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ABSTRACT 

 In this work, we introduce and study the concept of small-singular submodules as a 

generalization of the singular submodules. A number of properties and characterization of this 

concept are obtained. Also we introduce small-closure of arbitrary submodules and small related 

submodules, as well as we introduce and study the concept of small y-extending module as a 

generalization of the y-extending module consequent a generalization of extending module. 

More than that we introduce a small y-extending modules which is generalization of y-extending 

modules. 
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1. INTRODUCTION  

In this paper, R an associative ring with identity, and M a unitary right R-module. It is 

well known that a submodule N of an R-module   is said to be small in   notationally, N    , 

if          for every submodule   of M, then L = M. Dually, a nonzero submodule N of M is 

essential, if whenever N⋂L = (0), then L = (0) for every submodule L of M. In this case, we 

write N     M and M is called essential extension of N [7]. The concept of essential submodule 

has been generalized to small-essential submodule by D. X. Zhou and X. R. Zhang, where it is 
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defined by them as follows: Let N be a submodule of an R-module M. N is said to be small-

essential in M ( denoted by N      M ), if N ∩ L   0 with L     M implies L   0[12]. 

 Goldie [5], Johnson and Wong [6], defined the closure of  a submodule N of an R-module 

M (denoted by cl(N)), as follows  cl(N) = { m ∈ M│[N:M] is an essential right ideal of R}. 

Equivalently, cl(N) = { m∈M│mI ⊆ N} for some essential ideal I of R}. Where [N:M]  the 

residual of M in N defined as follows           ∈   \    ⊆    [9]. In particular if N = 0, 

then cl(0) is the singular submodule and denoted by      where      = {m ∈   :  R(m)      

[4]. Moreover, if Z(M) = 0, then M is called a nonsingular R-module and s-singular if        = 

M.  In this paper, we define the small closure of N (denoted by scl(N)), it is stronger than the 

concept of closure submodules. In particular if N = 0, then scl(0) is the small-singular R-module 

and denoted by       . Moreover, if        = 0, then M is called a small-nonsingular module 

and small-singular module if        = M. And we give the definition of small related of two 

submodules (denoted by   ) which is generalization the concept of related [8]. 

A. Tercan [11] introduced the concept of “CLS-modules” as a generalization of 

extending modules. We introduce the small y-extending (shortly sy-extending) modules as a 

generalization of y-extending modules (CLS). An R-module M is called sy-extending, if every 

sy-closed submodule is a direct summand.  Where N is sy-closed submodule of M if M\N is s-

nonsingular. It is stronger than the concept of y-closed submodules [4]. Also we study the 

relationships between sy-closed submodules, s-closed submodules [1] and y-closed submodules. 

 

2. Small-Singular Submodules 

In this section we will give definition for the small-singular which depends on s-essential 

ideal and small closure with some of their properties. 

 

Definition (1.1): Let M be an R-module, for each submodule N of M, we define 

scl        x ∈     xI ⊆   for some s-essential right ideal I of R} 

Equivalently, scl(N)      ∈            R}. It is clear that  ⊆      ⊆       . We call 

scl    the small closure of N. 

In particular, we define the small singular (shortly s-singular) of M (denoted by       ) 
       = { x ∈ M | ann(x)    R } and equivalently        = { x ∈     xI = 0 for some s-

essential right ideal I of R}, it is clear that scl(0) =        and define scl(scl   ) the second s-
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singular of M, denoted by   
    . If        = 0, then M is called an s-nonsingular module and s-

singular module if        = M. Note that in case R is right hollow ring (i.e. every proper right 

ideal in R is small) and M is R-modules, then Z(M) =       . 

 

Proposition (1.2): Let M be an R-module and N is a s-essential submodule in M. Then [N: M] is 

a s-essential right ideal of R. 

Proof: Clear by by [12, Pro.2.7]. 

 

Remarks and Examples (1.3): 

1. scl    is a submodule of M. 

