t-REGULAR MODULES

Inaam Mohammed Ali Hadi (1) and Ghaleb Ahmed Hammood (2)

Department of Mathematics, College of Education Ibn-Al-Haitham Univ of Baghdad, Iraq

(1) Email: Innam1976@yahoo.com
(2) Email: galeb.ahmud3@gmail.com

ABSTRACT

Let \(R \) be a commutative ring with identity and \(M \) be an \(R \)-module. Let \(Z_2(M) \) be the second singular submodule of \(M \). In this paper we introduce the concept of \(t \)-regular modules as a generalization of regular modules. The module \(M \) is called \(t \)-regular module if \(t_M(I) \) is a pure submodule of \(M \), for each ideal \(I \) of \(R \), where \(t_M(I) = \{ m \in M | \text{Im} \subseteq Z_2(M) \} \). Some properties of this class of modules are investigated and some relationships between these modules and other related modules are introduced.

Key words: Regular modules, \(t \)-Regular module, Pure submodules.

1. INTRODUCTION

Throughout this paper \(R \) denotes a commutative ring with identity, modules are unital \(R \)-modules. Let \(M \) be an \(R \)-module, the singular submodule of \(M \) is \(Z(M) = \{ m \in M | \text{Im} = 0 \text{ for some essential ideal I of } R \} \). If \(M = Z(M) \), then \(M \) is called singular and \(M \) is nonsingular provided \(Z(M) = 0 \). The second singular submodule, in other words, the Goldie torsion submodule \(Z_2(M) \) is defined by \(Z(M/Z(M)) = Z_2(M)/Z(M) \). The module \(M \) is called \(Z_2 \)-torsion (or Goldie torsion) if \(M = Z_2(M) \). It is clear that every singular module is \(Z_2 \)-torsion. Let \(R \) be an integral domain and \(M \) be an \(R \)-module. The torsion submodule of \(M \) is \(T(M) = \{ m \in M | rm = 0 \text{ for some } r \in R \setminus \{0\} \} \). If \(M = T(M) \), then \(M \) is called torsion and \(M \) is torsion-free, provided \(T(M) = 0 \). It is evident that the singular and nonsingular concepts for the modules over an integral domain are equivalent to the torsion and torsion-free respectively, in other words, \(Z(M) = T(M) \). Following P.M. Cohn [4], a submodule \(N \) of an \(R \)-module \(M \) is called pure if the sequence \(0 \rightarrow E \otimes N \rightarrow E \otimes M \) is exact for all \(R \)-modules \(E \). Anderson and Fuller in [2] called the submodule \(N \) of an \(R \)-module \(M \) is pure if \(IM \cap N = IN \) for every ideal \(I \) of \(R \). It can easily see that the purity in the first definition implies to the second but not conversely. An \(R \)-module \(M \) is called regular if every submodule of \(M \) is (Cohn) pure [9].
In this paper, our aim is to introduce and study t-regular modules. An R-module M is called t-regular module if $t_M(I)$ is a pure submodule of M (in sense of Anderson and Fuller), for each ideal I of R, where $t_M(I) = \{ m \in M \mid Im \subseteq Z_2(M) \}$. It is evident that every regular module is t-regular module, but not conversely (Remarks and Examples 2.2).

The work is structured in two sections. In section two we supply some elementary properties of t-regular modules. A characterization of t-regular modules is given (Theorem 2.4), we see that the t-regular modules have the pure intersection property for any finite collection of submodules $\{t_M(I_a)\}_{a=1}^n$, where I_a is an ideal of R (Proposition 2.6). We prove that a direct sum of two t-regular modules is also t-regular (Proposition 2.8). In section three, many relationships between t-regular modules and other related concepts are presented. We give a certain condition under which t-regular module is purely extending module (Proposition 3.7). Beside other results we see that if M is t-regular R-module, then $t_M(I)$ is semiprime submodule of M for each ideal I of R (Theorem 3.12). Also we show that every PF-ring (and hence PP-ring) is t-regular ring (Examples 3.13).

