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ABSTRACT 

The Boundary Element Method (BEM) has become an efficient and popular alternative to the Finite Element 

Method (FEM) because of its ability of reducing a Boundary Value Problem (BVP) for a linear Partial 

Differential Equation (PDE) defined in a domain to an integral equation defined on the boundary leading to a 

simplified discretization process with boundary elements only. The main requirement for the reduction of the 

PDE to a Boundary Integral Equation (BIE) is that a fundamental solution of the PDE must be available. For 

many PDEs with constant coefficients, the fundamental solutions are well known. In this paper, we discuss the 

BEM used in the solution of a BIE formed from the free surface flow due to a point source. The solution 

procedure involves the method of fundamental solutions with the adoption of the Standard Gaussian Quadrature 

method. A numerical example using different number of nodal points is presented and the obtained results are 

compared to check the efficiency and good precision of the adopted method and the effect of varying the 

number of nodal points in the final results. 
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INTRODUCTION 

The origin of numerical implementation of boundary integral equations can be traced back to the availability of 

electronic computers. The full emergence of the numerical technique known as boundary element method 

occurred in the late 1970s and was first used by Brebbia and Dominguez (1977) who realized the analogy 

between the discretization process for the Boundary Integral Method (BIM) and that for the already established 

Finite Element Method (FEM). Only the boundary of the solution domain has to be discretized into elements in 

the implementation of the method. The term Boundary Element Method denotes any method for the 

approximate numerical solution of boundary integral equations. The approximate solution of the boundary value 

problem obtained by BEM is an exact solution of the differential equation in the domain and is parameterized by 

a finite set of parameters on the boundary. The BEM is a convenient method for solving PDEs in that it requires 

discretization only on the boundary of the domain (Brebbia et. al. 1984). Using BEM it is possible to obtain 

better accuracy with a fewer number of elements when it is compared to FEM (LaForce T., 2006). On the other 

hand, BEM requires a fundamental solution for the governing solution; therefore it is mainly applicable for 

linear differential equations (Antes H., 2010). It is a numerical technique to solve BVPs represented by linear 
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PDEs (Brebbia et. al. 1980). The method has become a widely used numerical tool in statics and dynamics 

(Gaul and Fiedler, 1997). A review about the efforts in dynamics is published by Beskos (1987; 1997) 

The BEM is derived through the discretization of an integral equation that is mathematically equivalent to the 

original PDE. The essential formulation of the PDE that underlies the BEM consists of an integral equation that 

is defined on the boundary of the domain and an integral that relates the boundary solution to the solution at the 

points in the domain. The former is termed a boundary integral equation and the BEM is often referred to as the 

numerical boundary integral method. 

Wu (1985) argued that the BEM has several advantages over other numerical methods which justify its use for 

many practical problems – even in cases where domain integration is required. He argued that for problems such 

as flow problems a wide range of phenomena are described by the problem. For this reason, accurate description 

of the boundary conditions is vital for solution accuracy. The BEM generates a formulation involving both the 

dependent variable u and the flux q. This allows flux boundary conditions to be applied directly which cannot be 

achieved in either the FEM or Finite Difference Methods (FDM). Another advantage of BEM over other 

numerical methods is that it allows an explicit expression for the solution at an internal point. This allows a 

problem to be subdivided into a number of zones for which the BEM can be applied individually. The main 

advantage is that it replaces the original problem with an integral equation defined on the boundary of the 

solution domain. For the case of a homogeneous PDE, it only requires the discretization on the boundary of the 

domain (Kythe, 1995). The BEM compliments the Finite Element Method (FEM) to solve the boundary value 

problems (BVP). The main difference between the BEM and FEM is that the FEM is a regional method which 

discretizes the whole region of interest. 

If the region of interest is not regular and automatic discretization techniques cannot be used, an artificial 

method must be used to discretize the region. This therefore implies that the preparation and input of data used 

to model a BVP into a computer may become a very complex task. The BEM divides only the boundary and this 

diminishes the dimensionality of the problem and a 2-D problem becomes a 1-D problem and hence input of 

(b) (a) 

Figure 1: Schematic illustration of a boundary element (a) and a finite element (b) 
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data to model the problem into a computer becomes a less complex task as the number of resulting algebraic 

equations involved is significantly reduced. 

The numerical procedure therefore first involves discretizing the surface   into some set of elements as 

shown in Figure 1. 

