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Abstract: This work provided the involution of the algorithm for analytic solution of space-
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1 Introduction 
Differential equations of fractional order  have gained much attention due to the tremendous use in 

fluid mechanics, mathematical biology, electrochemistry, physics, and so on [1- 4]. Recently, many 

important mathematical models can be expressed in terms of system of differential- algebraic equations 

of fractional order. The solution of fractional differential equations is so much difficult [5-6]. In 

general, there exists no method that yields an exact solution for fractional differential –algebraic 

equations. Only approximate solution can be derived by using linearization or perturbation methods. 

In recent years, many researchers have focused on the numerical solution of fractional differential –

algebraic equations. Some numerical methods have been developed, such as implicit Runge- Kutta 

method [7], Pad   approximation method [8-11], homotopy perturbation method [12-16], Adomian 

decomposition method [17-21], homotopy analysis method [22-23], variation iteration method [24-26], 

homotopy analysis transform method [27]. 

In 2013, Habibolla et al. [28], presented an alternative approach based on Laplace iterative method 

(LIM) for finding series solutions to linear and nonlinear systems of PDEs. The applied method gave 

rapidly convergent successive approximations.   

The objective of the present paper is making combination of the Laplace Iteration method with the 

Lagrange multiplier (LLIM) to provide approximate solution for linear and nonlinear space-time 

fractional order of differential-algebraic equations. The efficient and accuracy of the method used in 

this paper will be demonstrated by comparison with the known exact solutions in the non-fractional 

case. The fractional derivatives are described in the Caputo sense.  

The structure of the paper described as follows. In section 2, we give the concept of fractional calculus. 

In section 3, we now identify the complex fractional Lagrange multipliers. In section 4, we give a brief 

description of how the method works and propose an algorithm with Lagrange multiplier. LLIM for 

system of space-time fractional order of differential-algebraic equations. In section 5. we consider 

some illustrative examples. Finally, in section 6, we have presented our conclusions. 

 

2. Preliminaries and notations 
In this section, we give some basic definitions and properties of fractional calculus theory which will 

be used in this paper. 
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Definition 2.1 [29]  A real function f(t), t >0, is said to be in the space         if there exists a 

real number       such that                 where                and it is said to be in the space 

  
   if and only if               

 

Definition 2.2 The Riemann-Liouville fractional order integral of      of function      

   ,   −1  is defined as [29] : 

                   
 

    
   −            

 

 
                                                                    …(2.1) 

                       

 

Definition 2.3 The fractional derivative of function       in Caputo sense is defined as [29]: 

              
                   

 

      
     −                 

 

 
                 …(2.2) 

For  − 1                   
 . 

 

Definition 2.4 [30] The single parameter and the two parameters variants of the Mittag- Leffler 

function are denoted by       and              respectively, which are relevant for their connection with 

fractional calculus, and are defined as:    

                     
  

       
 
                                                                     …(2.3) 

                        
  

       
 
                                                                …(2.4)          

For special choices of the values of the parameter       we obtain well-known classical functions, 

e.g.: 

                                                 

     As we will see later, classical derivatives of the Mittag-Leffler function appear in solution of FDEs. 

Since the series (2.4) is uniformly convergent we may differentiate term by term and obtain  

  
             

      

  

  

          
 
                    …(2.5) 

 

Definition 2.5 The Laplace transform          of the Caputo fractional derivative is given as [29]: 

      
                −                       − 1         

                          …(2.6) 

 

Lemma 2.6 [30] For                                          we have    

                
    

           
           

               
 

 

                  
           

   
 
          …(2.7) 

 

3. Basics of the Fractional Variational Iteration Method 
  We consider a general nonlinear  fractional differential equation: 

           x(t) +      x(t) +   x(t) = f(t),          1                               … (3.1) 

Where    denotes linear fractional derivative operator of order    ,     denotes linear fractional 

derivative operator of order less than     ,    denotes nonlinear fractional operator, and f(t) is the 

nondifferentialle source term.  

According to the rule of fractional variational iteration method, the correction fractional functional for 

(3.1) is constructed as Hossein and Hassan [31]: 

                 
  

     

      
                                −                       …(3.2) 

Where    
  is the Riemann- Liouville fractional integral operator of order  ,      is called the general  

fractional Lagrange multiplier which can be identified optimally via variational theory,     is the nth 

approximate solution.  Making the fractional variation of (3.2), we have   

                         
                                         −                  …(3.3) 

The extremum condition of      is given by [ 31 ],  
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In view of (3.4), we have the following stationary conditions: 

 1 −        
   

 
   

                              
    

 
   

           …(3.5) 

So, from (3.5), we get         
  −   

  1   
 . 

