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ABSTRACT

In this work, we introduce and study the concept of small-singular submodules as a
generalization of the singular submodules. A number of properties and characterization of this
concept are obtained. Also we introduce small-closure of arbitrary submodules and small related
submodules, as well as we introduce and study the concept of small y-extending module as a
generalization of the y-extending module consequent a generalization of extending module.
More than that we introduce a small y-extending modules which is generalization of y-extending
modules.

Key words: Essential submodules, small submodules, s-essential submodules, y-closed
submodules, sy-closed submodules, (s-) singular module, (s-) closure submodules, (s-) related
submodules, y-extending and sy- extending modules.

1. INTRODUCTION

In this paper, R an associative ring with identity, and M a unitary right R-module. It is
well known that a submodule N of an R-module M is said to be small in M notationally, N < M,
if N + L = M for every submodule L of M, then L = M. Dually, a nonzero submodule N of M is
essential, if whenever NNL = (0), then L = (0) for every submodule L of M. In this case, we
write N <. M and M is called essential extension of N [7]. The concept of essential submodule

has been generalized to small-essential submodule by D. X. Zhou and X. R. Zhang, where it is
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defined by them as follows: Let N be a submodule of an R-module M. N is said to be small-
essential in M (denoted by N <, M), if NN L =0with L <; M implies L = 0[12].

Goldie [5], Johnson and Wong [6], defined the closure of a submodule N of an R-module
M (denoted by cl(N)), as follows cI(N) ={m e M | [N:M] is an essential right ideal of R}.
Equivalently, cl(N) = { meM | ml S N} for some essential ideal 1 of R}. Where [N:M] the
residual of M in N defined as follows: [N:M] ={re€ R IrM < N }[9]. In particular if N = 0,
then cl(0) is the singular submodule and denoted by Z(M) where Z(M) = {m € M : rr(m) <. R}
[4]. Moreover, if Z(M) = 0, then M is called a nonsingular R-module and s-singular if Z5 (M) =
M. In this paper, we define the small closure of N (denoted by scl(N)), it is stronger than the
concept of closure submodules. In particular if N = 0, then scl(0) is the small-singular R-module
and denoted by 73 (M). Moreover, if Z5 (M) = 0, then M is called a small-nonsingular module
and small-singular module if Z5 (M) = M. And we give the definition of small related of two

submodules (denoted by ~%) which is generalization the concept of related [8].

A. Tercan [11] introduced the concept of “CLS-modules” as a generalization of
extending modules. We introduce the small y-extending (shortly sy-extending) modules as a
generalization of y-extending modules (CLS). An R-module M is called sy-extending, if every
sy-closed submodule is a direct summand. Where N is sy-closed submodule of M if M\N is s-
nonsingular. It is stronger than the concept of y-closed submodules [4]. Also we study the
relationships between sy-closed submodules, s-closed submodules [1] and y-closed submodules.

2. Small-Singular Submodules

In this section we will give definition for the small-singular which depends on s-essential
ideal and small closure with some of their properties.

Definition (1.1): Let M be an R-module, for each submodule N of M, we define
scl(N) = {x € M |xI S N for some s-essential right ideal | of R}

Equivalently, scl(N)={x € M |[N:x] <scR}. It is clear thatN < cl(N) € scl(N). We call
scl(N) the small closure of N.

In particular, we define the small singular (shortly s-singular) of M (denoted by 75 (M))
Z°(M) = { x € M | ann(X) <R } and equivalently Z3(M)= { xe M | xI = 0 for some s-
essential right ideal | of R}, it is clear that scl(0) =Z5 (M) and define scl(scl(0)) the second s-
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singular of M, denoted by Z3(M). If Z5 (M) = 0, then M is called an s-nonsingular module and s-
singular module if Z% (M) = M. Note that in case R is right hollow ring (i.e. every proper right
ideal in R is small) and M is R-modules, then Z(M) = Z5 (M).

Proposition (1.2): Let M be an R-module and N is a s-essential submodule in M. Then [N: M] is
a s-essential right ideal of R.

Proof: Clear by by [12, Pro.2.7].

Remarks and Examples (1.3):
1. scl(N) is a submodule of M.