MATHEMATICAL MODEL 

The Laplace equation governing potential problems in a 2D domain   is given by: 

2 ( ) 0,x x                                  

(1) 

under the boundary conditions: 

1( ) ( )x x x                               

(2) 

2

( ) ( )

( ),

q x x
n

q x x






   

                     

    (3) 

where   is the potential field in the domain  , 1 2   the boundary of  , n  the outward normal and 

and q  indicate given values on the boundary. The solution of the Boundary Value Problem (BVP) 

described by eqns (1 – 3) can be written in the following representation integral (Banerjee, 1994).  

 

( ) ( , ) ( ) ( , ) ( ) ( ),x G x q F x d      
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r n
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
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






                      

    (6) 

with r being the distance between points x and  . 

Letting     we obtain the following Boundary Integral Equation (BIE): 

( ) ( ) ( , ) ( ) ( , ) ( ) ( )C x x G x q F x d      


      x  
 
               

    (7)  

where 



International Journal of Advanced Scientific and Technical Research                    Issue 6 volume 5, September-October 2016 

Available online on   http://www.rspublication.com/ijst/index.html                                                                  ISSN 2249-9954 

©2016 RS Publication, rspublicationhouse@gmail.com Page 76 
 

2

( )
2

( )
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M

M r
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 









                       

    (8) 

The second term in the right hand side of (7) is a singular integral of the Cauchy-Principal Value (CPV) type 

and the coefficient: 

( ) ( , ) ( )C x F x dS x


                        

    (9) 

which is also a CPV integral. 

Substituting (9) in (7), we obtain the following weakly singular form of the BIE for potential problems (Liu Y.J 

et. al., 1991; 1999) 

( , ) ( ) ( ) ( ) ( , ) ( ) ( )F x x d G x q d       
 

          x               

(10) 

In which no singular integrals exist.  

In discretization, we use the constant boundary elements, that is, dividing the boundary S into N line segments 

(elements) and placing one node on each element as shown in figure 2. The following discretized equation of 

BIE (7) is obtained (Brebbia, 1989; Banerjee, 1994; Kane, 1994) 

1 1

N N

i i ij j ij j

j j

c F G q 
 

     for i = 1, 2, … , N                     

(11) 

where i jand q  (j = 1, 2, … , N) are the nodal values of and q  on element j  respectively 

and the coefficients are given by (Nissaya and Wattana, 2011) 

1 2

( 1)

1 2

ij iN

ij ij i j
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(18) 

where   is the dimensionless co-ordinate and 1 2and   are the usual Lagrange interpolation polynomials 

and  

2 2
( ) ( )i ir x x y y                        

 (19) 
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( , )g gx y  

( , )j jx y

 

( , )i ix y

 

( , )k kx y  

Figure 2: Geometry of the Boundary Element Method 



International Journal of Advanced Scientific and Technical Research                    Issue 6 volume 5, September-October 2016 

Available online on   http://www.rspublication.com/ijst/index.html                                                                  ISSN 2249-9954 

©2016 RS Publication, rspublicationhouse@gmail.com Page 78 
 

The integrals in equations (14) to (17) go from – 1 to 1 in a procedure called standard Gaussian Quadrature. 

Integrals with different intervals can be transformed to standard Gaussian Quadrature with a coordinate 

transformation by the formula: 

1

1

( )
( )

2 2 2

b

a

b a b a b a
f x dx f t dt



    
    

  
 

           

 (20)

 

After the boundary is discretized into elements and within each element some polynomial shape functions are 

adopted to approximate the variation of and q
n








, the boundary integrals in equation (7) can be 

discretized so that the nodal values of and q  are taken out of the integral signs. Consequently, a linear 

algebraic system (21) is formed upon placing the source point at each boundary node and carrying out the 

integral within each boundary element. 