2. t-Regular Modules – Basic Results

In this section we introduce the concept of t-regular modules. The basic properties are investigated. It is shown that every direct sum of t-regular modules is again t-regular. We begin by giving our definition.

Definition 2.1. An R-module M is called t-regular module if $t_M(I)$ is a pure submodule of M (in sense of Anderson and Fuller), for each ideal I of R, where $t_M(I) = \{ m \in M \mid Im \subseteq Z_2(M) \}$.

Remarks and Examples 2.2.

1. Every Z_2-torsion (singular) module is t-regular module since $Z_2(M) = M$ ($Z(M) = M$), then $t_M(I) = M$ is pure in M. The converse is not true in general. For example, the \mathbb{Z}-module \mathbb{Z} is t-regular since $Z_2(\mathbb{Z}) = Z(\mathbb{Z}) = 0$ is pure in \mathbb{Z} but \mathbb{Z} is neither Z_2-torsion nor singular module.

2. Clearly that every regular module is t-regular module, but the converse is not true. For example, the \mathbb{Z}-module \mathbb{Z} is t-regular module but not regular. Also, one can easily see that the \mathbb{Z}-module \mathbb{Z}_4 is Z_2-torsion then by Remark and Example (1), \mathbb{Z}_4 is t-regular but it is not regular as \mathbb{Z}-module.

3. If M is t-regular R-module, then the submodule $Z_2(M)$ is a pure submodule.

Proof. Since $t_M(R) = \{ m \in M \mid Rm \subseteq Z_2(M) \} = \{ m \in M \mid m \in Z_2(M) \} = Z_2(M)$ and $t_M(R)$ is pure submodule.
(4) For any R-module M, $t_M(\langle 0 \rangle) = \{ m \in M \mid \langle 0 \rangle m \leq Z_2(M) \} = M$ is a pure submodule in M.

(5) If I_1 and I_2 are ideals of a ring R with $I_1 \leq I_2$, then $t_M(I_2) \leq t_M(I_1)$.

Proof. Since $m \in t_M(I_2)$, then $m \in M$, $I_2m \leq Z_2(M)$. But $I_1 \leq I_2$, then $I_1m \leq I_2m$. It follows that $I_1m \leq Z_2(M)$, that is $m \in t_M(I_2)$.

(6) It is clear for each ideal I of a ring R, $Z_2(M) \subseteq t_M(I)$.

(7) Let M be an R-module. If for each $N \leq M$, there exists an ideal I of R such that $N = t_M(I)$. Then M is regular if and only if M is t-regular.

(8) If M is an R-module, and $N \leq M$. Then N need not be written of the form $N = t_M(I)$ for any ideal I of R. For example, the \mathbb{Z}-module \mathbb{Z}_4 where $N = \{ \overline{0}, \overline{2} \}$ is the submodule generated by $\overline{2}$. Since $Z_2(\mathbb{Z}_4) = \mathbb{Z}_4$, one can easily see that $t_{\mathbb{Z}_4}(I) = \mathbb{Z}_4$, for each ideal I of \mathbb{Z}. Moreover this example shows that the condition in Remark (7) that each submodule N of M is written of the form $t_M(I)$ for some ideal I of R is necessary to make the t-regular module is regular module.

Before we give our next result we need the following lemma

Lemma 2.3. If M is an R-module, then for each ideal I of R, and for each $a \in I$, $t_M(I) = \bigcap_{a \in I} t_M(\langle a \rangle)$.

Proof. Let $a \in I$ and $m \in t_M(I)$, $\langle a \rangle m \subseteq I m \subseteq Z_2(M)$. Then $m \in t_M(\langle a \rangle)$ for each $a \in I$, implies that $m \in \bigcap_{a \in I} t_M(\langle a \rangle)$. For the reverse inclusion, let $m \in \bigcap_{a \in I} t_M(\langle a \rangle)$, then $m \in t_M(\langle a \rangle)$, $\langle a \rangle m \subseteq Z_2(M)$. So $am \in Z_2(M)$ for each $a \in I$, it follows that $Im \subseteq Z_2(M)$. Therefore $m \in t_M(I)$.

