
International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 104

NEAREST KEYWORD SET SEARCH ALGORITHM

FOR TEXT-RICH MULTI DIMENSIONAL DATA

SETS

ASMA BEGUM
 #1

, Prof. B.PRAJNA
#2

#1

 M.Tech Scholar , Department of Computer Science and System Engineering,

Andhra University College of Engineering (A), Visakhapatnam, AP, India.

#2

 Professor, Department of Computer Science and System Engineering,

Andhra University College of Engineering (A), Visakhapatnam, AP, India.

ABSTRACT

Now a day’s data mining has become one of the most fascinating domains in each and every field

like medical, shopping, business, MNC companies, information technology and a lot more. As we all

know that the main goal of data mining is to extract the valuable information from large data sets, in order

to retrieve the desired result as an output. In this paper we mainly try to extract the large numbers of

useful keywords from a document which has some meaningful information about that specific topic. Here

we will choose a conversation file as input which contains a set of useful keywords related to that

conversation topic. Initially in this paper we will try to extract one or more keywords which are almost

useful for extracting the whole keywords that are available in the document. If we take a small piece of

document also it contains a set of words, which are potentially related to the several topics among that

conversation document. Most of existing works are mainly concentrated on topic modeling and the

evolution of individual topics, while most of the sequential relations of topics in successive documents

published by a specific user are ignored. In this paper, we mainly try to design a multi-dimensional

datasets in which a set of keywords is represented as a data point. In this paper, we mainly try to design

and analyze the nearest keyword set (termed as NKS) queries on very text data sets having multi-

dimensional features. Here for an NKS query, the user need to provide a set of keywords, and the result of

the user query may constitute k sets of data points each of which contains all the query keywords and

forms one of the top-k tightest clusters in the multi-dimensional space. By conducting various

experiments on our proposed NKS technique, our simulation results clearly tell that our proposed method

is very best in finding the nearest keyword set search in a very less time than compared with several

primitive methods.

Key Words:

 Keyword Search, Multi-Dimensional Datasets, Keyword Set, Data Point, Clustering Space, Query

Evolution.

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 105

I. INTRODUCTION

 Data mining is the process of extracting useful or structured information from a raw or un-

structured data. Generally this is used mainly in performing operations like insurance sector, bank and

retail sector, hospital for identifying diseases, shopping malls to calculate the priority of items that were

sold [1]. Data mining processes have required an integration of techniques from multiple disciplines such

as statistics, machine learning, database technology, pattern recognition, neural networks, information

retrieval and spatial data analysis. The process of data mining involves a keen observation with a set of

algorithms to accomplish different tasks. All these algorithms attempt to fit a model to the given data set.

All the data mining algorithms are mainly used to examine the input data and then determine a model that

is very closest to the characteristics of the data being examined [2].

Generally the data mining algorithms can be classified into different ways based on the following

three things like:

1. Model Based: The purpose of the algorithm is to fit a model to the required data.

2. Preference Based: This is based on the preferences or criteria that are being used.

3. Search Based: In this method, we mainly find out the search techniques that are being used.

Figure 1.Represents the Basic Architecture of a Data Mining As a Core Method In The Process of

Knowledge Discovery

From the above figure 1, we can clearly find out that for the process of data mining the data which

should be taken as input will be collected from various resources like world wide web, Database Schema,

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 106

Data Warehouse and other data repositories. Once the input data is collected it will be then given to the

process of data cleaning. Here in this data cleaning process the data will be cleaned and it will be

processed in order to identify if there are any un-supervised data available in that input data [3]. Once that

data cleaning is completed now it will be processed for further iterations for data mining engine in order

to process the knowledge base .Once the process of pattern evaluation is done then the data will be in turn

converted into GUI.This graphical user interface is one which will give us the visualization of output [4].

Generally the objects like images, documents or products that may define the chemical compounds

and so on are mostly defined and visualized by a collection of relevant features, and are commonly

represented as data points in a multi-dimensional feature space. For example, if we take images into

consideration, initially images are represented using the color attribute and the features are extracted as

color feature vectors which will try to explain the description about that image. For a better performance

in this proposed thesis, we try to consider multi-dimensional datasets which contain a set of keywords to

be extracted for search. Here the query keywords are also known as data points that clearly define the

functionality of the item and we also try to analyze and design a nearest keyword set (referred to as NKS)

queries on text-rich multi-dimensional datasets. An NKS query is a set of user-provided keywords, and

the result of the query may include k sets of data points each of which contains all the query keywords

and forms one of the top-k tightest clusters in the multi-dimensional space. Figure. 2 define an NKS query

over a set of two-dimensional data points. Each point is tagged with a set of keywords. For a query Q =

{a, b, c}, the set of points {7, 8, 9} contains all the query keywords {a, b, c}, and forms the tightest cluster

compared with any other set of points covering all the query keywords. Therefore, the set {7, 8, 9} is the

top-1 result for the query Q.