F Gq                        

 (21) 

where  

i

F
F

F c


 


 

i j

i j




                   

 (22) 

The matrices F and G are of the conventional sense (Brebbia et. al., 1984) and the vectors and q contain 

the values of and q  at each boundary node. Assuming mixed boundary conditions, the part 1  of the 

boundary on which  is described and the part 2  on which q  is described are discretized into 

1 2N and N  linear elements respectively such that    1 2    , 

 1 2    and  

1 2N N N                 

Separating the unknown from the known quantities of (21), we write after partitioning the matrices in the 

following way: 

   1 1

1 2 1 2

2 2

q
F F G G

q





   
   

   
                  

 (23) 

where 1 2u and q  denote the prescribed quantities on 1 2and   respectively, 1 2q and u  

denote the corresponding unknown ones. Moving all the unknowns to the left side of the equation, we obtain the 

system: 

Ax B                       

 (24) 

where 
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Figure 3: Distance from the node i to the element [j] 
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 (25) 

A  is a square matrix with dimensions N N . B and x  are vectors with dimension N. We can now find 

q and   at every point on the boundary by using 
1x A B . Knowing all the boundary quantities on 

  therefore implies that the solution  can be computed at any point ( , )P x y  in the domain  by the 

equation (8) as follows: 

*

1 1
j j

N N

i i

j j
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From (27), equation (26) can be rewritten as: 

1 1

N N

ij iji i j j

j j

F G q 
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  
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where 

 
 

lnij ij

j

F r dS
n





                    

 (29) 

 

lnij ij

j
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 (30) 

as shown in the Fig. 3. It can be seen that 
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j jij ij

ij
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 (31) 

Where dij is the perpendicular distance from node i to target element j. Hence: 

(ln ) (ln ).ij ij jr grad r n
n





                    

 (32) 

Let 
1

2
ij ij jA d l  be the area of the triangle which has element j as its base and node i as a vertex. To 

perform the integrals (29) and (30), we use the N-point Gaussian quadrature over element j, with length jl  so 

that: 

1

2 2
11

1 1

2 ( )
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ij j

ij ij g

gij ij g

d l
F dt A w

r r
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(33) 

1

11

ln ln( )
4 4

P
j j

ij ij g ij g

g

l l
G r dt w r



 
                      

 (34) 

where P is the number of Gauss integration points.  

If i j , then iiir and n  are orthogonal, so that 0iiir n  . Hence: 

0iiF   i = 1, 2, 3, ….. , N                   

 (35) 
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For iiG , integrate analytically to obtain: 

1 ln
2

i
ii i

l
G l

  
    

  
                    

 (36) 

Since 1   is harmonic in   with 1 0and q    on , (28) yields 

1

N

iji

j

F


                       

 (37) 

When (21) has been solved, the values of i iand q  at all nodal points are known.  

In a similar manner of approximating ij ijF and G  for nodal points we can obtain kj kjF and G for 

internal points as follows: 

2
1

1
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kj kj g

g kj g

F A w
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                      

 (38) 

1

ln( )
4

P
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kj g kj g

g

l
G w r




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 (39) 

The solution for internal points is therefore arrived at as: 

1 1

1

2

N N

kj kjk j j

j j

F G q 
  

 
  

 
                     

 (40) 

 

NUMERICAL ANALYSIS 

It is clear from Fig. 2 that if P(x,y) is an arbitrary point then the relationships between coordinates and the angle

  are as follows: 

cos

sin

x OP

y OP








                     

 (41)

 

Suppose: 

( , )i ix y be the coordinate of node i  

( , )j jx y be the coordinate of node j of element j 

( , )j jX Y  be the coordinate of end point of  j 

( , )k kx y  be the coordinate of internal point k 
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( , )g gx y  be the coordinate of Gauss quadrature point 

The areas Aij and Akj can be computed as: 

1 1 1 1

1

2
ij i j j j j i j i j j i jA x y X Y X y X y X Y x Y        

       

 (42)
 

1 1 1 1

1

2
kj k j j j j k j k j j k jA x y X Y X y X y X Y x Y        

       

 (43)
 

In the Gaussian quadrature the integration points have specified positions called Gauss points. These points are 

weighted with a weighting factor. The Gaussian quadrature provides an exact solution for integrals up to order 

2n – 1 with n as the number of Gauss points. The integration over each element is obtained by using the Gauss – 

Legendre N-point method which gives: 

1

1

1
( )

2

1
( )

2

j j j

j j j

x x X X t

y y Y Y t





  
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 (44) 

where t are the roots of the n
th

 degree Lagrange Polynomial  

 21
( ) 1

2 !

nn

n n n

d
P t t

n dt
   in (-1, 1).                 