Note that if I is generated by the finite set $\{ a_1, a_2, \ldots, a_n \}$, $I = Ra_1 + Ra_2 + \ldots + Ra_n$. Then by lemma 2.3, we have $t_M(I) = t_M(\sum_{i=1}^n Ra_i) = \bigcap_{i=1}^n t_M(Ra_i)$.

Theorem 2.4. Let M be an R-module. Then M is t-regular module if and only if $t_M(I)$ is a pure submodule of M for each principal ideal I of R.

Proof. (\Rightarrow) It is clear since M is t-regular module.

(\Leftarrow) Let $t_M(I)$ be a pure submodule for each principal ideal I of R. To prove that M is t-regular module. Let K be an ideal of R, we have to show that $JM \cap t_M(K) = J t_M(K)$, for each ideal J of R. Let $m \in JM \cap t_M(K)$, then $m = \sum_{i=1}^n b_i m_i$, where $b_i \in J$, $m_i \in M$ and $km \subseteq Z_2(M)$. So $am \in Z_2(M)$, for each $a \in K$. It follows that $m \in t_M(\langle a \rangle)$, and hence $m \in JM \cap t_M(\langle a \rangle)$. But $t_M(\langle a \rangle)$ is a pure submodule in M, then $JM \cap t_M(\langle a \rangle) = J t_M(\langle a \rangle)$. That is $m \in J t_M(\langle a \rangle)$. Assume $m = \sum_{i=1}^n b_i' m_i'$, where $b_i' \in J$ and $m_i' \in t_M(\langle a \rangle)$, for each $a \in K$. Thus $m_i' \in \bigcap_{a \in K} t_M(\langle a \rangle)$. But $\bigcap_{a \in K} t_M(\langle a \rangle) = t_M(K)$ by lemma 2.3, then $m_i' \in t_M(K)$.

©2015 RS Publication, rspublicationhouse@gmail.com
therefore \(t_M(K) \) is a pure submodule of \(M \). It follows that \(M \) is t-regular module.

Lemma 2.5. Let \(M \) be an R-module. Then for any collection of ideals \(\{ I_a \}_{a \in \Lambda} \) of \(R \). Then \(t_M(\sum_{a \in \Lambda} I_a) = \bigcap_{a \in \Lambda} t_M(I_a) \).

Proof. Since for each \(a \in \Lambda \), \(I_a \subseteq \sum_{a \in \Lambda} I_a \), then by Remark and Example 2.2 (5), \(t_M(\sum_{a \in \Lambda} I_a) \subseteq t_M(I_a) \). Thus \(t_M(\sum_{a \in \Lambda} I_a) \subseteq \bigcap_{a \in \Lambda} t_M(I_a) \). Let \(m \in \bigcap_{a \in \Lambda} t_M(I_a) \), then \(m \in t_M(I_a) \), for each \(a \in \Lambda \). Hence \(I_a m \subseteq Z_2(M) \), implies that \((\sum_{a \in \Lambda} I_a) m \subseteq Z_2(M) \). That is, \(t_M(\sum_{a \in \Lambda} I_a) = \bigcap_{a \in \Lambda} t_M(I_a) \).

Recall that an R-module \(M \) is said to have the **pure intersection property** if the intersection any two pure submodules of \(M \) is again pure [1].

Proposition 2.6. Every t-regular R-module has the pure intersection property for any finite collection of submodules \(\{ t_M(I_a) \}_{a} \), where \(I_a \) is an ideal of \(R \).

Proof. Let \(\{ t_M(I_a) \}_{a} \) be a finite collection of submodules of \(M \), then by Lemma 2.5, \(t_M(\sum_{a=1}^{n} I_a) = \bigcap_{a=1}^{n} t_M(I_a) \). But \(M \) is t-regular, then \(t_M(\sum_{a=1}^{n} I_a) \) is a pure submodule in \(M \). It follows that \(\bigcap_{a=1}^{n} t_M(I_a) \) is a pure submodule in \(M \), that is \(M \) has the pure intersection property for \(\{ t_M(I_a) \}_{a=1}^{n} \).

