Small-Singular Submodules and SY-Extending Modules

Mehdi Sadiq Abbas ^{#1}, Faten Hashim Mohammed ^{#2}

Department of Mathematics, College of Science, University of Mustansiriyah, Baghdad, Iraq.

ABSTRACT

In this work, we introduce and study the concept of small-singular submodules as a generalization of the singular submodules. A number of properties and characterization of this concept are obtained. Also we introduce small-closure of arbitrary submodules and small related submodules, as well as we introduce and study the concept of small y-extending module as a generalization of the y-extending module consequent a generalization of extending module. More than that we introduce a small y-extending modules which is generalization of y-extending modules.

Key words: Essential submodules, small submodules, s-essential submodules, y-closed submodules, sy-closed submodules, (s-) singular module, (s-) closure submodules, (s-) related submodules, y-extending and sy-extending modules.

1. INTRODUCTION

In this paper, R an associative ring with identity, and M a unitary right R-module. It is well known that a submodule N of an R-module M is said to be small in M notationally, $N \le_s M$, if N + L = M for every submodule L of M, then L = M. Dually, a nonzero submodule N of M is essential, if whenever $N \cap L = (0)$, then L = (0) for every submodule L of M. In this case, we write $N \le_e M$ and M is called essential extension of N [7]. The concept of essential submodule has been generalized to small-essential submodule by D. X. Zhou and X. R. Zhang, where it is

defined by them as follows: Let N be a submodule of an R-module M. N is said to be small-essential in M (denoted by N \leq_{se} M), if N \cap L = 0 with L \leq_{s} M implies L = 0[12].

Goldie [5], Johnson and Wong [6], defined the closure of a submodule N of an R-module M (denoted by cl(N)), as follows $cl(N) = \{ m \in M \mid [N:M] \text{ is an essential right ideal of } R \}$. Equivalently, $cl(N) = \{ m \in M \mid mI \subseteq N \}$ for some essential ideal I of R }. Where [N:M] the residual of M in N defined as follows: $[N:M] = \{ r \in R \mid rM \subseteq N \}[9]$. In particular if N = 0, then cl(0) is the singular submodule and denoted by Z(M) where $Z(M) = \{ m \in M : r_R(m) \le_e R \}$ [4]. Moreover, if Z(M) = 0, then M is called a nonsingular R-module and s-singular if $Z^s(M) = M$. In this paper, we define the small closure of N (denoted by scl(N)), it is stronger than the concept of closure submodules. In particular if N = 0, then scl(0) is the small-singular R-module and denoted by $Z^s(M)$. Moreover, if $Z^s(M) = 0$, then M is called a small-nonsingular module and small-singular module if $Z^s(M) = M$. And we give the definition of small related of two submodules (denoted by \sim^s) which is generalization the concept of related [8].

A. Tercan [11] introduced the concept of "CLS-modules" as a generalization of extending modules. We introduce the small y-extending (shortly sy-extending) modules as a generalization of y-extending modules (CLS). An R-module M is called sy-extending, if every sy-closed submodule is a direct summand. Where N is sy-closed submodule of M if M\N is s-nonsingular. It is stronger than the concept of y-closed submodules [4]. Also we study the relationships between sy-closed submodules, s-closed submodules [1] and y-closed submodules.

2. Small-Singular Submodules

In this section we will give definition for the small-singular which depends on s-essential ideal and small closure with some of their properties.

Definition (1.1): Let M be an R-module, for each submodule N of M, we define $scl(N) = \{ x \in M \mid xI \subseteq N \text{ for some s-essential right ideal I of R} \}$

Equivalently, $scl(N) = \{ x \in M \mid [N:x] \leq_{se} R \}$. It is clear that $N \subseteq cl(N) \subseteq scl(N)$. We call scl(N) the small closure of N.

In particular, we define the small singular (shortly s-singular) of M (denoted by $Z^s(M)$) $Z^s(M) = \{ x \in M \mid ann(x) \leq_{se} R \}$ and equivalently $Z^s(M) = \{ x \in M \mid xI = 0 \text{ for some s-essential right ideal I of R} \}$, it is clear that $scl(0) = Z^s(M)$ and define scl(scl(0)) the second s-

singular of M, denoted by $Z_2^s(M)$. If $Z^s(M) = 0$, then M is called an s-nonsingular module and s-singular module if $Z^s(M) = M$. Note that in case R is right hollow ring (i.e. every proper right ideal in R is small) and M is R-modules, then $Z(M) = Z^s(M)$.