Figure 2.Represents The Example Of An Nks Query On A Keyword Tagged Multi-Dimensional Dataset.

The Top-1 Result for Query Fa; B; Cg Is the Set of Points {7; 8; 9}

II. BACKGROUND KNOWLEDGE
In this section we mainly discuss about the background work that was carried out in finding the

work that is related to Index structure and flow of execution of ProMiSH algorithm. In this section we

mainly discuss about the basic data mining algorithms that are classified and various data mining models.

Now let us discuss about this in detail:

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 107

ABOUT TEXT MINING

The term text mining, sometimes also referred to as text data mining, roughly equivalent to text

analytics, refers to the process of deriving high-quality information from text data set. Normally from

statistical pattern learning we mainly try to derive the patterns and trends that are calculated from the high

quality of information. As we all know that the process of extracting or structuring the input text by

identifying the main features and removing the ir-related data from that main document and finally

convert the document in a structured way is known as text mining[5]. In this paper we use a word like

high quality information, which is typically derived through a set of patterns and trends that are used in

pattern learning applications. Also the term high quality in this paper clearly states that combination of

some relevance and interestingness for the topic that was available in that conversation file. In the

primitive text mining ,there are a possibilities like to scan a set of documents written in a natural language

and either model the document set for predictive classification purposes or populate a database or search

index with the information extracted [6],[7].

DATA PREPROCESSING METHODS

Generally this stage is very important in our current application as the data preprocessing plays a

very vital role in the current application. In this section we mainly discuss about the methods that are used

in the current applications. The various types of applications are explained in detail by the following

figure 2.

As we all know that if we take any input for the data mining applications those are treated as a

Raw data and which is almost have noise, missing values, and inconsistency of data. The quality of the

data always affects the data mining results.As in our project we will take documents having various

conversations of a topic,where each and every document contains various keywords of same topic[8].Here

some keywords belongs to one topic and some don’t belong to that exact topic but included in that

conversation file. So in order to improve the quality of the data and, consequently, of the mining results

the input data or raw data should be pre-processed so as to improve the efficiency and ease of the mining

process [9].

Data preprocessing is considered as the one of the most critical steps in a data mining process

which mainly deals with the preparation of initial data set followed by transformation of the initial

dataset. Data preprocessing methods are divided into following four categories as described below:

A. Data Cleaning method

B. Data Integration method

C. Data Transformation method

D. Data Reduction method

Of all the above four categories each and every category has its individual advantages and

usage.Initailly the raw data what we take as input is entered into data cleaning method and once that

category processes the data,the data will be cleaned and displayed with no errors. Now the data which is

processed is now entered for transformation method, where a set of data is integrated based on any

common attribute. Once the data is transformed now it will be entered into the data reduction category

which is the final category. In this category the data will be represented in the form of tabular way with all

the corresponding data into the table cells.

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Text_mining#Text_mining_and_text_analytics
http://en.wikipedia.org/wiki/Text_mining#Text_mining_and_text_analytics
http://en.wikipedia.org/wiki/Text_mining#Text_mining_and_text_analytics
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Plain_text
http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Predictive_classification

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 108

Figure 3.Represents the Various Forms of Data Pre-Processing

In the aspect of our proposed thesis for finding Index structure and flow of execution of ProMiSH

algorithm, this is mainly used for identifying a set of keywords among the input text documents and try to

add those keywords or data points into the database[10]. So that once if the data user want to search the

data ,any of the multiple data points can be given as a input keyword, so that the data will be searched

based on that data point .