Theorem 2.7. Let \(M = M_1 \oplus M_2 \) where \(M_1 \) and \(M_2 \) be two R-modules. Then for each ideal \(I \) of \(R \), \(t_M(I) = t_{M_1}(I) \oplus t_{M_2}(I) \).

Proof. Let \(m \in t_M(I) \), then \(m \in M = M_1 \oplus M_2 \). Let \(m = (m_1, m_2) \) where \(m_1 \in M_1 \), \(m_2 \in M_2 \). So \(I(m_1, m_2) \subseteq Z_2(M_1 \oplus M_2) = Z_2(M_1) \oplus Z_2(M_2) \), implies that \(Im_1 \subseteq Z_2(M_1) \) and \(Im_2 \subseteq Z_2(M_2) \). Thus \(m_1 \in t_{M_1}(I) \) and \(m_2 \in t_{M_2}(I) \), it follows that \((m_1, m_2) \in t_{M_1}(I) \oplus t_{M_2}(I) \). For the reverse inclusion, let \(m \in t_{M_1}(I) \oplus t_{M_2}(I) \). So \(m = (m_1, m_2) \in t_{M_1}(I) \oplus t_{M_2}(I) \), \(m_1 \in t_{M_1}(I) \) and \(m_2 \in t_{M_2}(I) \). Thus \(Im_1 \subseteq Z_2(M_1) \) and \(Im_2 \subseteq Z_2(M_2) \), that is \(I(m_1, m_2) = Im_1 \oplus Im_2 = Z_2(M_1) \oplus Z_2(M_2) = Z_2(M_1 \oplus M_2) \). Therefore \(m \in t_M(I) \).

Proposition 2.8. Let \(M = M_1 \oplus M_2 \) where \(M_1 \) and \(M_2 \) be two R-modules. Then \(M_1 \) and \(M_2 \) are t-regular modules if and only if \(M \) is t-regular.

Proof. (\(\Rightarrow \)) Assume \(M = M_1 \oplus M_2 \) where \(M_1 \) and \(M_2 \) are t-regular R-modules. Let \(I \) and \(J \) be ideals of \(R \). To show that \(JM \cap t_M(I) = J t_M(I) \). Since \(J M \cap \)
\[t_M(I) = J(M_1 \oplus M_2) \cap (t_{M_1}(I) \oplus t_{M_2}(I)) \] by Theorem 2.7. So after simple steps, one can easily see that, \(J M \cap t_M(I) = J t_M(I) \). That is \(t_M(I) \) is pure submodule in \(M \).

\[(\Leftarrow)\text{ Assume } M = M_1 \oplus M_2 \text{ is } t\text{-regular } R\text{-module, then } J M \cap t_M(I) = J t_M(I) \text{ for each ideals } I \text{ and } J \text{ of } R. \text{ Since } J M \cap t_M(I) = J(M_1 \oplus M_2) \cap t_{M_1}(I) \oplus t_{M_2}(I) = J(t_{M_1}(I) \oplus t_{M_2}(I)), \text{ hence } J M_1 \cap t_{M_1}(I) = J t_{M_1}(I) \text{ and } J M_2 \cap t_{M_2}(I) = J t_{M_2}(I). \text{ Hence } M_1 \text{ and } M_2 \text{ are } t\text{-regular modules.}

Corollary 2.9. Every direct summand of \(t\text{-regular module is also } t\text{-regular.}

Proof. It follows by Proposition 2.8.

We end the section by the following example

Example 2.10. Consider the module \(\mathbb{Z}_4 \) as \(\mathbb{Z}_4\)-module, it is not hard to see that \(\mathbb{Z}_2 (\mathbb{Z}_4) = \{0, \overline{2}\} \) is the submodule generated by \(\overline{2} \). Then \(t_{\mathbb{Z}_4} (\mathbb{Z}_4) = \{0, \overline{2}\} \) is not pure submodule in \(\mathbb{Z}_4 \) and hence \(\mathbb{Z}_4 \) is not \(t\)-regular module. Moreover by Proposition 2.8, the module \(\mathbb{Z}_4 \oplus \mathbb{Z}_4 \) is also not \(t\)-regular as \(\mathbb{Z}_4\)-module.

