Pre-Generalization Compact Space and Pre-Generalization Lindel of Space

Eqbal Jabur Harjan

Hula Mohammed Salih

Al-Mustansiriyah University College of Education Mathematic Department

Abstract:

The aim of this paper is to introduce pre- Generalization Compact Space and Pre-Generalization Lindelof Space. Also, we study the properties and prove some theorems about these spaces, finally explain the relation between these concepts.

Key words: - PG - compact, PG - lindelof, pg - open cover.

1-Introduction:

Let X be a topological space. Recall that a subset A of X is said to be preclosed set if cl int $A \subseteq A$. Moreover A is said to be preopen if X - A is preclosed. The smallest preclosed set containing A is called preclosuer of A and denoted by pcl A.

In 1970, Levine [1] initialed the investigation of the so called generalized closed set. By definition ,A subset A of a topological X is called generalized closed set, if $clA \subseteq U$ whenever $A \subseteq U$ is open set also, A is called generalized open , if X - A is generalized closed set and denoted by g-closed set and g-open set .

In [2] Maki introduce to concepts pg-closed and pg –open set in anadogaous manner

2- Basic Definitions:

Definition 2.1. [1]

Let X be a topological space. A subset A of X is called

- 1- Pre-generalized closed (denoted by pg-closed), if $pclA \subseteq U$ whenever $A \subseteq U$ and U is preopen set, the complement is called pg-open.
- 2- Generalized preclosed (denoted by pg closed), if pcl $A \subseteq U$ whenever $A \subseteq U$ and U is open, the complement is called pg-open.

Definition 2.2.

If $G = \{A_i : i \in \lambda\}$ is a cover of X, by pgopen set in X then G is called pg-open
cover of X. See[3]

.

Definition 2.3.

A space (X,T) is said to be PG-compact space if every pg-open cover of X has finite sub cover. See [3], [4] and [5].

3- Main Results:

The following theorems explain the relation between compact space and PG-compact space.

Theorem 3.1.

Every PG- compact space is compact space .

Proof:

Let (X,T) be a PG-compact space, $A = \{G_i : i \in \Lambda\}$ is open cover of X then $A \subseteq \beta$ where is pg-open cover of X. Since is pg-compact space then X has finite subcover thus A has finite subcover, so (X,T) is compact space.

Remark 3.2.

The converse of above theorem is not necessary true, as the following example illustrates:

Example 3.3.

 (R, T_c) is compact space but not PG -compact space.

To prove (R, T_c)

is not PG- compact.

Let $G = \{A_n : (-\infty, n) : n = 0, 1, 2, ...\}$ be pgopen cover of R.

$$\bigcup_{n=0}^{\infty} A_n = R$$

But

$$\bigcup_{n=\{1,2,\dots k\}} A_n \subset R$$

Then (R, T_c) is not PG-compact.

In the next theorem below we introduce some characterization of PG-compact space.

Theorem 3.4.

Let (X,T) be a topological space then the following statements are equivalent.

- 1. X is PG- compact.
- 2. Every pg-closed subset of X is pg-compact. Gg

$Proof: 1 \longrightarrow 2$

Suppose A be pg-closed subset of X and $G = \{B_i : i \in \Lambda\}$ be pg-open cover A, if $W = G \cup A^c$ then W is pg-open cover of X

Since X is PG- compact space then $\exists i_1, i_2, ..., i_n$ such that

$$X\subseteq (\bigcup_{i=1}^n\beta_i)\cup A^c$$

Thus

$$A \subseteq \bigcup_{i=1}^{n} \beta_i$$

So A is pg – compact subset of X.

$proof:2 \longrightarrow 1$

Let $S = \{ J\alpha : \alpha \in \Lambda \}$ is pg-open cover of X and $J\alpha_0$ is pg-open of X so $J^c_{\alpha o}$ is pg-closed of X.

 $S^* = \{J\alpha : \alpha \in \Lambda - \{a_0\}\}\$ is pg-open cover of $J^c_{\alpha o}$. Since $J^c_{\alpha o}$ is pg-compact set then

$$J_{ao}^c \subseteq \bigcup_{i=1}^n J_{\alpha i} ,$$

So

$$X \subseteq \bigcup_{i=0}^{n} J_{\alpha i}$$

Then X is PG-compact space.

Definition 3.5.

A function $f: X \to Y$ is said to be PG^{**} – continuous if every (pg-open) A in Y then $f^{-1}(A)$ is (pg-open) in X.

The following theorem introduces the topological property of PG- compact space.

