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Abstract 
 
Non-destructive testing of power stations pipelines plays an important 

role in minimizing fault and defect occurrence in power plants and 

therefore results for continue of operation for more times. In the 

present work various intelligent schemes to infer the fault detection of 

metal pipelines are proposed. NDT signal processing involves capturing 

MFL (Magnetic Flux Leakage) reflux from metal surface of pipelines 

with the measurement of various parameters like diameter, depth and 

radius of metal pipeline defects. 

NDT-MFL database for this research and previous works was from 

Applied Magnetics group (AMG) in department of physics from Queens 

in Canada. This database concludes signals of MFL that measured 

from outside and Inside of a power plant flow pipelines.  

Database signals are pre-processed to reduce noise. This step is done 

right before any further processing on gathered data. The conventional 

classification and clustering techniques in this paper include the 

Euclidean distance classifier (L2-norm classifier) and Bayesian. The 

intelligent classifier includes the Radial Basis Function Network 

(RBF), Back Propagation Algorithm (BPA) and parallel architecture 

with RBF and BPA (PRBFBPA). Also a Combination of Fisher linear 

discriminate with is employed in the application of MLP and RBF. 

For better and optimal decision on MFL samples, parameter values of 

defects are categorized. By this way defects are categorized in a few 

groups with the same parameter range. This makes the algorithm to 

perform a more exact classification. 

The proposed algorithm can be integrated with the distributed control 

system (DCS) that is used for automation of the power plant. The 

inferred parameters can be displayed in the centralized control room. 

The major contribution of this research work is to develop an 

indigenous online intelligent scheme for inferring the process 

parameters and defect emissions in the centralized control room directly 

from the metal pipelines.  
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1. Introduction 
 

Metal pipelines are one of the vital parts in power plants. 

As a part of inspection procedures these metal parts are a 

subject for consideration. After a visual check, a technical 

method is required to provide more precise information of the 

line. These methods used defect detection algorithms [1, 2, 

and 3]. Among various pipeline inspection technologies, MFL 

inspection is the most widespread and perfect one. Indeed it 

needs long time for human to analyze a long flow pipeline in a 

visual check procedure So finding an intellective effective 

algorithm to recognize pipeline defect quantitatively is an 

important need [3]. For this reason we applied a mathematical 

relation between magnetic field applied on the surface of a 

metal and try to recognize defects via the reflux of the emitted 

flux. Samples from defects which are sorted in the surface by 

their various radial and depth from MFL reflux are stored and 

an MFL database is prepared from simulated defects. Some 

processes are done on this pure database to be ready for being 

processed in the algorithm. The algorithm that will be 

presented in the reset on this research effort is an artificial 

neural network based one to specify the best classification 

approach regards to defect classification [4]. In follow, 

database preparation, feature extraction and classification of 

database is presented. 

 

2. Database of defects from MFL testing 
 

The database of the experimental MFL signals that is 

employed in this project is from Applied Magnetics group 

(AMG) in the department of physics from Queens in Canada. 

This database concludes signals of MFL that measured from 

outside and Inside of a power plant flow pipeline. Particulars 

of this record will lead to both an annealed and annealed data 

plots of rising defect depths from 3mm to 7mm, resulting in a 

total of 10 plots for each one.  

    

 

3. MFL Formulation for magnetic field simulation 
 

If a material is magnetized near saturation, the MFL field 

generated by a subsurface flaw is specified in eq. 1: 
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Where m is the dipole moment per unit length this is 

measured in eq. 2: 
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Plank coefficient is h, Applied magnetic field of 1 Tesla is 

Ha [6]. Defect radius is defined by a [7, 8]. If the MFL on the 

surface of a sample is intended, the variable y is constant and 

is equal to the depth h of the defect so the magnitude of h 

could denote the depth of defect. If system and material 

properties could be defined in p=2h (m-2Haa
2
) and q=h

2
, we 

gain following simple fit function for the magnetic flux 

leakage on the surface of a sample. This latter is illustrated in 

eq. 3: 
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 Reflux signal of emitted magnetic field on sample surface 

is deliberate by induction coils. for this reason the intended 

signal is derivation of f(x) in x direction times the velocity of 

measuring device. With regards to previous equation, the MFL 

signal becomes as Eq. 4. In this family member we try to 

calculate the rate of calculated signal in time. So with 

acknowledge of velocity that is the rate of measuring machine 

distance in time, and by timing this term to deviation of f(x), 

the rate of depth in time will be achieved. 

                                                                   (4) 
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On the supposition that the velocity is constant, a new 

parameter P can be defined as eq. 5. 