3. \(t\)-Regular Modules and Other Related Concepts

In this section we investigate the relationships between \(t\)-regular modules and some other modules such as nonsingular, CLS, purely extending, projective, and injective modules.

Proposition 3.1. Every nonsingular module over an integral domain is \(t\text{-regular module.}

Proof. Let \(M \) be a nonsingular module over an integral domain \(R \) and \(I \) be an ideal of \(R \). Then \(Z_2 (M) = 0 \), implies that \(t_M(I) = \{ m \in M \mid Im = 0 \} \subseteq T(M) = \{ m \in M \mid rm = 0 \} \text{ for some } r \in R \setminus \{0\} \}. \text{ But } T(M) = Z(M) = 0, \text{ then } t_M(I) = 0. \text{ That is } t_M(I) \text{ is a pure submodule of } M, \text{ and hence } M \text{ is } t\text{-regular.}

Corollary 3.2. Every an integral domain is a \(t\text{-regular.}

Proof. It follows directly by Proposition 3.1.

Recall that a submodule \(A \) of an \(R\)-module \(M \) is called \(y\)-closed if \(M /A \) is nonsingular module [10]. If every \(y\)-closed submodule of \(M \) is a direct summand, then \(M \) is said to be a **CLS-module** [14].
Proposition 3.3. Let M be a CLS-module over an integral domain R, then M is t-regular module.

Proof. Let M be a CLS-module over an integral domain R, then every y-closed submodule is a direct summand of M. Since $Z_2(M)$ is y-closed submodule, then $M = Z_2(M) \oplus M'$ for some submodule M' of M. It follows that $M/Z_2(M) \cong M'$ and since $M/Z_2(M)$ is nonsingular, so M' is nonsingular R-module. Then $t_{M'}(I) = \{ m \in M' \mid \lim = 0 \} \subseteq T(M') = 0$, so $t_{M'}(I) = 0$. That is $t_{M'}(I)$ is a pure submodule in M' and $t_{Z_2(M)}(I) = Z_2(M)$ is a pure submodule in $Z_2(M)$. Then by [1, Lemma 4.2], the direct sum of pure submodules is again pure, thus $t_{Z_2(M)}(I) \oplus t_{M'}(I)$ is a pure submodule in $Z_2(M) \oplus M' = M$. But $t_{Z_2(M)}(I) \oplus t_{M'}(I) = t_{M}(I)$ by Theorem 2.7, therefore $t_{M}(I)$ is a pure submodule in M, and hence M is t-regular module.

Proposition 3.4. Let M be an R-module. If $Z_2(M)$ is direct summand and maximal submodule, then M is t-regular.

Proof. Since $Z_2(M) \leq t_{M}(I)$ for each ideal I of R and $Z_2(M)$ is maximal submodule, it follows that $Z_2(M) = t_{M}(I)$. But $Z_2(M)$ is a direct summand of M, this implies $t_{M}(I)$ is a direct summand of M. Hence M is t-regular.

Recall that a submodule A of an R-module is called an *essential* of M (or M is an *essential extension* of A) if $A \cap B \neq 0$, for every submodule B of M. If A has no proper essential extension in M, then A is said to be *closed* [7] and M is called an *extending module* (or *CS-module*) if every closed submodule of M is a direct summand [7].

Proposition 3.5. Let M be an R-module. If M is CLS and every nonsingular submodule of M is a closed submodule. Then M is a t-regular module.