Proof: It is clear that scl(N) is non-empty. Let X, y be two elements in scI(N). Then there are two
s-essential right ideals I and J such that xI € N and yJ € N by [12] we have that I N J is s-
essential in R, therefore (x +y) (I N J) € N, this implies that x + y € scl(N). For each r € R and x
€ scl(N), we have by above proposition, [I: 1] <. R so (xr) [I:f] € xI € N whence xr € scl(N).
Thus scl(N) is a submodule of M.

2. Every singular submodule is s-singular. But the converse may not true, for example: Zg as Ze-
module then. Z5(2Z¢) = 2Z¢ but Z(2Z¢) = 0, because the essential ideal of Zg only Z¢ but s-
essential ideal of Z are { Zg, 2Z¢ , 3Z¢}.

3. Every s-nonsingular submodule of M is nonsingular. The converse may not true clarify in (2).

The following two propositions give some properties of s-singular submodules:

Proposition (2.4): Let M be an R-module. Then the following hold:

1. If M — N is a R-homomorphism then f (Z5(M) ) € ZS(N). In particular, Z5(M) is fully
inverant submodule in M.

2. If N is a submodule of M, then ZS(N) = NN Z3(M) .
3. If N is a submodule of M, then Z5(N) = NN Z5(M) .
4. MZ5(R) € Z5(M).

5 MZ3(R) € Z3(M).

Proof:

1. Letw € f (Z5(M)) then there exist m € Z5(M) such that w = f (m) and for each 1<, R then
ml =0. We claimthat wl = 0, wl = f(m)I = f(ml) =f(0) = 0, thusw € Z5(N).

2. And (3) directly from the definition.

4. Consider the following map ¢, : Rg = My such that ¢, (r) =mr foreachr e Randm €
Mand ¢, is homomorphism, thus mZ$(R) = ¢, (Z° (R)) € Z5(M).

5. By the same way in (4).
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Recall that a monomorphism f: M—N is s-essential in case Imf <;. N [12].

Proposition (2.5): (a) An R-module C is s-nonsingular if and only if Homg(A, C) = 0 for all s-
singular modules A.

(b) A finitely generated R-module C is s-singular if and only if there exist a short exact
f
sequence0 - A—-B %, € - 0 such that f is s-essential monomorphism.

Proof : (a) If A is s-singular, C is s-nonsingular, and f: A — C, then f(A) = f(Z5(A)) € Z5(C) =
0, then f (A) = 0. Thus Homg (A,C) = 0.

Conversely, if Homg(A,C) = Ofor all s-singular modules A, then in particular
Homg(Z%(C),C) = 0. Now the inclusion map i: Z5(C) = C is zero, hence Z5(C) = 0. []

(' b) Assume that C is a finitely generated s-singular and choose a short exact sequence,

0> A = ker (g) % B3 ¢ - 0such that B is finitely generated free module. Let { b;}iL, isa
basis for B , then foreachi=1, ... ,n , g (b;) such that C = Z%(C) there exist s-essential right
ideal I; of R such that g (b;) I; =0, then g (b;I; ) = 0 hence b;I; € ker g = Imi = A. Since [;
<se R foreachi=1,...,n, we getb;l; <sc bjR foreachi=1, ..., n, since suppose for each
i=1, ..., n(# 0) b;x € b;R, with b;xR <, b;R, then (# 0)x € R and xR <¢ R and since [; <. R,
then there is an element r € R such that (# 0)xr € I; and by unigness of basis we get (#
0)b;xr € b;l;. Hence by [12, Pro.2.7] @i, b;[; <., bjRg = B. Inasmuch as @, b;[; <
A, we obtain A <. B, and the inclusion map A = ker(g) — B is a s-essential monomorphison.

Conversely, first assume that we have an exact sequence. Now suffices to show that C < Z3(C).
let c € C and given any B there existry ,r,, ..., r, ERsuchthatb = L, b;r; andg(b) =
c. when {b; }, is a basis for B. Define @: R — B by ¢(r)= br, ¢ is R-homomorphism by
hypothesis f(A) <., B then by [12, Pro.2.7], ¢! (f (A)) <. R, that is, the right ideal I = {r € R
| br € f(A)} <scR. Now bl < f (A) = ker(g) by exact sequence which implies that g(bl) = 0,
hence (g(b))I = 0 then ¢ = g(b) € Z3(C). Therefore C = g(B) < Z3(C), since g is onto, hence
C = Z5(C) and C is s-singular. 0

The following proposition characterizes the small essentially in terms of small
singularity.