III. THE PROPOSED PROJECTION AND MULTI-SCALE HASHING (ProMiSH)

TO ENABLE THE FAST PROCESSING FOR THE NKS QUERY

In this section we mainly discuss about the proposed ProMiSH mining for mining the data based

on content, topic, keyword and date based approach. Now let us discuss about this proposed ProMiSH

method in detail as follows:

PRELIMINARY KNOWLEDGE

The main processing framework for the proposed task of finding nearest keyword set search in

multi dimensional data set is clearly shown in below Figure. 3. This proposed algorithm is mainly divided

into two main components:

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 109

1.INVERTED INDEX IKP:

 The first component is an inverted index referred to as Ikp. In Ikp, we treat keywords as keys, and

each keyword points to a set of data points that are associated with the keyword. We build Ikp as follows.

(1) For each ,we create a key entry in Ikp, and this key entry points to a set of data points (2) We repeat

(1) until all the keywords are processed.

Figure 4.Represents the Detailed Processing of Index Structure and Flow of Execution of ProMiSH

Algorithm

2.HASH TABLE-INVERTED INDEX PAIRS HI:

 The second component consists of multiple hash tables and inverted indexes referred to as HI. HI is

controlled by three parameters:

(1) Index level,

(2) Number of random unit vectors, and

(3) Hash table size.

All the three parameters are non-negative integers. These three parameters control the construction of

HI.

THE EXACT SEARCH ALGORITHM

In exact search we are using ProMiSH-E algorithm that finds exact search results for NKS queries.

In this algorithm hash indexes are used to store keys related to keywords [11]-[13]. When user searching

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 110

for file by entering search key it will compare that keyword with hash table keys and exact file will be

retrieved by using following algorithms.

ALGORITHM 1.ProMiSH-E

Q:Query keywords; k:number of top results; W0:initial bin-width

1: P Q ← [e([], +∞)]: priority queue of top-k results

2: HC: hashtable to check duplicate candidates

3: BS : bitset to track points having a query keyword

4: for all o ∈ ∪∀VQ∈QIkp[VQ] do

5: BS[o] ← true /* Find points having query keywords*/

6: end for

7: for all s ∈ {0,…., L − 1} do

8: Get HI at s

9: E[] ← 0 /* List of hash buckets */

10: for all vQ ∈ Q do

11: for all bId ∈ Ikhb[VQ] do

12: E[bId] ← E[bId] + 1

13: end for

14: end for

15: for all i ∈ (0, ..., SizeOf(E)) do

16: if E[i] = SizeOf(Q) then

17: F 0 ← ∅ /* Obtain a subset of points */

18: for all o ∈ H[i] do

19: if BS[o] = true then

20: F’ ← F’∪ o

21: end if

22: end for

23: if checkDuplicateCand(F’, HC) = false then

24: searchInSubset(F’, PQ)

25: end if

26: end if

27: end for

28: /* Check termination condition */

29: if PQ[k].r ≤ w02 s−1 then

30: Return PQ

31: end if

32: end for

33: /* Perform search on D if algorithm has not terminated */

34: for all o ∈ D do

35: if BS[o] = true then

36: F’← F’∪ o

37: end if

38: end for

39: searchInSubset(F’ , PQ)

40: Return PQ

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 111

Algorithm 1 details the steps of ProMiSH-E.

Step 1: Initialize priority queue of top-k results

Step 2: It maintains hash table (HC) to check duplicate candidates

Step 3: It maintains a bit set BS

Step 4: For each vQ ∈ Q, ProMiSH-E retrieves the list of points corresponding to vQ from Ikp.

step 5: In each point o in the retrieved list, ProMiSH-E marks the bit corresponding to o’s identifier in BS

as true.

Step 6: end for

Step 7-9: Finds all the points in D which are tagged with at least one query keyword. Next, the search

continues in the HI structures, beginning at s=0. For any given scale s, ProMiSH-E accesses the HI

structure created at the scale.

 Step 10-11: it retrieves all the lists of hash bucket ids corresponding to keywords in Q from the inverted

index Ikhb.

Step 12-16: An intersection of these lists yields a set of hash buckets each of which contains all the query

keywords.

Step 17-22: For each selected hash bucket, it retrieves all the points in the bucket from the hash table H. It

filters these points using bitset BS to get a subset of points F’.

Step 23: Subset F’ contains only those points which are tagged with at least one query keyword and is

explored further. Subset F’ is checked whether it has been explored earlier or not using

checkDuplicateCand.

Step 24: It performs a search on it using searchInSubset.

Step 25: End if

Step 26: End if

Step 27: End for

Step 28: Checking termination condition

Step 29-31: If it does not terminate after exploring the HI structure at the scales, then the search

proceeds to HI at the scale (s + 1). It terminates when the kth smallest diameter rk in P Q becomes less

than or equal to half of the current binwidth w=w02
s-1

.