Proof: It is clear that scl(N) is non-empty. Let x, y be two elements in scl   . Then there are two 

s-essential right ideals I and J such that   ⊆   and yJ ⊆ N by [12] we have that I ∩ J is s-

essential in R, therefore (x + y) (I ∩ J) ⊆ N, this implies that x + y ∈ scl(N). For each r ∈ R and x 

∈ scl(N), we have by above proposition,           R so      [I:r] ⊆ xI ⊆ N whence  xr ∈         
Thus scl     is a submodule of  . 

2. Every singular submodule is s-singular. But the converse may not true, for example:    as   -

module then.              but         0, because the essential ideal of    only    but s-

essential ideal of    are {   , 2   , 3  }. 

3. Every s-nonsingular submodule of M is nonsingular. The converse may not true clarify in      

 

The following two propositions give some properties of s-singular submodules: 

 

Proposition (2.4): Let M be an R-module. Then the following hold: 

1. If f:      is a R-homomorphism then           ⊆       . In particular,       is fully 

inverant submodule in M. 

2.  If   is a submodule of M, then       =  ∩       . 

3.  If   is a submodule of  , then   
     =  ∩   

     . 

4.         ⊆         

5.  M   
     ⊆   

    . 

Proof:  

1. Let w ∈ f          then there exist   ∈       such that   = f (   and for each I    R then 

mI = 0. We claim that                                         thus w ∈      . 

2. And (3) directly from the definition. 

4. Consider the following map    :         such that          mr  for each r ∈ R and  ∈
  and      is homomorphism, thus                

      ⊆      . 

5. By the same way in (4). 
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Recall that a monomorphism f: M N is s-essential in case Imf     N [12]. 

Proposition (2.5):     An R-module C is s-nonsingular if and only if HomR        for all s-

singular modules A.  

    A finitely generated R-module C is s-singular if and only if there exist a short exact 

sequence 0   A 
 
  B 

  
  C   0 such that f is s-essential monomorphism. 

 

Proof      If A is s-singular, C is s-nonsingular, and f: A   C, then                ⊆        

0, then f (A) = 0. Thus    R            

Conversely, if    R         for all s-singular modules A, then in particular 

HomR              . Now the inclusion map i:         C is zero, hence        .  

 

     Assume that C is a finitely generated s-singular and choose a short exact sequence,  

 0   A   ker (g)  
 
    

 
      0 such that B is finitely generated free module. Let         

   
is a 

basis for B , then for each i = 1, … , n  ,  g (  ) such that C     (C) there exist s-essential right 

ideal    of R such that g (  )    0, then g          0 hence     ⊆             . Since     
     R  for each i = 1, … , n, we get              for each i = 1, … , n, since suppose for each 
i=1, …, n        ∈    , with           , then      ∈   and        and since        R, 

then there is an element r ∈ R such that       ∈    and by uniqness of basis we get   
      ∈     . Hence by [12, Pro.2.7]     

               
         B. Inasmuch as     

          

A, we obtain A      B, and the inclusion map A   ker     B is a s-essential monomorphison. 

Conversely, first assume that we have an exact sequence. Now suffices to show that           
let c ∈ C and given any  B  there exist    ,    , … ,    ∈ R such that b          

 
    and g ( b ) = 

c. when           
  is a basis for B. Define  : R    B by  (r)= br,   is R-homomorphism  by 

hypothesis          B  then by [12, Pro.2.7],                 R, that is, the right ideal I = {r ∈ R 

| br ∈      }    R. Now bI   f            by exact sequence which implies that        , 

hence           then c = g   ∈      . Therefore C      ⊆        since g is onto, hence 

        and C is s-singular.         

 

The following proposition characterizes the small essentially in terms of small 

singularity. 

 

Proposition (2.6): Let A be a submodule of s-nonsingular module B. Then     is s-singular if 

and only if A     B. 

Proof: Suppose that      is s-singular.  Let      ∈    with xR is small in B.              
   ∈     . Now since     is s-singular, then there exist I     R with   I   A then          
  , hence    ⊆   and B is s-nonsingular then             then         and             
   ⊆         so xR ∩ A   0. Then        ⊆     Therefore, A     B. Conversely; let A    B 
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and consider the following exact sequence 0   A 
 
  B 

  
       0 and since i is s-essential 

monomorphism then by (Pro.(2.5)(b))      is s-singular.      