Proposition (2.6): Let A be a submodule of s-nonsingular module B. Then B/A is s-singular if
and only if A <, B.

Proof: Suppose that B /A is s-singular. Let x(# 0) € B with xR is small in B. Then X = x +
A € B/A. Now since B/A is s-singular, then there exist | <;,c Rwithx | = AthenxI + A =
A, hence xI € A and B is s-nonsingular then x € Z5(B), then xI # 0and 0 # xI=xI N
A C xRNAsoxRMNA=#0.Then0 # xR S A. Therefore, A <. B. Conversely; let A <,.B
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and consider the following exact sequence 0 — A ~B3 B/A — 0 and since i is s-essential
monomorphism then by (Pro.(2.5)(b)) B/A is s-singular. O

Remarks and Examples (2.7):
1. A submodules of s-singular (s-nonsingular) R-module are s-singular (s-nonsingular).
Proof: let A < B and B is s-singular, then Z5(A) = A N Z%(B) = A and so A is s-singular.

2. Let A be s-nonsingular R-module. Then every s-essential extension B of A with Z5(B) small
in B is s-nonsingular.

Proof: Let A is s-nonsingular, then since ANZ3(B) = Z35(A) =0 and by assumption
Z° (B) < B. We must have Z3(B) = 0, since A <,.B then B is s-nonsingular .

3. Every essential extension B of s-nonsingular submodule is s-nonsingular. (as a bove without
external condition )

4. If { C4J a € A} is a collection of s-nonsingular R-module C,, a € A, then []yeaCq IS S-
nonsingular.

Proof: If {C,} is any collection of s-nonsingular modules and A is s-singular then have
Hom(A,C,) =0 for all a by Pro.(2.5)(a) and by [7, P.87], whence HOM(A, [JqeaCs) =
[Ta e AHom(A, Cy) = [lae a(0) = 0 so that [T, e ACqis S-noNsingular.

5. If A < B and B is s-singular module, then B/A is s-singular module.

B _ Z5(B)

Proof: The projection map B — E must carry Z5(B) — ZS(E), then " < ZS(E) and so %

IS s-singular.
6. The finite direct sum of s-singular modules is s-singular.

Proof: Let {C;}iL, be any collection of s-singular modules then by Pro.(2.5)(b), gives us a short
exact sequence 0 —» A; - B; » C; = 0 such

that A; - B; is s-essential monomorphisom for eachi=1, ... n.

Now 0 - @{L; A; - @, B; = @i, C; =0 is exact too. And by [12, Pro.2.7] says that
L, A; = @iL, B; is s-essential monomorphism. Hence by Pro.(2.5)(b), we say that @j_, C; is
s-singular.

7. The module extension of s-nonsingular R-module is s-nonsingular.

Proof: Suppose that 0 - C— B — A — 0 is an exact sequence of modules with C, A s-
nonsingular. A ccording to pro.(2.5)(a) we have Homg(M,C) =0 and Homg(M,A) = 0 for any
s-singular module M. By exactness of the sequence 0 — Homg(M,C) -»Homg(M,B) —
Homg( M, A). We obtain Homg(M, B) = 0 and by Pro.(2.2.6)(a) show that B is s-nonsingular.

8. In s-nonsingular modules, every essential extension and module extensions of s-nonsingular
are s-nonsingular (see (3),(7)), but we cannot conclude that the s-singular modules are closed
under either module extensions or essential extensions. For example, let Z, as Z,-module if the
submodules of Z, are 0, 2Z, and Z, , since every nonzero submodule of Z, contains 2Z, we
obtain the s-essential {2Z, , Z,}. Now 2Z,. 2Z, = 0, hence 2Z, < Z5(Z,). Since 1¢ Z5(Z,) , it
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follows that Z5(Z,) = 2Z,. Now 2Z, is s-singular R-module and since Z, /27, =27, ,Z, /2Z,
is s-singular thus Z, is an extension of the s-singular module 2Z, by the s-singular module
7, /27,, yet Z, is not s-singular. We also note that Z, is an essential extension of the s-singular
module 2Z,. Therefore the class of all s-singular R-modules is not closed under either module
extensions or essential extensions.

3. Small-Related Submodules

Definition (3.1): Let N, and N, be submodules of M. We say that N, and N, are small-related
(denoted by N; ~° N,) provided that N; N X =0 if and only if N, N X = 0, where X is small
submodule of M.