 (45) 

This therefore implies that in the element j we obtain the Gaussian quadrature points as 

1

1

1
( )

2

1
( )

2

g j j j g

g j j j g

x x X X t

y y Y Y t





  

  

                   

 (46) 

where the value of t and w (from tables of weighting factors and function arguments used in Gauss quadrature 

formulae) are: 

1 2 3

1 2 3 1

: 0.77459667, 0.0, 0.77459667

: 0.55555555, 0.88888889,

g

g

t t t t

w w w w w

   

  
                 

 

(47) 

Hence 

 

 

2 2 2

2 2 2

( ) ( )

( ) ( )

ij i g i gg

kj k g k gg

r x x y y

r x x y y

   

   
                 

 

(48) 

To construct the whole system of linear equations of all elements, we first obtain ijF  by using (33) and (35) as: 
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3
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/ ( ) ( ) ,
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 
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
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 (49) 

where wg are Gaussian weights given by the formula:  

 
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2
2

1

2(1 )
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g
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n g

t
w

n P t
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 (50)

 

Then  

1

,

,

N

ij

jij
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F i j
F

F i j




 

 



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 (51) 

Constructing ijG  using equations (34) and (36) we have: 

3
2 2

1

(1 ln( / 2)),

ln ( ) ( ) ,
4

j j

ij j

g g i g i

g

l l

G l
w x x y y






 
     




i j

i j




                

 

(52) 

Adding the Dirichlet and Neumann conditions of the boundary points so that we have j jand q  in hand, 

we obtain the system of linear equations as: 

F Gq b                        

 (53) 

By setting 0ijb    for 1,2,3,.....,j N  by (49), we obtain the solutions j jand q . From (33), 

3
2 2

1

/ ( ) ( )kj kj g g k g k

g

F A w x x y y


     
           

 

(54) 

3
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1

ln ( ) ( )
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j
kj g g k g k

g

l
G w x x y y




     

           

 

(55) 

The interior solution will thus be: 

1 1

1

2

N N

kj kjk j j

j j

F G q 
  

 
  

 
   ,k = 1, 2, ….. ,m                  

 (56) 
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NUMERICAL EXAMPLE 

Using a circle of radius 2 units the method is illustrated using different number of internal points and 40 nodal 

points for each to compare the outcome and also find the error from each of the applications. The outcome is 

shown in table 1 and the output for each also worked out. The comparison of the different outputs and error 

differences is also shown. The problem can be stated thus:  

2 0u    in  
2 2 4x y   

Subject to the boundary conditions 

2 2 4, 4u x y on x y x      

  2 21
4, 4

2
q x y on x y x      

The conditions form both the Dirichlet and Neumann Boundary Conditions 

 

CONCLUSION 

With the BEM, we can approximate the solution of a PDE by looking at the solution to the PDE on the 

boundary and then use that information to find the solution inside the domain. A method such as the BEM 

would best be implemented with a tool such as MATLAB that can perform matrix computations and numerical 

integration efficiently and produce graphical output. From the output it can be seen that as the number of 

internal points is increased there is a significant improvement in the accuracy of the numerical result as the error 

decreases to a point where it is almost non-existent when the number of internal points is 64 (see figures and the 

table 1 below).  
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Table1: The internal solutions of 8, 16, 32, 64 elements with 40 internal points 