Proposition (1.2): Let M be an R-module and N is a s-essential submodule in M. Then [N: M] is a s-essential right ideal of R.

Proof: Clear by by [12, Pro.2.7].

Remarks and Examples (1.3):

1. scl(N) is a submodule of M.

Proof: It is clear that scl(N) is non-empty. Let x, y be two elements in scl(N). Then there are two s-essential right ideals I and J such that $xI \subseteq N$ and $yJ \subseteq N$ by [12] we have that $I \cap J$ is s-essential in R, therefore (x + y) $(I \cap J) \subseteq N$, this implies that $x + y \in scl(N)$. For each $r \in R$ and $x \in scl(N)$, we have by above proposition, $[I:r] \leq_{se} R$ so (xr) $[I:r] \subseteq xI \subseteq N$ whence $xr \in scl(N)$. Thus scl(N) is a submodule of M.

- 2. Every singular submodule is s-singular. But the converse may not true, for example: Z_6 as Z_6 -module then. $Z^s(2Z_6) = 2Z_6$ but $Z(2Z_6) = 0$, because the essential ideal of Z_6 only Z_6 but s-essential ideal of Z_6 are $\{Z_6, Z_6, Z_6, Z_6\}$.
- 3. Every s-nonsingular submodule of M is nonsingular. The converse may not true clarify in (2).

The following two propositions give some properties of s-singular submodules:

Proposition (2.4): Let M be an R-module. Then the following hold:

- **1**. If $f: M \to N$ is a R-homomorphism then $f(Z^s(M)) \subseteq Z^s(N)$. In particular, $Z^s(M)$ is fully inverant submodule in M.
- 2. If N is a submodule of M, then $Z^s(N) = N \cap Z^s(M)$.
- 3. If N is a submodule of M, then $Z_2^s(N) = N \cap Z_2^s(M)$.
- **4**. $M Z^{s}(R) \subseteq Z^{s}(M)$.
- 5. $M Z_2^s(R) \subseteq Z_2^s(M)$.

Proof:

- 1. Let $w \in f(Z^s(M))$ then there exist $m \in Z^s(M)$ such that w = f(m) and for each $I \leq_{se} R$ then mI = 0. We claim that wI = 0, wI = f(m)I = f(mI) = f(0) = 0, thus $w \in Z^s(N)$.
- 2. And (3) directly from the definition.
- **4.** Consider the following map $\phi_m: R_R \to M_R$ such that $\phi_m(r) = mr$ for each $r \in R$ and $m \in M$ and ϕ_m is homomorphism, thus $mZ^s(R) = \phi_m(Z^s(R)) \subseteq Z^s(M)$.
- **5**. By the same way in (4).

Recall that a monomorphism f: $M \rightarrow N$ is s-essential in case Imf $\leq_{se} N$ [12].

Proposition (2.5): (a) An R-module C is s-nonsingular if and only if $\operatorname{Hom}_R(A, C) = 0$ for all s-singular modules A.

(**b**) A finitely generated R-module C is s-singular if and only if there exist a short exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ such that f is s-essential monomorphism.

Proof: (a) If A is s-singular, C is s-nonsingular, and f: $A \to C$, then $f(A) = f(Z^s(A)) \subseteq Z^s(C) = 0$, then f(A) = 0. Thus $Hom_R(A, C) = 0$.

Conversely, if $\text{Hom}_R(A,C) = 0$ for all s-singular modules A, then in particular $\text{Hom}_R(Z^s(C),C) = 0$. Now the inclusion map i: $Z^s(C) \to C$ is zero, hence $Z^s(C) = 0$.

(b) Assume that C is a finitely generated s-singular and choose a short exact sequence,

 $\begin{array}{l} 0 \rightarrow A = \ker\left(g\right) \stackrel{i}{\rightarrow} B \stackrel{g}{\rightarrow} C \rightarrow 0 \text{ such that } B \text{ is finitely generated free module. Let } \left\{b_i\right\}_{i=1}^n \text{ is a} \\ \text{basis for } B \text{ , then for each } i = 1, \ldots, n \text{ , } g\left(b_i\right) \text{ such that } C = Z^s(C) \text{ there exist s-essential right ideal } I_i \text{ of } R \text{ such that } g\left(b_i\right) I_i = 0, \text{ then } g\left(b_iI_i\right) = 0 \text{ hence } b_iI_i \subseteq \ker g = Im i = A. \text{ Since } I_i \leq_{se} R \text{ for each } i = 1, \ldots, n, \text{ we get } b_iI_i \leq_{se} b_iR \text{ for each } i = 1, \ldots, n, \text{ since suppose for each } i = 1, \ldots, n \neq 0 \text{ bis} \text{ if } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \in B, k \neq 0 \text{ such that } k \neq 0 \text{ such that$