 

Remarks and Examples (2.7): 

1. A submodules of s-singular (s-nonsingular) R-module are s-singular (s-nonsingular). 

Proof: let A   B and B is s-singular, then         A ∩          and so A is s-singular. 

2. Let A be s-nonsingular R-module. Then every s-essential extension B of A with       small 

in B is s-nonsingular. 

Proof: Let A is s-nonsingular, then since A∩                and by assumption 

          . We must have          , since A    B then B is s-nonsingular . 

3. Every essential extension B of s-nonsingular submodule is s-nonsingular.  as a bove without 

external condition   

4. If         ∈     is a collection of s-nonsingular R-module   ,   ∈  , then    ∈     is s-

nonsingular. 

Proof: If {  } is any collection of s-nonsingular modules and A is s-singular then have 

Hom(A,  )   0  for all   by Pro.(2.5)    and by [7, P.87], whence Hom A,    ∈        
   ∈                 ∈        so that    ∈    is s-nonsingular. 

5. If A   B and B is s-singular module, then B/A is s-singular module.  

Proof: The projection map B   
 

 
  must carry             

 

 
  , then  

 

 
   

     

 
       

 

 
   and so  

 

 
  

is s-singular. 

6. The finite direct sum of s-singular modules is s-singular. 

Proof: Let        
  be any collection of s-singular modules then by Pro.(2.5)(b), gives us a short 

exact  sequence 0                0  such  

that          is s-essential monomorphisom for each   =      .  

Now 0       
          

   
        

   
  0 is exact too. And by [12, Pro.2.7] says that 

    
         

    is s-essential monomorphism. Hence by Pro.(2.5)(b), we say that     
   

 
 is 

s-singular. 

7. The module extension of s-nonsingular R-module is s-nonsingular.  

Proof: Suppose that 0    C   B   A   0 is an exact sequence of modules with C, A s-

nonsingular. A ccording to pro.(2.5)(a) we have HomR(M,C)   0 and HomR M,A    0 for any 

s-singular module M. By exactness of the sequence 0   HomR        HomR        

HomR        . We obtain HomR        and by Pro.            how that B is s-nonsingular. 

8. In s-nonsingular modules, every essential extension and module extensions of s-nonsingular 

are s-nonsingular (see (3),(7)), but we cannot conclude that the s-singular modules are closed 

under either module extensions or essential extensions. For example, let    as   -module if the 

submodules of     are 0, 2   and    , since every nonzero submodule of    contains 2   we 

obtain the s-essential  2   ,    . Now 2  . 2      , hence 2             Since 1        , it 
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follows that          2  . Now 2   is  s-singular R-module and since           2   ,          
is  s-singular thus      is an extension of the  s-singular module 2   by the s-singular module  

       , yet         not s-singular. We also note that    is an essential extension of the s-singular 

module 2  . Therefore the class of all s-singular R-modules is not closed under either module 

extensions or essential extensions. 

 

3. Small-Related Submodules  

 

Definition (3.1): Let    and    be submodules of M. We say that    and     are small-related 

(denoted by         ) provided that     ∩ X = 0 if and only if    ∩ X = 0, where X is small 

submodule of M. 

 If   ⊆    then          simply gives           

 

Lemma (3.2): Let L and N be submodules of an R-module M, then. 

(i) N   scl       scl   ; 

(ii) L     N implies that L⊆ scl   ; 

(iii)                      

Proof:    Let X be a small submodule of an R-module M such that X ∩                . For 

any x ∈ X∩scl(N), there is a right ideal I    R such that xI  ⊆  N. Then xI  ⊆  X ∩ N    , 

implies that x ∈ X           and hence x  . And the converse is clear. 