)2(2. 2aHmhvpP a  (5) 

 

4. Feature extraction for recognition 
 

Principal Component Analysis (PCA) is a well-known 

statistical technique for feature extraction. Each M × N MFL 

signal in the training set was row concatenated to form MN×1 

vector xk. Given a set of training signals {xk}, k=0, 1,…, NT 

the mean vector of the training set was obtained as eq. 6 [30]. 
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A NT×MN training set matrix X={xk- x } can now be built. 

The basis vectors are obtained by solving the Eigen value 

problem: 

λ= x

T VV                    (7) 

Where 
T

x
XX  is the covariance matrix, V is the 

eigenvector matrix of 
x and λ is the equivalent slanting 

matrix of Eigen values.  As the PCA has the property of 

packing the most energy into the slightest number of principal 

components, eigenvectors matching to the m largest Eigen 

values in the PCA are selected to shape a lower-dimensional 

subspace. It is confirmed that the residual reform error 

generated by discarding the Nr-m components is low even for 

small m [37]. 

As has been said, PCA computes are the basis of a space 

which is represented by its training vectors. The basis vectors 

computed by PCA are in the direction of the largest variance 

of the training vectors. These basis vectors are computed by 

solution of an Eigen problem, and as such the basis vectors are 

eigenvectors. These eigenvectors are defined in the signal 

space. They can be viewed as signals and indeed look like its 

inherent shape. Hence they are usually referred to Eigens. 

 

4.1 Recognition of defects 
 

The recognition of power plants flow pipeline decays in 

this paper includes preprocessing and categorization study. 

The former can be accomplished by recognizing and 

classifying typical features of signals from magnetic flux 

signals in types of numerical forms. move toward is to 

classifying and performing a liable decision. Many procedures 

like Learning Vector Quantization (LVQ) [9], Self Organized 

Machine (SOM) [10] and multilayer perceptrons are 

approaches for classification.  

 

4.2 Classification for recognition 
 

In this study dissimilar classifiers are mutual with each 

other to assess a liable categorization. These networks are 

basically similar to each other but are not theoretically similar. 

MLP in abbreviation Multilayer Perceptron in this paper is 

known with intrinsically back propagation algorithm. So this 

network is named BPA-MLP. Fundamental work of MLP is to 

changing weights between layers and each layer has (m) 

nodes. Number of input nodes is depended on measurement 

the database. Quantity of nods located in hidden layer is 

subject to change by complicated rate of the expert. In this 

paper an approach is exposed in follow that specifies the 

number of each layer. this equations for this reason is earned 

experimentally but the consequence of this employment is 

satisfied. In training situation the weights are subject to change 

until reaching the best weights. The amount of training 

situations is determined by the amount of epochs it is kept 

done until fewer mistakes come into view in output.  

With the acknowledge of MLP, here is another type that is 

widely used in classification algorithms and is employed in 

this study. Radial Basis Function, RBF. This type of network 

is used radial Euclidian distance among the basic data to 

specify the output with the information that the radial distance 

change during training phase to specify the best output [11].  

The MLP structural design is the most popular in practical 

applications. Each layer uses a linear mixture function. Inputs 

are fully linked to the first hidden layer, each hidden layer is 

completely connected to the next, and the last hidden layer is 

completely connected to the outputs often with a bias node at 

the input. This node could take part in a hidden role in 

evaluation the output. 

Radial basis function (RBF) networks usually have only one 

hidden layer for which the combination function is based on 

the Euclidean distance between the input vector and the 
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weight vector. Some types of RBFs have a "width" associated 

with each hidden unit or with the entire hidden layer; instead 

of adding it in the combination function like a bias, the 

Euclidean distance could be divided by the width. 

Fisher Linear discriminate FLD, known as a Gaussian 

conditional density model. This model tries to apply a linear 

limit between samples with a Gaussian gathering theory [13, 

14]. This model is conceptually near to principal component 

analysis PCA. FLD applies measured variance between the 

samples however PCA tries to establish boundaries with 

covariance analysis. Another method that is used in this paper 

is to estimate Bayesian and RBF on samples via WEKA, 

WEKA contains a collection of visualization tools and 

algorithms for data analysis and predictive modeling, together 

with graphical user interfaces for easy access to this 

functionality [10]. Weka supports several standard data mining 

tasks, more specifically, data preprocessing, clustering, 

classification, regression, visualization, and feature selection. 

In this paper weka is used to evaluate a decision for boundary 

classification in for Bayesian and RBF networks. Bayesian 

network is specified by an expert and is then used to perform 

inference. This structure tries to perform a decision on samples 

via a graph and statistic of each node on the others. 

Automatically learning the graph structure of a Bayesian 

network is a challenge pursued within machine learning. The 

basic idea goes back to a recovery algorithm developed by 

Rebane and Pearl [12]. Bayesian sometimes provide a liable 

decision with regards to inherent features of applied samples 

and their gathering. However the application of all described 

networks are collected in a table with several times training. 