Conversely, first assume that we have an exact sequence. Now suffices to show that $C \leq Z^s(C)$. let $c \in C$ and given any B there exist r_1 , r_2 , ..., $r_n \in R$ such that $b = \sum_{i=1}^n b_i \, r_i$ and g(b) = c. when $\{b_i\}_{i=1}^n$ is a basis for B. Define $\phi \colon R \to B$ by $\phi(r) = br$, ϕ is R-homomorphism by hypothesis $f(A) \leq_{se} B$ then by [12, Pro.2.7], $\phi^{-1}(f(A)) \leq_{se} R$, that is, the right ideal $I = \{r \in R \mid br \in f(A)\} \leq_{se} R$. Now $bI \leq f(A) = ker(g)$ by exact sequence which implies that g(bI) = 0, hence g(b) = 0 then $g(b) \in Z^s(C)$. Therefore $g(b) \subseteq Z^s(C)$ and $g(b) \subseteq Z^s(C)$ is s-singular.

The following proposition characterizes the small essentially in terms of small singularity.

Proposition (2.6): Let A be a submodule of s-nonsingular module B. Then B/A is s-singular if and only if $A \leq_{se} B$.

Proof: Suppose that B /A is s-singular. Let $x(\neq 0) \in B$ with xR is small in B. Then $\overline{x} = x + A \in B/A$. Now since B/A is s-singular, then there exist $I \leq_{se} R$ with $\overline{x} I = A$ then xI + A = A, hence $xI \subseteq A$ and B is s-nonsingular then $x \notin Z^s(B)$, then $xI \neq 0$ and $0 \neq xI = xI \cap A \subseteq xR \cap A$ so $xR \cap A \neq 0$. Then $0 \neq xR \subseteq A$. Therefore, $A \leq_{se} B$. Conversely; let $A \leq_{se} B$

and consider the following exact sequence $0 \to A \xrightarrow{i} B \xrightarrow{g} B/A \to 0$ and since i is s-essential monomorphism then by (Pro.(2.5)(b)) B/A is s-singular.

Remarks and Examples (2.7):

1. A submodules of s-singular (s-nonsingular) R-module are s-singular (s-nonsingular).

Proof: let $A \leq B$ and B is s-singular, then $Z^s(A) = A \cap Z^s(B) = A$ and so A is s-singular.

2. Let A be s-nonsingular R-module. Then every s-essential extension B of A with $Z^s(B)$ small in B is s-nonsingular.

Proof: Let A is s-nonsingular, then since $A \cap Z^s(B) = Z^s(A) = 0$ and by assumption $Z^s(B) \leq_s B$. We must have $Z^s(B) = 0$, since $A \leq_{se} B$ then B is s-nonsingular.

- **3**. Every essential extension B of s-nonsingular submodule is s-nonsingular. (as a bove without external condition)
- **4.** If $\{C_{\alpha} | \alpha \in \Lambda\}$ is a collection of s-nonsingular R-module C_{α} , $\alpha \in \Lambda$, then $\prod_{\alpha \in \Lambda} C_{\alpha}$ is s-nonsingular.

Proof: If $\{C_{\alpha}\}$ is any collection of s-nonsingular modules and A is s-singular then have $\operatorname{Hom}(A,C_{\alpha})=0$ for all α by $\operatorname{Pro.}(2.5)(a)$ and by [7, P.87], whence $\operatorname{Hom}(A,\prod_{\alpha\in\Lambda}C_{\alpha})\cong\prod_{\alpha\in\Lambda}\operatorname{Hom}(A,C_{\alpha})=\prod_{\alpha\in\Lambda}(0)=0$ so that $\prod_{\alpha\in\Lambda}C_{\alpha}$ is s-nonsingular.

5. If $A \le B$ and B is s-singular module, then B/A is s-singular module.

Proof: The projection map $B \to \frac{B}{A}$ must carry $Z^s(B) \to Z^s(\frac{B}{A})$, then $\frac{B}{A} = \frac{Z^s(B)}{A} \le Z^s(\frac{B}{A})$ and so $\frac{B}{A}$ is s-singular.