If N; € N, then N; ~5 N, simply gives N; <. N,.

Lemma (3.2): Let L and N be submodules of an R-module M, then.
(i) N + scl(0) ~*® scl(N);

(i) L ~®% N implies that L< scl(N);

(iii) scl(N)~ Sscl scl(N).

Proof:(i) Let X be a small submodule of an R-module M such that X N(N + scl(0)) = 0. For
any x € XNscl(N), there is a right ideal | <,.R such that xI < N. Thenxl € X N N = 0,
implies that x € XN scl(0) = 0 and hence x= 0. And the converse is clear.

(ii) Let I € L and define a homomorphism a: R — M by a(r) = Ir for each r € R. Since L<; M
so by [12, Pro.2.7] we get | = { r e R | Ir € N} is s-essential right ideal of R and hence | €
scl(N).

(iii)Replacing N Dby scIl(N) in (i) we get sclscl(N)~*%(scl (N) + scl(0)) = scl(N)
(i.e.,scl(N) <ge sclscl(N)) .[J

Proposition (3.3): Every submodule of s-nonsingular module is s-essential in its s-closure.

Proof: Let M be s-nonsingular R-module and N a submodule of M. Since N + scl(0) ~ $ scl(N),
i.e. N + scl(0) <gescl(N) and scl(0) = Z% (M) =0, so N <, scl(N). O

Definition (3.4): Let M be an R-module. A submodule N of M is called small y-closed (shortly,

sy-closed) if M/N is s-nonsingular and denoted by N <, M.

Proposition (3.5): Let N be a submodule of an R-module M. Then the following statements are
equivalent:

(i) scl (N) =N
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(ii) N is sy-closed submodule of M.

Proof: (i) = (ii) Let(0 #)x € Z3 (%) then there exists a s-essential right ideal | of R such that
XI= 0 and Xx=x+ N, where xe M. So(x+N)I=0, xI+ N=0 then xI €N = scl(N).
Therefore, xe scl(scl(N)), then xeN since N = scl(N). So X = 0 which is a contradiction. Hence

(%)=

(if) = (i) Let x € scl(N), then [N:x] <geRand [N:x] ={r€ R|xre N} ={reR|(x+N)r=N
}. Hence rr(x+ N) <;. R and therefore, x + N € 7% (%) =0, then x € N so scl(N) S N.

Then N is sy-closed submodule of M.

Now, by using the equivalent of sy-closed submodule of an R-module M, we can prove
the following:

Theorem (3.6): Let M be an R-module and let N be a submodule of M, we have scl scl scl(N) =
scl scl(N). In other words M/scl scl(N) is s-nonsingular.

Proof: Let N <scl(N). Replacing N by scI(N) in part (i) of Lem.(3.2). We get
sclscl(N)~ S(scl(N) + scl(0)) = scl(N), scl scl scl(N)~ Sscl scl(N)~ Sscl(N) applying part(ii), we
obtain sclsclscl(N) < sclscl(N), and hence scl scl scl(N) = scl scl(N). O

Corollary (3.7): Let M be an R-module. Then Z3 (M) is a sy-closed submodule in M.

Lemma (3.8): Every sy-closed submodule of an R-module M contain Z3 (M).

Proof: Let N be sy-closed submodule of M and let 0 € N then scl(0) € scIN =N then
Z5(M) = sclscl(0) € sclscIN = scIN = N. O

Remarks and Examples (3.9):
1. Every sy-closed submodule is s-closed.

Proof: let A<M and A <4,M, to show that A <,:M. Suppose A<, B <M by Pro.(2.6), so E is
s-singular and by assumption A<M, i.e. % is s-nonsingular, and % < %, then % IS s-
nonsingular and since E is s-nonsingular and s-singular, so E =0, A=Bthen A <,.M.

2. The converse of (1) is not be true, in general. For example: 0 is a s-closed submodule of any
module M, but 0 is not sy-closed submodule of M.

3. If M is s-nonsingular, then every s-closed submodule is sy-closed.

Proof: Assume that M is a s-nonsingular R-module, and let A be an s-closed submodule in M.
Put Z° (%) = E , Where B is a submodule of M, with A < B. Clearlyi IS an s-singular module.
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Now A < B and M is a s-nonsingular module, therefore B is a s-nonsingular submodule of M.
Then by Pro.(2.6), A <,.B. But A is an s-closed submodule in M, thus A = B, and Z° (%) =0,
hence A is sy-closed submodule in M.