Step 32: End for

Step 33: Perform search on D(dataset) if algorithm has not terminated.

Step 34-39: If it fails to terminate after exploring HI at all the scale levels s ∈ {0, ..., L − 1}, then it

performs a search in the complete dataset D.

ALGORITHM 2.CheckDuplicateCand

The algorithm CheckDuplicateCand is using hash table HC to check duplicates for subsets.

In: F’ : a subset; HC: hash table of subsets

1: F’ ← sort(F’)

2: pr1: list of prime numbers; pr2: list of prime numbers;

3: for all o ∈ F’ do

4: pr1 ← randomSelect(pr1); pr2 ← randomSelect(pr2)

5: h1 ← h1 + (o × pr1); h2 ← h2 + (o × pr2)

6: end for

7: h ← h1h2;

8: if isEmpty(HC[h])=false then

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 112

9: if elementWiseMatch(F’ , HC[h]) = true then

10: Return true;

11: end if

12: end if

13: HC[h].add(F’);

14: Return false;

Algorithm checkDuplicateCand (Algorithm 2) uses a hashtable HC to check duplicates for a

subset F 0 . Points in F 0 are sorted by their identifiers. Two separate standard hash functions are applied

to the identifiers of the points in the sorted order to generate two hash values in steps (2-6). Both the hash

values are concatenated to get a hash key h for the subset F 0 in step 7. The use of multiple hash functions

helps to reduce hash collisions. If HC already has a list of subsets at h, then an element-wise match of F 0

is performed with each subset in the list in steps (8-9). Otherwise, F 0 is stored in HC using key h in step

13.

ALGORITHM 3.SearchInSubset

Algorithm SearchInSubset is shows how the groups are ordered

In: F’: subset of points; Q: query keywords; q: query size

In: P Q: priority queue of top-k results

1: rk ← P Q[k].r /* kth smallest diameter */

2: SL ← [(V, [])]: list of lists to store groups per query keyword

3: for all V ∈ Q do

4: SL[V] ← {∀o ∈ F’ : o is tagged with V} /* form groups */

5: end for

6: /* Pair wise inner joins of the groups*/

7: AL: adjacency list to store distances between points

8: M ← 0: adjacency list to store count of pairs between groups

9: for all (Vi, Vj) ∈ Q such that i ≤ q, j ≤ q, i < j do

10: for all o ∈ SL[Vi] do

11: for all o’ ∈ SL[Vj] do

12: if ||o – o’ ||2 ≤ rk then

13: AL[o, o’] ← ||o – o’ ||2

14: M[Vi, Vj] ← M[Vi, Vj] + 1

15: end if

16: end for

17: end for

18: end for

19: /* Order groups by a greedy approach */

20: curOrder ← []

21: while Q != ∅ do

22: (Vi, Vj) ← removeSmallestEdge(M)

23: if Vi !∈ curOrder then

24: curOrder.append(Vi); Q ← Q \ Vi

25: end if

26: if Vj !∈ curOrder then

27: curOrder.append(Vj); Q ← Q \ Vj

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 113

28: end if

29: end while

30: sort(SL, curOrder) /* order groups */

31: findCandidates(q, AL, P Q, Idx, SL, curSet, curSetr, rk)

Algorithm 3 shows how the groups are ordered. The kth smallest diameter rk is retrieved form the

priority queue P Q in step 1. For a given subset F 0 and a query Q, all the points are grouped using query

keywords in steps (2-5). A pairwise inner join of the groups is performed in steps (6-18). An adjacency

list AL stores the distance between points which satisfy the distance threshold rk. An adjacency list M

stores the count of point pairs obtained for each pair of groups by the inner join. A greedy algorithm finds

the order of the groups in steps (19-30). It repeatedly removes an edge with the smallest weight from M

till all the groups are included in the order set corroder. Finally, groups are sorted using curOrder in step

30.