     Let l ∈ L and define a homomorphism       by         for each  ∈  . Since L   M 

so by [12, Pro.2.7] we get I = { r ∈ R | lr ∈ N} is s-essential right ideal of  R and hence l ∈ 

scl(N). 

     Replacing N by        in (i) we get                                          
                             

 

Proposition (3.3): Every submodule of s-nonsingular module is s-essential in its s-closure. 

Proof: Let M be s-nonsingular R-module and N a submodule of M. Since N + scl(0)     scl(N), 

i.e. N + scl(0)    scl(N) and scl(0) =     (M) = 0, so N     scl(N).     

 

Definition (3.4): Let M be an R-module. A submodule N of M is called small y-closed
 
(shortly, 

sy-closed) if M/N is s-nonsingular and denoted by      . 

 

Proposition (3.5): Let N be a submodule of an R-module M. Then the following statements are 

equivalent: 

     scl (N) = N 



International Journal of Advanced Scientific and Technical Research              Issue 6 volume 2, March. –April. 2016 

Available online on   http://www.rspublication.com/ijst/index.html                                                     ISSN 2249-9954 

©2016 RS Publication, rspublicationhouse@gmail.com Page 48 
 

      N is sy-closed submodule of M. 

Proof: (i) ⇒ (ii) Let      ∈      
 

 
  , then there exists a s-essential right ideal I of R such that 

    = 0 and       , where x∈  . So                then   ⊆           

Therefore, x∈            , then x∈N since N = scl(N). So     = 0 which is a contradiction   Hence 

     
 

 
   0. 

(ii) ⇒ (i) Let  ∈         then [N:x]    R and         ∈       ∈       ∈             

}. Hence             R and therefore,    ∈      
 

 
    , then  ∈   so        ⊆  . 

Then N is  sy-closed  submodule of M.         

 

Now, by using the equivalent of sy-closed
 
submodule of an R-module M, we can prove 

the following: 

 

Theorem (3.6): Let M be an R-module and let N be a submodule of M, we have  scl scl scl(N) = 

scl scl(N). In other words M/scl scl(N) is s-nonsingular. 

Proof: Let N ⊆ scl(N). Replacing N by         in part (i) of Lem.(3.2). We get 

sclscl(N)    scl(N) + scl(0)) = scl(N),                                      applying part    , we 

obtain               ⊆           , and hence                               

 

Corollary (3.7): Let M be an R-module. Then    
     is a sy-closed submodule in M.  

 

Lemma (3.8): Every sy-closed submodule of an R-module M contain    
    . 

Proof:  Let N be sy-closed submodule of M and let 0 ⊆ N then        ⊆         then 

   
                  ⊆                       .       

 

Remarks and Examples (3.9): 

1. Every sy-closed submodule is s-closed. 

Proof:  let A ≤ M and A    M, to show that A    M.  Suppose A    B ≤ M by Pro.(2.6), so 
 

 
 is 

s-singular and by assumption A   M, i.e.  
 

 
  is s-nonsingular, and 

 

 
   

 

 
 , then 

 

 
 is s-

nonsingular and since 
 

 
 is s-nonsingular and s-singular, so 

 

 
   0,  A   B then A    M. 

2. The converse of     is not be true, in general. For example: 0 is a s-closed
 
submodule of any 

module M, but 0 is not sy-closed
 
submodule of M.  

3. If M is s-nonsingular, then every s-closed submodule is sy-closed. 

Proof: Assume that M is a s-nonsingular R-module, and let A be an s-closed submodule in M. 

Put      
 

 
   

 

 
 
 
, where B is a submodule of M, with A   B. Clearly 

 

 
 is an s-singular module. 
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Now A   B and M is a s-nonsingular module, therefore B is a s-nonsingular submodule of M. 

Then by Pro.(2.6), A    B. But A is an s-closed submodule in M, thus A = B, and      
 

 
   = 0, 

hence A is sy-closed submodule in M.  

4. Every sy-closed submodule in M is y-closed. 

Proof: suppose N is an sy-closed submodule in M. i.e.      
 