4. Every sy-closed submodule in M is y-closed.

Proof: suppose N is an sy-closed submodule in M. i.e. Z5 (%) =0.Letx€ Z(%), then there

exists an essential right ideal 1 of R such that XI = 0. And by [12], we get X € Z° (M) = 0. Hence

N
N is an y-closed submodule in M.

5. The converse of (4) is not true in general, for example: Consider Zg as Zg-module, then 2Zs <,

Zs since Z( ZZTZ) =0, but it is not sy-closed submodule in Zg, since ZS(ZZTGG) = 3Zs.

6. If A<B <M, if A<, M then B need not be sy-closed submodule of M. For example:
Consider Z as Z-module and 0 <4Z < Z. Clearly 0 <, Z but Z° (é) = 715(Zy) = 74 s-
singular.

7. An epimorphic image of sy-closed submodule need not be sy-closed submodule as the

following example show: let t :Z— % be the natural epimorphism. Clearly 0 <, Z, but 1 (0) =

. . Z Z
0 is not sy-closed in > because 7 = Z,.

Proposition (3.10): Let M be an R-module and let A < B < M, then

1 IfA <, M, then A <, B.

2.LetA<B<M,thenB <

. .. B M
<syM if and only if T Ssy 4

Proof: 1. Assume that A <, M, to show that A <.,B, let b € B such that b+A € Z° (
M

Therefore, b € M then b+A € Z° (%) =0.Sob + A= A thenb € Aand hence Z° (=)

I > w

)

2. Let m € M if b € B such that (m+b) + A €Z° (3 /3) by the third isomorphism theorem

A
M/A

(M /A)/(B/A) =MIB,so(m+b)+A € Z5 (M/B) =0som +b € A, then Z° (ﬁ): 0.

Proposition (3.11): Let A, B be a submodules of an R-module M, if A<, B and B<

—sy —Ssy
A <y M.

Proof: Let A <;, B and B<y,

M, then

M. Now consider the following short exact sequence:

i T
0- % - % - 1:7/1? — 0. Where i is the inclusion map and m is the natural epimorphism. Since

A<BC<

<sy M, then % < 2 by (Pro.(2.10)(2)), since E and 22 are s-nonsingular, then by

=Sy A B/A
. . . . M. .
module extension of s-nonsingular R-module is s-nonsingular, then < Is s-nonsingular. [
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Proposition (3.12): Let f: M — Nbe an epimorphism and A < . If ker f € A, then

f(A)<gy N

Proof: Assume that A <g, M. To show that f (A) <, N. Let n € N such that rg(n + f(A) ) <.

R. Since f is an epimorphism, then n = f(m) , for some me M . Since ker f € A, then rg
(n+f(A)) € rg (m+ A) and hence ann(n + f(A) ) <¢e R, thus rg (m + A) <, R but A <g
M, thereforem € A. Thusn = f(m) € f(A). 0

—sy

Proposition (3.13): Let f: M — N be an R-homomorphim and B <
submodule A of M, f(A) € B.

<sy N, then for every s-singular

Proof: Let m: N —>g be the natural epimorphisim. Consider wof: M —>E Now ‘ITOfl A

—>% but A is s-singular and > s s- nonsingular ( since B <g, N ') therefore o f L\ =0, thus
1(f(A)) = 0 and hence f(A) < ker m,f(A) € B. O

Proposition (3.14): Let M be an R-module and A <, M. Then Z° (M) = Z° (A).

Proof: It is enough to show that Z35 (M) € Z5 (A). Let i: Z5 (M) — M be the inclusion map and
m: M - E be the natural epimorphism. Consider the map mo i : Z5 (M) — AM. SinceZS(M) is
s-singular and M iss- nonsingular (since A <, M) then t o i = 0, (by Pro.(2.5). So noi (Z° (M))
= m (Z° (M)) = 0. ThusZS (M) € ker A = A. But Z3(A) = Z5 (M) N A, therefore Z35 (A) =
75 (M). O

Proposition (3.15): Let M be an R-module and A <, M. Then — is s-singular if and only if B
SSC:'! M

Proof: Let A <;y M and — s s-singular. By the third isomorphism theorem g = M/LA smce Mis

s-nonsingular by([12, Pro (2 7)] <ge — Letmm:M - % be the natural epimorphism B =
_I(K) =se _1(X) =

Conversely, let B <, M and consider the following exact sequence 0 — B 5 M- M/B - 0

and since i is s-essential monomorphism then by proposition M/A is s-singular. 0

4. SY-Extending Modules

In this section, we introduce small-y-extending (shortly sy-extending), which is

generalization of y-extending modules.
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Definition (4.1): An R-module M called an sy-extending, if every sy-closed submodule is a

direct summand.
Proposition (4.2): Every sy-closed submodule of sy-extending module is sy-extending.