6. The finite direct sum of s-singular modules is s-singular.

Proof: Let $\{C_i\}_{i=1}^n$ be any collection of s-singular modules then by Pro.(2.5)(b), gives us a short exact sequence $0 \to A_i \to B_i \to C_i \to 0$ such

that $A_i \rightarrow B_i$ is s-essential monomorphisom for each i = 1, ... n.

Now $0 \to \bigoplus_{i=1}^n A_i \to \bigoplus_{i=1}^n B_i \to \bigoplus_{i=1}^n C_i \to 0$ is exact too. And by [12, Pro.2.7] says that $\bigoplus_{i=1}^n A_i \to \bigoplus_{i=1}^n B_i$ is s-essential monomorphism. Hence by Pro.(2.5)(b), we say that $\bigoplus_{i=1}^n C_i$ is s-singular.

7. The module extension of s-nonsingular R-module is s-nonsingular.

Proof: Suppose that $0 \to C \to B \to A \to 0$ is an exact sequence of modules with C, A snonsingular. A ccording to pro.(2.5)(a) we have $\operatorname{Hom}_R(M,C) = 0$ and $\operatorname{Hom}_R(M,A) = 0$ for any s-singular module M. By exactness of the sequence $0 \to \operatorname{Hom}_R(M,C) \to \operatorname{Hom}_R(M,B) \to \operatorname{Hom}_R(M,A)$. We obtain $\operatorname{Hom}_R(M,B) = 0$ and by $\operatorname{Pro.}(2.2.6)(a)$ show that B is s-nonsingular.

8. In s-nonsingular modules, every essential extension and module extensions of s-nonsingular are s-nonsingular (see (3),(7)), but we cannot conclude that the s-singular modules are closed under either module extensions or essential extensions. For example, let Z_4 as Z_4 -module if the submodules of Z_4 are 0, $2Z_4$ and Z_4 , since every nonzero submodule of Z_4 contains $2Z_4$ we obtain the s-essential $\{2Z_4, Z_4\}$. Now $2Z_4$. $2Z_4 = 0$, hence $2Z_4 \le Z^s(Z_4)$. Since $1 \notin Z^s(Z_4)$, it

follows that $Z^s(Z_4) = 2Z_4$. Now $2Z_4$ is s-singular R-module and since $Z_4 / 2Z_4 \cong 2Z_4$, $Z_4 / 2Z_4$ is s-singular thus Z_4 is an extension of the s-singular module $2Z_4$ by the s-singular module $Z_4 / 2Z_4$, yet Z_4 is not s-singular. We also note that Z_4 is an essential extension of the s-singular module $2Z_4$. Therefore the class of all s-singular R-modules is not closed under either module extensions or essential extensions.

3. Small-Related Submodules

Definition (3.1): Let N_1 and N_2 be submodules of M. We say that N_1 and N_2 are small-related (denoted by $N_1 \sim^s N_2$) provided that $N_1 \cap X = 0$ if and only if $N_2 \cap X = 0$, where X is small submodule of M.

If $N_1 \subseteq N_2$ then $N_1 \sim^s N_2$ simply gives $N_1 \leq_{se} N_2$.

Lemma (3.2): Let L and N be submodules of an R-module M, then.

- (i) $N + scl(0) \sim^s scl(N)$;
- (ii) $L \sim^s N$ implies that $L \subseteq scl(N)$;
- (iii) $scl(N) \sim {}^{s}scl scl(N)$.

Proof:(i) Let X be a small submodule of an R-module M such that $X \cap (N + scl(0)) = 0$. For any $x \in X \cap scl(N)$, there is a right ideal $I \leq_{se} R$ such that $xI \subseteq N$. Then $xI \subseteq X \cap N = 0$, implies that $x \in X \cap scl(0) = 0$ and hence x = 0. And the converse is clear.

(ii) Let $l \in L$ and define a homomorphism $\alpha: R \to M$ by $\alpha(r) = lr$ for each $r \in R$. Since $L \leq_{se} M$ so by [12, Pro.2.7] we get $I = \{ r \in R \mid lr \in N \}$ is s-essential right ideal of R and hence $l \in scl(N)$.

(iii)Replacing N by scl(N) in (i) we get $scl(N) \sim {}^s(scl(N) + scl(0)) = scl(N)$ (i. e., $scl(N) \leq_{se} scl(N)$).