 
    . Let   ∈    

 

 
  , then there 

exists an essential right ideal I of R such that   I = 0. And by [12], we get    ∈      
 

 
   = 0. Hence 

N is an y-closed submodule in M. 

5. The converse of (4) is not true in general, for example: Consider Z6 as Z6-module, then 2Z6    

Z6  since Z( 
   

    
) = 0, but it is not sy-closed submodule in Z6 , since    

   

    
   3Z6. 

6. If A   B   M, if A     M then B need not be sy-closed submodule of M. For example: 

Consider Z as Z-module and 0   4Z ≤ Z. Clearly 0     Z but      
 

  
                  s-

singular. 

7. An epimorphic image of sy-closed submodule need not be sy-closed submodule as the 

following example show: let   Z   
 

   
 be the natural epimorphism. Clearly 0     Z, but   (0) = 

0 is not sy-closed in 
 

   
 because 

 

   
     . 

 

Proposition (3.10): Let M be an R-module and let A   B   M, then 

1. If A    M, then A    B. 

2. Let A   B   M, then B    M if and only if 
 

 
    

 

 
 . 

Proof: 1. Assume that A    M, to show that A    B, let b ∈ B such that b A ∈       
 

 
    

Therefore, b ∈ M then b A ∈       
 

 
   = 0. So         , then b ∈ A and hence       

 

 
      

2. Let m ∈ M if b ∈   such that (m+b) + A ∈     
 

 
 
 

 
  by the third isomorphism theorem 

             M/B, so (m + b) +A ∈    (M/B) = 0 so m + b ∈ A, then       
   

   
     . 

 

Proposition (3.11): Let A, B be a submodules of an R-module M, if A    B and B     , then 

A     M. 

Proof: Let A     B and B    . Now consider the following short exact sequence: 

 0   
 

 
 
 
    

 

 
  
 
  

   

   
   . Where i is the inclusion map and   is the natural epimorphism. Since 

A   B     M, then 
 

 
    

 

 
  by (Pro.(2.10)(2)), since 

 

 
 and 

   

   
  are s-nonsingular, then by 

module extension of s-nonsingular R-module is s-nonsingular, then 
 

 
 is s-nonsingular.  
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Proposition (3.12):  Let f: M    be an epimorphism and A     M. If ker f ⊆ A, then 

f(A)    N. 

Proof: Assume that A     M. To show that f (A)     N. Let n ∈ N such that                 

R. Since f is an epimorphism, then          , for some m∈ M . Since ker f ⊆ A, then    

        ⊆            and hence ann              R, thus              R but A     

M, therefore   ∈   . Thus         ∈     .       

 

Proposition (3.13): Let f: M   N be an R-homomorphim and B     N, then for every s-singular 

submodule A of M, f(A) ⊆ B. 

Proof: Let      
 

 
   be the natural epimorphisim. Consider π○f: M  

 

 
    Now         

 
: A 

 
 

 
   but A is s-singular and  

 

 
   is s-nonsingular ( since  B     N ) therefore       

 
 = 0, thus 

        = 0 and hence      ⊆ ker         ⊆ B.       

 

Proposition (3.14): Let M be an R-module and A     M. Then                 . 

Proof: It is enough to show that       ⊆    (A). Let i:          M be the inclusion map and 

       
 

   
 be the natural epimorphism. Consider the map             

 

   
. Since         is 

s-singular and  
 

   
 is s-nonsingular (since A     M) then       0, (by Pro.(2.5). So π○i (   (M)) 

              . Thus       ⊆          . But                 A, therefore         

      .            

 

Proposition (3.15): Let M be an R-module and A     M. Then 
 

  
 is s-singular if and only if B 

    M. 

Proof: Let A     M and 
 

  
 is s-singular. By the third isomorphism theorem 

 

  
  

   

   
 since 

 

  
 is 

s-nonsingular by([12, Pro.(2.7)] 
 

 
     

 

 
. Let       

 

  
   be the natural epimorphism B   

     
 

  
          

 

  
   M. 

