for clusters. 

 

STEP 2: Build a candidate cluster for the most important point by iteratively including the point that 

is closest to the group, until the diameter of the cluster surpasses the threshold Diamax. Here the most 

important point is the list which has the highest weight. 

 

STEP 3: Save the candidate cluster if the total weight of its points wc is not smaller than Wmin, and 

remove all points in the cluster from further consideration. 

 

STEP 4: Recurse with the reduced set of points. 

Recall that the main difference between WQT and QT is that WQT tries to get more 

neighbors for important points, and generated clusters are biased towards important points.  

 

Suppose we have six lists:  

l1= (cartier,  breitling,  omega, citizen), 

l2 = (breitling, omega, citizen, tag heuer),  

l3=  (breitling, omega, citizen, movie, music, book),  

l4=  (movie, music, book),  

l5= (music, book, radio), and  

 l6=  (movie, book, radio).  

 

Their corresponding weights satisfy: 

 

 Sl1 >Sl2 > Sl3 > Sl4 > Sl5 >Sl6.  

 

QT ignores their weights and generate a cluster (l3; l4; l5; l6) in the first iteration. Whereas 

WQT will generate a cluster (l1; l2; l3) for list l1. We prefer the second result, especially when Sl1 is 

much larger than Sl3. In addition, WQT is more efficient than QT, as it just builds one candidate 

cluster while QT builds a candidate cluster for each remaining point. Weight of a cluster is computed 

based on the rating of the lists. After the clustering process, similar lists will be grouped into a 

candidate query facet. 

 

4.  FACET  AND ITEM RANKING MODULE 

       

      After the candidate query facets are generated, evaluate the importance of facets and items, 

and rank them based on their importance. Based on our motivation that a good facet should 

frequently appear in the top results, a facet c is more important if:  

 

 The lists in c are extracted from more unique content of search results; (and) 

 The lists in c are more important, i.e., they have higher weights. 

 

We emphasize “unique “content here, because sometimes there are duplicated content and in 

a facet, the importance of an item depends on how many lists contain the item and its ranks in the 

lists. A better item is usually ranked higher by its creator than a worse item in the original list. 
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V. CONCLUSION 
 

In this paper, we study the problem of finding query facets. We proposed a systematic 

solution, which we refer to as QDMiner, to automatically mine query facets by aggregating frequent 

lists from top search results. We create Human annotated data sets and apply existing metrics to mine 

quality query facets. Further, analyze the problem of duplicated lists, and find that facets can be 

improved by modelling fine-grained similarities between lists within a facet by comparing their 

similarities.  
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