Proposition (3.3): Every submodule of s-nonsingular module is s-essential in its s-closure.

Proof: Let M be s-nonsingular R-module and N a submodule of M. Since N + scl(0) \sim s scl(N), i.e. N + scl(0) \leq_{se} scl(N) and scl(0) = Z^s (M) = 0, so N \leq_{se} scl(N).

Definition (3.4): Let M be an R-module. A submodule N of M is called small y-closed (shortly, sy-closed) if M/N is s-nonsingular and denoted by $N \le_{sy} M$.

Proposition (3.5): Let N be a submodule of an R-module M. Then the following statements are equivalent:

(i) scl(N) = N

(ii) N is sy-closed submodule of M.

Proof: (i) \Rightarrow (ii) Let $(0 \neq) \bar{x} \in Z^s \left(\frac{M}{N}\right)$, then there exists a s-essential right ideal I of R such that $\bar{x}I = 0$ and $\bar{x} = x + N$, where $x \in M$. So(x + N)I = 0, xI + N = 0 then $xI \subseteq N = scl(N)$. Therefore, $x \in scl(scl(N))$, then $x \in N$ since N = scl(N). So x = 0 which is a contradiction. Hence $Z^s \left(\frac{M}{N}\right) = 0$.

(ii) \Rightarrow (i) Let $x \in scl(N)$, then $[N:x] \leq_{se} R$ and $[N:x] = \{r \in R | xr \in N \} = \{r \in R | (x+N)r = N \}$. Hence $r_R(x+N) \leq_{se} R$ and therefore, $x+N \in Z^s\left(\frac{M}{N}\right) = 0$, then $x \in N$ so $scl(N) \subseteq N$. Then N is sy-closed submodule of M.

Now, by using the equivalent of sy-closed submodule of an R-module M, we can prove the following:

Theorem (3.6): Let M be an R-module and let N be a submodule of M, we have $scl\ scl\ scl\ (N) = scl\ scl\ (N)$. In other words M/scl $scl\ (N)$ is s-nonsingular.

Proof: Let $N \subseteq scl(N)$. Replacing N by scl(N) in part (i) of Lem.(3.2). We get $sclscl(N) \sim {}^s(scl(N) + scl(0)) = scl(N)$, $sclsclscl(N) \sim {}^ssclscl(N) \sim {}^sscl(N)$ applying part(ii), we obtain $sclsclscl(N) \subseteq sclscl(N)$, and hence sclsclscl(N) = sclscl(N).

Corollary (3.7): Let M be an R-module. Then Z_2^s (M) is a sy-closed submodule in M.

Lemma (3.8): Every sy-closed submodule of an R-module M contain Z₂ (M).

Proof: Let N be sy-closed submodule of M and let $0 \subseteq N$ then $scl(0) \subseteq sclN = N$ then $Z_2^s(M) = scl scl(0) \subseteq scl scl N = scl N = N$.

Remarks and Examples (3.9):

1. Every sy-closed submodule is s-closed.

Proof: let $A \le M$ and $A \le_{sy}M$, to show that $A \le_{sc}M$. Suppose $A \le_{se} B \le M$ by Pro.(2.6), so $\frac{B}{A}$ is s-singular and by assumption $A \le_{sy}M$, i.e. $\frac{M}{A}$ is s-nonsingular, and $\frac{B}{A} \le \frac{M}{A}$, then $\frac{B}{A}$ is s-nonsingular and since $\frac{B}{A}$ is s-nonsingular and s-singular, so $\frac{B}{A} = 0$, A = B then $A \le_{sc}M$.

- **2**. The converse of (1) is not be true, in general. For example: 0 is a s-closed submodule of any module M, but 0 is not sy-closed submodule of M.
- 3. If M is s-nonsingular, then every s-closed submodule is sy-closed.

Proof: Assume that M is a s-nonsingular R-module, and let A be an s-closed submodule in M. Put $Z^s(\frac{M}{A}) = \frac{B}{A}$, where B is a submodule of M, with $A \le B$. Clearly $\frac{B}{A}$ is an s-singular module.

Now $A \le B$ and M is a s-nonsingular module, therefore B is a s-nonsingular submodule of M. Then by Pro.(2.6), $A \le_{se} B$. But A is an s-closed submodule in M, thus A = B, and $Z^s(\frac{M}{A}) = 0$, hence A is sy-closed submodule in M.