Proof. Let I be an ideal of R. Since M is CLS, then by [14, Proposition 8], $M = Z_2(M) \oplus M'$ for some submodule M' of M and M' is a CS-module. Then $t_{M}(I) = t_{Z_2(M)}(I) \oplus t_{M'}(I)$ and $t_{M'}(I)$ is nonsingular submodule in M' since $M/Z_2(M) \cong M'$, and $Z_2(M)$ is y-closed, $M/Z_2(M)$ is nonsingular. This implies that $t_{M'}(I)$ is nonsingular submodule in M. Then by hypothesis, $t_{M'}(I)$ is closed submodule in M. It follows that $t_{M'}(I)$ is closed submodule in M'. But M' is CS-module, then $t_{M'}(I)$ is direct summand submodule in M'. Therefore $t_{M'}(I)$ is a pure submodule in M' and $t_{Z_2(M)}(I) = Z_2(M)$ is a pure submodule in $Z_2(M)$. Then $t_{Z_2(M)}(I) \oplus t_{M'}(I)$ is a pure submodule in $Z_2(M) \oplus M' = M$. But $t_{Z_2(M)}(I) \oplus t_{M'}(I) = t_{M}(I)$ by Theorem 2.7, therefore $t_{M}(I)$ is a pure submodule in M, and hence M is a t-regular module.
Recall that an R-module M is called a purely extending module if every closed submodule in M is a pure submodule in M [4].

Proposition 3.6. Let M be an R-module such that $Z_2(M)$ is direct summand and every nonsingular submodule of M is a closed submodule. If M is purely extending module, then M is t-regular.

Proof. By the same argument of the proof of Proposition 3.5.

Proposition 3.7. Let M be a t-regular R-module. If for each closed submodule N of M, there exists an ideal I of R such that $N = t_M(I)$. Then M is a purely extending module.

Proof. Assume that N is a closed submodule of M, then by hypothesis there exists an ideal I of R such that $N = t_M(I)$. Since M is t-regular, then $t_M(I)$ is a pure submodule in M. Thus every closed submodule is pure and hence M is purely extending.

Proposition 3.8. Let M be an R-module such that $M = Z_2(M) \oplus M'$ for some submodule M' of M. If M' is a regular module, then M is a t-regular module.

Proof. Since $M = Z_2(M) \oplus M'$, then $t_M(I) = t_{Z_2(M)}(I) \oplus t_{M'}(I)$. Assume that M' is regular module, then $t_{M'}(I)$ is a pure submodule in M' and $t_{Z_2(M)}(I) = Z_2(M)$ is a pure submodule in $Z_2(M)$. Hence $t_M(I)$ is a pure submodule in M and thus M is t-regular module.

Recall that an R-module M is called A-projective, where A is an R-module, if for each submodule X of A, every homomorphism $h : M \to A / X$ can be lifted to a homomorphism $g : M \to A$. If M is A-projective for every modules A, then M is said to be a projective module [7].

Proposition 3.9. Let R be a ring. The following statements are equivalent.

1. $\oplus_\Lambda R$ is t-regular R-module for each index set Λ.
2. Every projective R-module is t-regular module.

Proof. (1) \Rightarrow (2) Let M be a projective R-module, then there exists a free R-module F and an R-epimorphism $f : F \to M$, and $F \cong \oplus_\Lambda R$ where Λ is an index set. We have the following short exact sequence $0 \to \text{Ker} f \to \oplus_\Lambda R \xrightarrow{f} M \to 0$ where i is the inclusion mapping. Since M is projective, the sequence is split implies that $\oplus_\Lambda R \cong \text{Ker} f \oplus M$. But $\oplus_\Lambda R$ is t-regular R-module. Therefore by Proposition 2.8, M is t-regular module.
(2) \Rightarrow (1) It is clear.

Recall that an R-module M is called A-injective where A is an R-module, if for each submodule X of A, every homomorphism $h : X \rightarrow M$, can be extended to a homomorphism $g : A \rightarrow M$. If M is A-injective for every modules A, then M is said to be an injective module [7].

Proposition 3.10. Let R be a ring. Consider the following statements.

1. R is semisimple ring.
2. Every R-module is injective.
3. Every R-module is t-regular.
4. Every R-module is projective.

Proof. $(1) \iff (2)$ and $(1) \iff (4)$ by [12, Corollary 8.2.2].