Solution by N nodal points Exact 

solution  

Errors in each case 

8  16 32 64 u = xi + yi 8 16 32 64 

Uk Uk uk uk Xk Uk Uk uk Uk 

5.4977 3.3250 2.3508 2.0128 1.9500 3.5477 1.3750 0.4008 0.0628 

2.5016 1.9746 1.8530 1.8476 1.8500 0.6516 0.1246 0.0030 0.0024 

1.9070 1.7435 1.7398 1.7472 1.7500 0.1570 0.0065 0.0102 0.0028 

1.6452 1.6199 1.6391 1.6473 1.6500 0.0048 0.0301 0.0109 0.0027 

1.4827 1.5153 1.5394 1.5474 1.5500 0.0673 0.0347 0.0106 0.0026 

1.3578 1.4152 1.4398 1.4476 1.4500 0.0922 0.0348 0.0102 0.0024 

1.2489 1.3164 1.3403 1.3477 1.3500 0.1011 0.0336 0.0097 0.0023 

1.1475 1.2180 1.2407 1.2478 1.2500 0.1025 0.0320 0.0093 0.0022 

1.0497 1.1198 1.1412 1.1479 1.1500 0.1003 0.0302 0.0088 0.0021 

0.9539 1.0215 1.0417 1.0480 1.0500 0.0961 0.0285 0.0083 0.0020 

0.8591 0.9233 0.9421 0.9481 0.9500 0.0909 0.0267 0.0079 0.0019 

0.7649 0.8251 0.8426 0.8482 0.8500 0.0851 0.0249 0.0074 0.0018 

0.6709 0.7268 0.7431 0.7483 0.7500 0.0791 0.0232 0.0069 0.0017 

0.5769 0.6285 0.6435 0.6485 0.6500 0.0731 0.0215 0.0065 0.0015 

0.4829 0.5302 0.5440 0.5486 0.5500 0.0671 0.0198 0.0060 0.0014 

0.3888 0.4318 0.4444 0.4487 0.4500 0.0612 0.0182 0.0056 0.0013 

0.2946 0.3334 0.3448 0.3488 0.3500 0.0554 0.0166 0.0052 0.0012 

0.2003 0.2350 0.2453 0.2489 0.2500 0.0497 0.0150 0.0047 0.0011 

0.1059 0.1366 0.1457 0.1490 0.1500 0.0441 0.0134 0.0043 0.0010 

0.0113 0.0381 0.0461 0.0491 0.0500 0.0387 0.0119 0.0039 0.0009 

-0.0834 -0.0604 -0.0535 -0.0508 -0.0500 0.0334 0.0104 0.0035 0.0008 

-0.1782 -0.1590 -0.1530 -0.1507 -0.1500 0.0282 0.0090 0.0030 0.0007 

-0.2732 -0.2575 -0.2526 -0.2506 -0.2500 0.0232 0.0075 0.0026 0.0006 

-0.3683 -0.3561 -0.3523 -0.3505 -0.3500 0.0183 0.0061 0.0023 0.0005 
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-0.4635 -0.4548 -0.4519 -0.4504 -0.4500 0.0135 0.0048 0.0019 0.0004 

-0.5589 -0.5535 -0.5515 -0.5504 -0.5500 0.0089 0.0035 0.0015 0.0004 

-0.6544 -0.6522 -0.6511 -0.6503 -0.6500 0.0044 0.0022 0.0011 0.0003 

-0.7501 -0.7510 -0.7508 -0.7502 -0.7500 0.0001 0.0010 0.0008 0.0002 

-0.8461 -0.8497 -0.8504 -0.8501 -0.8500 0.0039 0.0003 0.0004 0.0001 

-0.9426 -0.9486 -0.9501 -0.9500 -0.9500 0.0074 0.0014 0.0001 0.0000 

-1.0398 -1.0474 -1.0497 -1.0500 -1.0500 0.0102 0.0026 0.0003 0.0000 

-1.1383 -1.1463 -1.1494 -1.1499 -1.1500 0.0117 0.0037 0.0006 0.0001 

-1.2390 -1.2453 -1.2491 -1.2498 -1.2500 0.0110 0.0047 0.0009 0.0002 

-1.3438 -1.3444 -1.3488 -1.3497 -1.3500 0.0062 0.0056 0.0012 0.0003 

-1.4567 -1.4440 -1.4485 -1.4497 -1.4500 0.0067 0.0060 0.0015 0.0003 

-1.5866 -1.5450 -1.5482 -1.5496 -1.5500 0.0366 0.0050 0.0018 0.0004 

-1.7566 -1.6505 -1.6481 -1.6495 -1.6500 0.1066 0.0005 0.0019 0.0005 

-2.0321 -1.7754 -1.7490 -1.7495 -1.7500 0.2821 0.0254 0.0010 0.0005 

-2.6610 -2.0097 -1.8625 -1.8499 -1.8500 0.8110 0.1597 0.0125 0.0001 

-5.8405 -3.3823 -2.3625 -2.0152 -1.9500 3.8905 1.4323 0.4125 0.0652 

 

 

 
Figure 4: Comparison of Numerical solution using 8 Nodal Points with the Exact Solution 
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Figure 5: Comparison of Numerical solution using 16 Nodal Points with the Exact Solution 

 
Figure 6: Comparison of Numerical solution using 32 Nodal Points with the Exact Solution 

 

 
Figure 7: Comparison of Numerical solution using 64 Nodal Points with the Exact Solution 
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