ALGORITHM 4.FindCandidates

In: q: query size; SL: list of groups

In: AL: adjacency list of distances between points

In: P Q: priority queue of top-k results

In: Idx: group index in SL

In: curSet: an intermediate tuple

In: curSetr: an intermediate tuple’s diameter

1: if Idx ≤ q then

2: for all o ∈ SL[Idx] do

3: if AL[curSet[Idx-1], o] ≤ rk then

4: newCurSetr ← curSetr

5: for all o 0 ∈ curSet do

6: dist ← AL[o, o 0]

7: if dist ≤ rk then

8: f lag ← true

9: if newCurSetr < dist then

10: newCurSetr ← dist

11: end if

12: else

13: f lag ← false; break;

14: end if

15: end for

16: if flag = true then

17: newCurSet ← curSet.append(o)

18: rk ← findCandidates(q, AL, P Q, Idx+1, SL, newCurSet, newCurSetr, rk)

19: else

20: Continue;

21: end if

22: end if

23: end for

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 114

24: return rk

25: else

26: if checkDuplicateAnswers(curSet, P Q) = true then

27: return rk

28: else

29: if curSetr < P Q[k].r then

30: P Q.Insert([curSet, curSetr])

31: return P Q[k].r

32: end if

33: end if

34: end if

We find results by nested loops as shown in Algorithm 4 (findCandidates). Nested loops are

performed recursively. An intermediate tuple curSet is checked against each point of group SL[Idx] in

steps (2-23). First, it is determined using AL whether the distance between the last point in curSet and a

point o in SL[Idx] is at most rk in step 3. Then, the point o is checked against each point in curSet for the

distance predicate in steps (5-15). The diameter of curSet is updated in steps (9-11). If a point o satisfies

the distance predicate with each point of curSet, then a new tuple newCurSet is formed in step 17 by

appending o to curSet. Next, a recursive call is made to findCandidates on the next group SL[Idx+ 1] with

newCurSet and newCurSetr. A candidate is found if curSet has a point from every group. A result is

inserted into P Q after checking for duplicates in steps (26-33). A duplicate check is done by a sequential

match with the results in P Q. For a large value of k, a method similar to Algorithm 2 can be used for a

duplicate check. If a new result gets inserted into P Q, then the value of rk is updated in step 18.

APPROXIMATE SEARCH: ProMiSH-A

In general, ProMiSH-A is more space and time efficient than ProMiSH-E, and is able to obtain

near optimal results. The index structure of ProMiSH-A are similar to ProMISH-E.

The search technique of ProMiSH-A differs from ProMiSH-E in the initialization of priority queue

PQ and the termination condition. ProMiSH-A starts with an empty priority queue PQ, unlike ProMiSH-E

whose priority queue is initialized with k entries. ProMiSH-A checks for a termination condition after

fully exploring a hash table at a given scale.

 It terminates if it has k entries in its priority queue PQ. Since each point is hashed only once into a

hash table of ProMiSH-A, it does not perform a subset duplicate check or a result duplicate check.

IV. IMPLEMENTATION AND ITS METHODOLOGY

Implementation is the stage where the theoretical design is converted into programmatically

manner. In this stage we will divide the application into a number of modules and then coded for

deployment. We have implemented the proposed concept on Java programming language with JEE as the

chosen language in order to show the performance this proposed application. The front end of the

application takes JSP, HTML and Java Beans and as a Back-End Data base we took My SQL data base

along with a Some meaningful text files as data sets. The application is divided mainly into following 3

modules. They are as follows:

1. The Index Structure For Exact Search(ProMiSH-E) Module

2. The Exact Search Algorithm Module

3. Approximate Algorithm (ProMiSH-A) Module

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 115

1. THE INDEX STRUCTURE FOR EXACT SEARCH (PROMISH-E) MODULE

In This Project we start with the index for exact ProMiSH (ProMiSH-E). This index consists of

two main components.

1. Inverted Index Ikp

2. Hash table-Inverted Index Pairs HI

The second component consists of multiple hash tables and inverted indexes referred to as HI. HI

is controlled by three parameters: (1) Index level, (2) Number of random unit vectors, and (3) hash table

size. All the three parameters are non-negative integers. These three parameters control the construction

of HI.

2. THE EXACT SEARCH ALGORITHM MODULE

In exact search we are using ProMiSH-E algorithm that finds exact search results for NKS queries.

In this algorithm hash indexes are used to store keys related to keywords. When user searching for file by

entering search key it will compare that keyword with hash table keys and exact file will be retrieved by

using following algorithms.

3. APPROXIMATE ALGORITHM (PROMISH-A) MODULE

In general, ProMiSH-A is more space and time efficient than ProMiSH-E, and is able to obtain

near optimal results. The index structure of ProMiSH-A are similar to ProMish-E.The search technique of

ProMiSH-A differs from ProMiSH-E in the initialization of priority queue PQ and the termination

condition.