 

4. Description of the new method (LLIM) 
In this article, we consider the following non-homogenous, non-linear system of fractional order 

differential-algebraic equations  

   
  

            
                               

                  
                     1  

With initial conditions                         1      − 1              Here    
    is Caputo 

fractional derivative of order    , satisfying the relation       1  Eq. (4.1) can be rewritten as: 

             

                              

                              
 
 

                                    
                  

 
 

 
 

        …(4.2) 

Where     is a linear operator,     a nonlinear operator and         is an inhomogenous item form i=1, 2, 

…, n-1. Eq. (4.2) can be rewritten down as a correction function in the following way: 

             −                                  ,     i=1, 2, …, n-1            …(4.3) 

Therefore: 

                        ,     i=1, 2, …, n-1. 

The Laplace Iteration Method assumed a series solution for    given by an infinite sum of components: 

              
              

    
 
          1      − 1        …(4.4) 

In which   
   indicates the n-th approximation of    , where   

 
  is the      component of the solution of 

   and   
   is the solution of          along with the following initial conditions of the main problem: 

  
          

   

  
             

    

 

   

 −    
    

 

   

   1 

In which      
   is obtained as follows: 

       
    

      
                   ,               …(4.5) 

Using the homogenous initial conditions, supposing that     linear operator, therefore, taking Laplace 

transform to both sides of Eq. (4.5) in the usual way and using the homogenous initial conditions, the 

result can be obtained as following: 

        
          

     ,      …(4.6) 

Where        
    

      
      

            is a fractional polynomial with the fractional degree of the 

highest derivative in Eq. (4.6) (The same as the highest order of the linear operator    ). Thus,   

             
 

     
                       …(4.7) 

In Equations (4.5) and (4.6), the function      
      and                   are abbreviated as     and 

   respectively. Hence, Eq. (4.6) is rewritten as: 

  
           

    
      

       .            …(4.8) 

Now, by applying the inverse Laplace Transform to both side of Eq. (4.8) and using the convolution 

Theorem, the following relation can be presented: 

     
    

      
          

    
      

            −      
 

 
  …(4.9) 

Therefore 

  
          

    
   
      

           
           −      

 

 
   1      − 1   …(4.10) 
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After identifying the initial approximation of   
    the remaining approximations   

 
      can be 

determined so that each term can be determined by previous terms and the approximation of iteration 

formula can be entirely evaluated.  

Consequently, the exact solution may be obtained by: 

           
              

    
 
      1      − 1    …(4.11) 

Which is the Laplace Iteration method. 

Now, we can construct a correct function as follows: 

                          
    

      
            −      

 

 
     …(4.12) 

Where        fractional Lagrange multiplier. 

 

5. Applications and Results 
In this part, we introduce some applications on LLIM to solve differential- algebraic equations with 

time- space fractional derivatives 

 

Example 1: consider the following system of nonlinear space-time fractional order differential –

algebraic equations :  

 
  

         
     −                 1 

  
          

          −              

                                                            1         1 

              …(5.1) 

                                    

Subject to initial conditions x(0)=y(0)=z(0)=1and       1        −1  For the special case    

1  we have analytical solution                              . 

Solution: 

From the Eq. (5.1), optimal selection auxiliary linear operator the equation is represented as follows: 

          
         

     −        

          
          

           

Therefore      
    

    
  , i=1,2; are defined as:    

 
     

    
    

        −    
 

 
1 −   

      
       

     
    

    
       −    

 

 
  

    −    
              

      …(5.2) 

Then, using Eq. (5.2), the Laplace Iteration Method with Fractional Lagrange Multiplier formulae in t-

direction for the calculation of the approximate solution of Eq.(5.3) can be readily obtained as: 

  

                        −    1 −               
 

 

                        −           −     
        

 

 

     
    

          5.3) 

Case 1:     

          
        

     −        

           −   

       
1

     
 

1

    −   
 

                  −
1

 
    

1

 
   

And  

          
         

           

             1 

       
1

     
 

1

      1
 

                       

 

where the initial approximation must be satisfied by the following equations: 
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              1       1          
     

              1         −1          
      

          

Accordingly, by Eq. (5.3) the higher order approximation of the exact solution can be obtained as 

follows: 

         
    

 

   

    

         
    

 

   

     

The remaining approximations             1 can be completely determined such that each 

term will be determined using the prevous term: thus, the exact solution is as follows: 

        
   

   
    