 

 

Figure 1. Devised algorithm 

 

 

In this diagram Fig. 1, pre-processing is applied to the basic 

database. This section is discussed in follow and as a brief it 

starts to extract different kinds of defects from physical 

formulation and normalization then classes known as experts 

perform a decision on their inputs.  

 

6. Results and discussion 

 

 

 In order to examine the statistical distribution of the error 

rate, seven main neural networks with an identical structure  

are trained in each class several situations are combined with 

same transfer function (but with different number of neurons 

that are referred to initial state) refer to previous efforts 

[18,19,20], this idea provides a better decision on NDT 

database. This effort provides expert classes by which are 

trained to recognize 5 different categorize of defects. And the  

 

Error rate and accuracy of each class is reported and 

compared with others. The following experimental rule was 

used to define the structure of the network: 
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Table 1. observed results 

 

Where N is the number of neurons in the corresponding 

layer and P is the number of input parameters that could be 

even or odd. Furthermore, maximum or minimum of the 

average of output of each network in ten times training and the 

best achievement is reported in table 1. for comparison with 

others. Summary of the network performance for different 

input parameters is as follows: P1, P2, q1, q2, and q3. 

As is demonstrated in the table below there is q1, q2, q3, 

P1, P2 parameters. These parameters are described as follows 

in (17):  
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1= P for h=0.002 & a=0.001           [m] 

P2= P for h=0.003 & a=0.0015         [m] 

q1=q for  h=0.002                               [m] 

q2=q for  h=0.003                               [m] 

q3=q for  h=0.004                               [m] 
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Preparation and training phase applied by iterations for five 

classes named P1, P2 up to q3. These are all merged to each 

other in training set of non-WEKA  

 

Classifiers. In non-WEKA, BPA-MLP is the first attempt to 

apply classification. Next one is the application of RBF on the 

FLD. Third one is a pure RBF function with the Gaussian 

activation function. Forth one is the RBF with the Back 

propagation concept and finally is the application of MLP on 

the Fisher linear discriminate function. For WEKA clusters 

data type I and II are selected for training classifiers. Two 

types such as Euclidian and Bayesian are applied and results 

are summarized in table 1. 

 

6.1 Historical discussion 
 

If we would like to have a discussion on what is done 

before, we would observed some of published researches that 

are based on the analytical model of MFL signals from 

magnetic charge [23, 24-27]. But for an exception, reference 

[22] is just discussed a single defect. The often encountered 

sensible situation of two nearby defects is also discussed only 

by Uetake and Saito [28], but their effort is limited to slots 

with parallel walls of a maximum of 4mm in length. With 

regards to this effort that considered a multiple defect case. 

The proceeding numerical modeling of MFL phenomena is 

exposed by Lord and co-workers [29, 30, and 31]. In oppose 

of the significant progress made in this area to include non-

linear material properties [32, 33, 34], a quantitative 

relationship between magnetic leakage field and defect length 

has not been clearly specified. Furthermore, numerical 

modeling involves a direct MFL approach, since it includes 

predefined defect geometries and material characteristics. 

Calibration of the MFL signals in terms of defect depth has 

been studied both through finite element modeling [30-33] and 

from side to side analytical methods based on dipolar 

magnetic charge [37, 41]. Two of the arithmetical analysis 

studies [30, 42] correctly predicted that the amplitude of the 

normal MFL signal Component increases with defect depth 

and separation between the extreme MFL values is directly 

proportional to the Defect length. 

In this paper, with regards to previous works, a new simple 

algorithm is applied that could determine defects with various 

shapes. For problem of encountering different kinds of defects 

we initializes deferent defects with seven classes which each 

of them tries to learn a defect with determined characteristics. 

This structure is an estimate of five large groups of defects 

recognition.  

 

 

7. Conclusion 
 

This study provides an algorithm to recognize defects of 

pipes by a non destructive testing and MFL procedure. The 

mentioned algorithm provides a powerful structure to find out 

defects in five main groups. Seven expert classes are 

combined with each other to maintain is algorithm. The 

efficiency of the model was confirmed through experimental 

results and is reported in table1. A clear advantage of the 

method presented here is the low number of parameters that 

have to be considered with the advantage of its output error 

rate. This study estimates defects in five groups with different 

shapes and features. In this case all the defects ranged to depth 

of 2 till 4 millimeter and radius of 1 up to 1.5 millimeters. 

Expert in the mentioned algorithm are trained in ten times to 

achieve the best setting for the weights. Seven classes are 

finalized for this structure. PCA as a well known feature 

extraction function is employed for data compression by the 

means of Eigen values. The result of all are shown and 

discussed in table 1. The accuracy rate of 95 percent shows the 

efficiency of the mentioned algorithm.  
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