ProMiSH-A starts with an empty priority queue PQ, unlike ProMiSH-E whose priority queue is

initialized with k entries. ProMiSH-A checks for a termination condition after fully exploring a hash table

at a given scale. It terminates if it has k entries in its priority queue PQ. Since each point is hashed only

once into a hash table of ProMiSH-A, it does not perform a subset duplicate check or a result duplicate

check.

 V. CONCLUSION

In this proposed thesis we finally came with a new method of finding the top-k nearest keyword

set search in multi-dimensional datasets, where each and every data point is represented with a set of

keywords. In this proposed thesis, we mainly designed and analyzed a novel index called ProMiSH based

on random projections and hashing. Based on this index, we developed ProMiSH-E that finds an optimal

subset of points and ProMiSH-A which searches near-optimal results with better efficiency. By

conducting various experiments on our proposed method, our simulation results clearly tells that our

proposed ProMiSH method is much fast than state-of-the-art tree-based techniques, with multiple orders

of magnitude performance improvement.

VI. REFERENCES

[1] Pyle, D., 1999. Data Preparation for Data Mining. Morgan Kaufmann Publishers, Los Altos,

California.

https://en.wikipedia.org/wiki/Los_Altos,_California
https://en.wikipedia.org/wiki/Los_Altos,_California
https://en.wikipedia.org/wiki/Los_Altos,_California

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 116

[2] A. Strehl and J. Ghosh, “Cluster ensembles: A knowledge reuse framework for combining multiple

partitions,” J. Mach. Learning Res., vol. 3, pp. 583–617, 2002.

[3] G. Salton and C. Buckley, “Term weighting approaches in automatic text retrieval,” Inf. Process.

Manage., vol. 24, no. 5, pp. 513–523, 1988.

[4] Hobbs, Jerry R.; Walker, Donald E.; Amsler, Robert A. (1982). "Proceedings of the 9th conference on

Computational linguistics". 1: 127–32. doi:10.3115/991813.991833.

[5] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, "Data Preprocessing for Supervised Learning",

International Journal of Computer Science, 2006, Vol 1 N. 2, pp 111–117.

[6] J. F. Gantz, D. Reinsel, C. Chute, W. Schlichting, J. McArthur, S. Minton, I. Xheneti, A. Toncheva,

and A. Manfrediz, “The expanding digital universe: A forecast of worldwide information growth through

2010,” Inf. Data, vol. 1, pp. 1–21, 2007.

[7] B. S. Everitt, S. Landau, and M. Leese, Cluster Analysis. London, U.K.: Arnold, 2001.

[8] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data. Englewood Cliffs, NJ: Prentice-Hall,

1988.

[9] "Unstructured Data and the 80 Percent Rule". Breakthrough Analysis. Retrieved 2015-02-23.

[10] D. Blei and J. Lafferty, “Correlated topic models,” Adv. Neural Inf. Process. Syst., vol. 18, pp. 147–

154, 2006.

[11] Clustering document trees based on similarity measure by SM PRAJNA BODAPATI, A MANASA

SUDHA in Asian journal of computer science and information technology 2012.

[12] Document Clustering Technique based on Noun Hypernyms By SM Bodapati Prajna in International

Conference on advances Computer Science,Communication & Bio 2011.

[13]Model based Clustering by S B.Prajna in National Conference on upcoming trends in IT.

VII. ABOUT THE AUTHORS

ASMA BEGUM is currently pursuing her Second Years M.Tech in Computer

Science and Technology with Specialization in Artificial Intelligence and Robotics at

Computer Science and System Engineering department, Andhra University College of

Engineering, Visakhapatnam, Andhra Pradesh, India. Her area of interests includes

Data Mining.

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.3115%2F991813.991833
http://breakthroughanalysis.com/2008/08/01/unstructured-data-and-the-80-percent-rule/

International Journal of Advanced Scientific and Technical Research Issue 7 volume 6 Nov.- Dec. 2017

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

©2017 RS Publication, rspublicationhouse@gmail.com Page 117

Prof. B.PRAJNA is currently working as a Professor in Computer Science and

System Engineering Department, Andhra University College of Engineering,

Visakhapatnam, Andhra Pradesh, India. She has more than 15 years of teaching

experience. Her research interest includes Data Mining.