 

   

     

        
   

   
    

 

   

    

         

 

Case 2:       

          
          

       −        

                −   

       
1

     
 

1

          −  
 

                         
   

 
  −1 

 
 
   

 
 

        1     1  
       1   

 

   

 

   

 

And  

          
           

              

                  1 

       
1

     
 

1

           1
 

                         
 −1    −   

 
   

 
 

        1     1  
       1   

 

   

 

   

 

where the initial approximation must be satisfied by the following equations: 

 

 

              1       1          
  

  
  

  
        

      

  

 

   

 −      

                 1 

 

   

            
      

  

 

   

 −      

                 1   

          
      

  

 

   

 −      

                   
  

              1       −1          
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Accordingly, by Eq. (5.3) the higher order approximation of the exact solution can be obtained as 

follows: 
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where the initial approximation must be satisfied by the following equations: 
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Accordingly, by Eq. (5.3) the higher order approximation of the exact solution can be obtained as 

follows: 
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Table 1. Numerical results of the solution in Example 5.1 

 

T                1 Exact solution 

0 1 1 1 1 

0.1 1.085 1.09 1.105 1.105 

0.2 1.215 1.216 1.221 1.221 

0.3 1.262 1.311 1.35 1.35 

0.4 1.292 1.451 1.492 1.492 

0.5 1.359 1.451 1.649 1.649 

0.6 1.428 1.554 1.822 1.822 

0.7 1.501 1.666 2.014 2.014 

0.8 1.581 1.789 2.226 2.226 

0.9 1.668 1.924 2.46 2.46 

1 1.765 2.071 2.718 2.718 

 

Table 1 shows the approximate solutions for Eq. (5.5) obtained for different values of    using our 

method. The results are in good agreement with the results of the exact solutions. 
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                                                              Fig.1 results for Example 1 

 

Example 2: consider the following system of linear space-time fractional order differential –

algebraic equations  

 
  

          
           −             

                                                                  1         1 

         …(5.4) 

                                    

Subject to initial conditions x(0) =0,       1       1  For the special case    1  we have 

analytical solution           and              

Solution: 

From the Eq. (5.4), optimal selection auxiliary linear operator the equation is represented as follows: 

         
          

            

Therefore     
    

 ) is defined as:    
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    −        
  

      …(5.5) 

Then, using Eq. (5.5), the Laplace Iteration Method with Fractional Lagrange Multiplier formulae in t-

direction for the calculation of the approximate solution of Eq.(5.3) can be readily obtained as: 
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where the initial approximation must be satisfied by the following equations: 
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Accordingly, by Eq. (5.6) the higher order approximation of the exact solution can be obtained as 

follows: 
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The remaining approximations             1 can be completely determined such that each 

term will be determined using the prevous term: thus, the exact solution is as follows: 

        
   

   
    

 

   

      

          

 

Case 2:       
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where the initial approximation must be satisfied by the following equations: 
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Accordingly, by Eq. (5.6) the higher order approximation of the exact solution can be obtained as 
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where the initial approximation must be satisfied by the following equations: 
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Accordingly, by Eq. (5.6) the higher order approximation of the exact solution can be obtained as 

follows: 
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Table 2. Numerical results of the solution in Example 5.2 

 

T                1 Exact solution 

0 0 0 0 0 

0.1 0.1 0.099 0.09 0.09 

0.2 0.2 0.195 0.164 0.164 

0.3 0.3 0.285 0.22 0.222 

0.4 0.4 0.37 0.268 0.268 

0.5 0.5 0.447 0.303 0.303 

0.6 0.6 0.516 0.329 0.329 

0.7 0.7 0.577 0.348 0.348 

0.8 0.8 0.628 0.359 0.359 

0.9 0.9 0.669 0.366 0.366 

1 1 0.669 0.368 0.368 

 

Table 2 shows the approximate solutions for Eq. (5.5) obtained for different values of    using our 

method. The results are in good agreement with the results of the exact solutions. 
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                                                              Fig.2 results for Example 2 

 

Conclusions 
In this paper, we have introduced a combination of the Laplace Iteration method and Variational 

Iteration method for multi-term fractional equations. This combination builds a strong method called 

Laplace Lagrange Iteration Method (LLIM). We used this method for solving the system of time-space 

fractional order of differential-algebraic equations. 

The LLIM has been shown to solve effectively, easily and accurately large class of non-linear problems 

with the approximations which convergent are rapidly to exact solutions. Finally, we conclude that the 

LLIM may be considered as a nice refinement in existing numerical techniques.   
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