$(2) \Rightarrow (3)$ Let M be an injective R-module. Since every R-module is injective, then $Z_2(M)$ is an injective submodule of M. Then by [1, Remark 1.3] $Z_2(M)$ is direct summand of M. Thus $M = Z_2(M) \oplus M'$ for some submodule M' of M, which implies that $t_M(I) = t_{Z_2(M)}(I) \oplus t_{M'}(I)$. Again by hypothesis, $t_{M'}(I)$ is an injective submodule of M, it follows that $t_{M'}(I)$ is direct summand of M. Thus $t_{M'}(I)$ is a pure submodule in M' and $t_{Z_2(M)}(I) = Z_2(M)$ is a pure submodule in $Z_2(M)$. Thus M is t-regular module.

Recall that an R-module M is called multiplication if for each submodule N of M, there exists an ideal I of R such that $N = IM$. Equivalently M is a multiplication if for each submodule N of M, $N = (N :_R M)M$ where $(N :_R M) = \{ r \in R \mid rM \subseteq N \}$ [8].

Proposition 3.11. Let M be a finitely generated faithful multiplication R-module. If $Z_2(M) \subseteq Z_2(R)M$. Then R is t-regular if and only if M is t-regular module.

Proof. (\Rightarrow) Let R be a t-regular ring and I be an ideal of R. To prove that $t_M(I)$ is a pure submodule of M. Since M is a finitely generated faithful multiplication then by [8, Theorem 3.1], there exists a unique ideal J of R such that $t_M(I) = JM$ and one can easily see that $J = [t_M(I) :_R M]$. We claim that $[t_M(I) :_R M] = t_R(I)$. To show this, let $r \in [t_M(I) :_R M]$, implies that $rM \subseteq t_M(I)$. That is $rIM \subseteq Z_2(M) \subseteq Z_2(R)M$. Then $rI \subseteq Z_2(R)$, that is $r \in t_R(I)$. By the same argument one can prove the reverse inclusion, it follows that $t_M(I) = [t_M(I) :_R M]M = t_R(I)M$. But R is t-regular, then $t_R(I)$ is a pure ideal of R. Since M is finitely generated faithful multiplication, it is not hard to see that $t_R(I)M$ is a pure submodule of M. Therefore $t_M(I)$ is a pure submodule of M and hence M is t-regular module.
(⇐) It follows by similar proof.

Recall that a proper submodule N of an R-module M is called a semiprime submodule if for every $r \in R, x \in M, k \in \mathbb{Z}^+$ such that $r^kx \in N$ implies $rx \in N$ [6]. Equivalently, a proper submodule N of an R-module M is called semiprime if for each $r \in R, x \in M$ with $r^2x \in N$, implies that $rx \in N$ [3].

Theorem 3.12. If M is t-regular R-module, then $t_M(I)$ is semiprime submodule of M for each ideal I of R.

Proof. Let $r \in R$ and $m \in M$ such that $r^2m \in t_M(I)$. Then $Ir^2m \in Z_2(M)$, that is $rIrM \in Z_2(M)$, implies that $rm \in t_M(rI)$. Since $rm \in rM$, then $rm \in rM \cap t_M(rI) = rM(rI)$. Thus $rm = rm'$ for some $m' \in t_M(rI)$, and hence $IrM = IrM' \subseteq Z_2(M)$. It follows that $rm \in t_M(I)$.

We end our work by the following examples.

Examples 3.13.

1. Every PF-ring R (and hence PP-ring) is t-regular ring where a ring R is called PF if for each $a \in R$, $ann_R(a)$ is a pure ideal of R [11]. If for each $a \in R$, $ann_R(a)$ is a direct summand of R then R is said to be PP-ring [15]. One can easily check that if R is PF (or PP-ring), then R is a nonsingular, it follows that $ann_R(a) = t_R(a)$. Therefore R is a t-regular ring.

2. Let R be an integral domain, then $\oplus_\lambda R$ is t-regular as R-module since $Z_2(\oplus_\lambda R) = \oplus_\lambda Z_2(R)$ by [13, Proposition 2.2.3]. But $Z_2(R) = 0$, then $Z_2(\oplus_\lambda R) = 0$. Therefore $\oplus_\lambda R$ is nonsingular as R-module. Hence by Proposition 3.1, $\oplus_\lambda R$ is t-regular as R-module.

References