Theorem 3.6.

If $f: X \to Y$ to be PG^{**} - continuous from PG- compact space into Y, then Y is PG-compact space.

Proof:

Let $G = \{W_{\alpha} : \alpha \in \Lambda\}$ be pg- open cover of Y.

Then $G^* = \{f^{-1}(W\alpha) : \alpha \in \Lambda \}$ be pgopen cover of X.

Since X is a PG - compact space, then $\exists \alpha_1, \alpha_2, ..., \alpha_n$ such that

$$X \subseteq \bigcup_{i=1}^n f^{-1}(W_{\alpha_i})$$

Then

$$Y = f(x) \subseteq f\left(\bigcup_{i=1}^{n} f^{-1}(W_{\alpha_i})\right)$$

Then

 $Y \subseteq \bigcup_{i=1}^n W_{\alpha_i}$, so Y is PG- compact space.

Definition 3.7.

Let (X,T) be a topological space we say that X is PG- Lindelof space if every pg- open cover in X has finite countable sub cover.

Theorem 3.8.

Let (X,T) be a topological space if X is PG - Lindelof space then X is PG - Lindelof space.

Proof:

Let $\{G_{\alpha} : \alpha \in \Lambda \}$ be open cover of X, then $\{G_{\alpha} : \alpha \in \Lambda \}$ be pg-open cover of X.

Since X is PG - Lindelof space then $\exists \alpha_1, \alpha_2, ... \in \Lambda$ such that

$$X = \bigcup_{i=1}^{\infty} G_{\alpha i}$$

Then X is Lindelof space.

Remark 3.9.

The converse of this theorem is not need to be true.

Example 3.10.

Let (X, τ_i) be indiscrete topology where X is not countable, then (X, τ_i) is Lindelof space but not PG - Lindelof space

We can give the relation between PG - compact and PG - Lindelof by the following theorem:

Theorem 3.11.

Let (X,T) be a topological space if X is PG - compact space then X is PG - Lindelof space.

Proof:

Let = $\{G_{\alpha} : \alpha \in \Lambda \}$ be pg- open cover of X, Since PG - compact space then $\exists \alpha_1, \alpha_2, ..., \alpha_n$ such that

$$X = \bigcup_{n=1}^{n} G_{\alpha i}$$

Let $B = \{G_{a1}, G_{a2}, \dots, G_{an}\}$ finite sub cover of A to X and let $C = \{G_{a1}, G_{a2}, \dots, G_{an}, \Phi\}$ such that $C = \{W_i : i = 1, 2, \dots\}$ sub cover of A to X such that $W_i = \{G_{\alpha i} : i = 1, 2, \dots \text{ and } \Phi, i > n\}$.

Then X is PG - Lindelof space.

Theorem 3.12.

Let (X,T) be a PG - Lindelof space, $A \subseteq B$ be pg - closed set in X then A is pg- Lindelof set in X.

Proof:

Let $A \subseteq B$ be pg - closed set and $= \{G_\alpha : \alpha \in \Lambda \}$ be pg - open cover to A, let $E_1 = E \cup A^c$, then E_1 is pg- open cover to X.

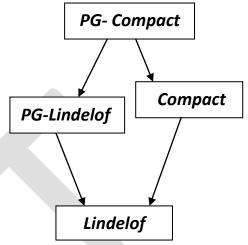
Since X is Lindelof then $\exists \alpha_1, \alpha_2, ... \in \Lambda$ such that

$$X\subseteq\bigcup_{i=1}^\infty G_{\alpha i}\ \cup\ A^c\qquad,$$

$$X\subseteq\bigcup_{i=1}^\infty G_{\alpha i}$$

Thus A is pg - Lindelof set in X.

Therefore we have the following diagram



References

- [1] Levivbe N., "Generalized Closed Sets in Topology" Rand. Cive. Math. Paleremo (2) 19, 89-96, (1970).
- [2] Maki H., Umehara J. and Noiri T., "Every Topological Spaces is Pre-¹/₂", Men. Fas. Sci. Kochi. Univ. Ser. A math, 17, 33-42, (1996).
- [3] Doutchev J. and Maximitiam G., "On G-Compact Space", Protugllae Mathematics Vol.55, Fase.4, (1998).
- [4] Mustaffa H. J. and Tahir N. A.," On P-Compact Spaces", J. of College of Education, Univ. of Al-Mudtansiriya, (2002).
- [5] Maheshwari S. N. and Thakur S.S., "
 On α-Compact Spaces", Bull. of Math.
 13 (4), (1985).