Proof: Let M be sy-extending module and A<g,M. We want to show that is sy-extending

module. Let K <., A and A<

<sy <syM then by Pro. (3.11) K <4, M. But M is sy-extending, therefore

K is a direct summand of M and by [10] K is a direct summand of A. 0
Proposition (4.3): Any direct summand of sy-extending modules is a sy-extending module.

Proof: Suppose M = K@K’ for some submodules K and K’of M. let L be a sy-closed submodule

M_ - KOK ~ X then L@K' isa sy-closed submodule of M and M is sy-extending,

of K. Since =
LeK’ LeK ~— L

so that L&K'is a direct summand of M which gives that L is a direct summand of M and since L

a submodule of K. Then L is a direct summand of K. It follows that K is sy-extending module.
The following proposition gives a characterization of sy-extending modules.

Proposition (4.4): An R-module M is sy-extending module if and only if every sy-closed

submodule of M is s-essential in a direct summand.
Proof:(=)lt is clear.

(&) Let A <M, we want to show that A is a direct summand of M. Sine A <., M, then by our

sy
assumption A <K, where K is a direct summand of M. Thus K/A is s-singular by Pro. (2.6).
But K/A € M/A and M/A is s-nonsingular so K/A is s-nonsingular by Rem. (2.7) since K/A is s-
singular and s-nonsingular. Then A = K and hence A is a direct summand of M. Hence M is sy-

extending module.

Theorem (4.5): Let M= M;@®M, be a direct sum of sy-extending modules M;and M, such that

M; is M,-injective. Then M is a sy-extending module.

Proof: Let N be a sy-closed submodule of M. Then M/N is s-nonsingular and
M;/NNnM;=M+ N/N € M/N. By Pro. (2.7) M;/N n M, is s-nonsingular. Implies N n M;is
sy-closed submodule of M; and M;is sy-extending so N n M, is a direct summand of M, and
hence of M. It follows that N n M,is a direct summand of N so N = (N n M;) &K for some
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submodule K of M. Let m;: M- M;, i=1,2 denote the projection mapping. Consider the

following diagram:

Where a = m,|k and B = 1, |k . Note that a is a monomorphism and M; is M,-injective. Thus,
there exists a homomorphism ¢: M, — M; such that @a = . Let L={ x € M,: x+@(x)} then it
can easily be checked that L is a submodule of M and L = M,. Moreover, M =M; @L. If ke K,
then k =m,;+m, for some m; € M;, i=1,2. Thenm; = B(k) = @a(k) = @(m,), and this

o _ . M_ M
implies that k= ¢@(m,) + m, € L. Thus,K € L. Since N = NAM,

EB% , then L/K is s-

nonsingular, so K is sy-closed submodule of L and L = M, then K is a direct summand of L

Thus, N is a direct summand of M, it follows that M is sy-extending module.

Recall that a submodule N of an R-module M is called fully invariant if f(N) <N for each
R-endomorphism f of M [7].

Proposition (4.7): Let M = @;¢; M; be an R-module, such that every sy-closed submodule of M

is fully invariant, then M is sy-extending module if and only if M; is sy-extending for each i€l .

Proof: Clear that by Pro.(3.4). Conversely, let S be sy-closed submodule of M. For each i€l, let
m; ¢ M — M; be the projection map. Now, let X € S,then x = };¢;m;, m; € M; and m; = 0 for
all but finite many element of i€l. m;(x) = m; for each i € I. Since S is sy-closed, then by fully
full invariance of S, m(X) = mESNM; S0 X€E @;(SNM;). Thus S S @i (SN
M;). But @;(SNM;) € S, therefore S = @, (SNM;). Since S<sy M, then by proposition (3.10)
SNM; <¢, M; for each i € I, but M; is sy-extending for each i € I, therefore (SNM;) is a direct

summand of M;. Thus S is a direct summand of M.

]
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