Conversely, let B     M and consider the following exact sequence 0    
  
  M         

and since i is s-essential monomorphism then by proposition      is s-singular.   

 

4. SY-Extending Modules 

 

In this section, we introduce small-y-extending (shortly sy-extending), which is 

generalization of y-extending modules. 
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Definition (4.1): An R-module M called an sy-extending, if every sy-closed submodule is a 

direct summand.  

Proposition (4.2): Every sy-closed submodule of sy-extending module is sy-extending. 

Proof: Let M be sy-extending module and A   M. We want to show that is sy-extending 

module. Let K    A and A   M then by Pro. (3.11) K     M. But M is sy-extending, therefore 

K is a direct summand of M and by [10] K is a direct summand of A.    

Proposition (4.3): Any direct summand of sy-extending modules is a sy-extending module.  

Proof: Suppose M = K    for some submodules K and   of M. let L be a sy-closed submodule 

of K. Since 
 

    
 = 

    

    
   

 

 
 then      is a sy-closed submodule of  M and M is sy-extending, 

so that     is a direct summand of M which gives that  L is a direct summand of M and since L 

a submodule of K . Then L is a direct summand of K. It follows that K is sy-extending module.  

The following proposition gives a characterization of sy-extending modules. 

Proposition (4.4): An R-module M is sy-extending module if and only if every sy-closed 

submodule of M is s-essential in a direct summand.  

Proof: ⇒ It is clear.  

    Let A    M, we want to show that A is a direct summand of M. Sine A    M, then by our 

assumption A    K, where K is a direct summand of M. Thus  K/A is s-singular by Pro. (2.6). 

But    ⊆     and M/A is s-nonsingular so K/A is s-nonsingular by Rem. (2.7) since K/A is s-

singular and s-nonsingular. Then     and hence A is a direct summand of M. Hence M is sy-

extending module.            

 

Theorem (4.5): Let M       be a direct sum of sy-extending modules   and    such that 

   is   -injective. Then M is a sy-extending module. 

Proof: Let N be a sy-closed
 

submodule of M. Then     is s-nonsingular and 

               ⊆    . By Pro. (2.7)         is s-nonsingular. Implies     is 

sy-closed submodule of    and   is sy-extending so      is a direct summand of    and 

hence of M. It follows that     is a direct summand of N so N = (     )    for some 
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submodule K of M. Let    : M   , i=1,2 denote the projection mapping. Consider the 

following diagram: 

 

 

 

 

Where         and          . Note that   is a monomorphism and    is   -injective. Thus, 

there exists a homomorphism          such that    =  . Let L={       x+    } then it 

can easily be checked that L is a submodule of M and L    . Moreover, M =     . If k  , 

then k =   +   for some      , i=1,2. Then                      , and this 

implies that k               Thus,  ⊆  . Since  
 

 
 

  

    
 

 

 
 , then     is s-

nonsingular, so K is sy-closed submodule of L and L     then K is a direct summand of L 

Thus, N is a direct summand of M, it follows that M is sy-extending module.    

 

Recall that a submodule N of an R-module M is called fully invariant if f(N) ≤ N for each 

R-endomorphism f of M [7]. 

Proposition (4.7): Let M =   ∈    be an R-module, such that every sy-closed submodule of M 

is fully invariant, then M is sy-extending module if and only if    is sy-extending for each i∈I . 

Proof: Clear that by Pro.(3.4). Conversely, let S be sy-closed submodule of M. For each i I, let 

         be the projection map. Now, let x ∈               ∈ ,    ∈    and      for 

all but finite many element of i∈I.          for each    . Since S is sy-closed, then by fully 

full invariance of S,   (x) =   ∈S∩   so x∈   ∈ (S∩  ). Thus  ⊆   ∈    

       But    ∈   ∩  ) ⊆ S, therefore S =    ∈   ∩  ). Since S≤sy M, then by proposition (3.10) 

S∩        for each    , but    is sy-extending for each    , therefore   ∩  ) is a direct 

summand of   . Thus S is a direct summand of M.  

      

 

K   

  

 1 

𝜑 
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