4. Every sy-closed submodule in M is y-closed.

Proof: suppose N is an sy-closed submodule in M. i.e. $Z^s\left(\frac{M}{N}\right) = 0$. Let $\bar{x} \in Z\left(\frac{M}{N}\right)$, then there exists an essential right ideal I of R such that $\bar{x}I = 0$. And by [12], we get $\bar{x} \in Z^s\left(\frac{M}{N}\right) = 0$. Hence N is an y-closed submodule in M.

- 5. The converse of (4) is not true in general, for example: Consider Z_6 as Z_6 -module, then $2Z_6 \le_y Z_6$ since $Z(\frac{Z_6}{2Z_6}) = 0$, but it is not sy-closed submodule in Z_6 , since $Z^s(\frac{Z_6}{2Z_6}) = 3Z_6$.
- 6. If $A \le B \le M$, if $A \le_{sy} M$ then B need not be sy-closed submodule of M. For example: Consider Z as Z-module and $0 \le 4Z \le Z$. Clearly $0 \le_{sy} Z$ but $Z^s(\frac{Z}{4Z}) = Z^s(Z_4) = Z_4$ singular.
- 7. An epimorphic image of sy-closed submodule need not be sy-closed submodule as the following example show: let $\pi: Z \to \frac{Z}{2Z}$ be the natural epimorphism. Clearly $0 \le_{sy} Z$, but $\pi(0) = 0$ is not sy-closed in $\frac{Z}{2Z}$ because $\frac{Z}{2Z} \cong Z_2$.

Proposition (3.10): Let M be an R-module and let $A \le B \le M$, then

- 1. If $A \leq_{sv} M$, then $A \leq_{sv} B$.
- 2. Let $A \le B \le M$, then $B \le_{sy} M$ if and only if $\frac{B}{A} \le_{sy} \frac{M}{A}$.

Proof: 1. Assume that $A \leq_{sy} M$, to show that $A \leq_{sy} B$, let $b \in B$ such that $b+A \in Z^s\left(\frac{B}{A}\right)$. Therefore, $b \in M$ then $b+A \in Z^s\left(\frac{M}{A}\right) = 0$. So b + A = A, then $b \in A$ and hence $Z^s\left(\frac{B}{A}\right) = 0$.

2. Let $m \in M$ if $b \in B$ such that $(m+b) + A \in Z^s\left(\frac{M}{A}/\frac{B}{A}\right)$ by the third isomorphism theorem $(M/A)/(B/A) \cong M/B$, so $(m+b) + A \in Z^s(M/B) = 0$ so $m+b \in A$, then $Z^s\left(\frac{M/A}{B/A}\right) = 0$.

Proposition (3.11): Let A, B be a submodules of an R-module M, if $A \leq_{sy} B$ and $B \leq_{sy} M$, then $A \leq_{sy} M$.

Proof: Let $A \leq_{sy} B$ and $B \leq_{sy} M$. Now consider the following short exact sequence:

 $0 \to \frac{B}{A} \xrightarrow{i} \frac{M}{A} \xrightarrow{\pi} \frac{M/A}{B/A} \to 0$. Where i is the inclusion map and π is the natural epimorphism. Since $A \le B \le_{sy} M$, then $\frac{B}{A} \le_{sy} \frac{M}{A}$ by (Pro.(2.10)(2)), since $\frac{B}{A}$ and $\frac{M/A}{B/A}$ are s-nonsingular, then by module extension of s-nonsingular R-module is s-nonsingular, then $\frac{M}{A}$ is s-nonsingular.

Proposition (3.12): Let $f: M \to N$ be an epimorphism and $A \leq_{sy} M$. If ker $f \subseteq A$, then $f(A) \leq_{sy} N$.

Proof: Assume that $A \leq_{sy} M$. To show that $f(A) \leq_{sy} N$. Let $n \in N$ such that $r_R(n + f(A)) \leq_{se} R$. Since f is an epimorphism, then n = f(m), for some $m \in M$. Since $ker f \subseteq A$, then $r_R(n + f(A)) \subseteq r_R(m + A)$ and hence $ann(n + f(A)) \leq_{se} R$, thus $r_R(m + A) \leq_{se} R$ but $A \leq_{sy} M$, therefore $m \in A$. Thus $n = f(m) \in f(A)$.

Proposition (3.13): Let $f: M \to N$ be an R-homomorphim and $B \leq_{sy} N$, then for every s-singular submodule A of M, $f(A) \subseteq B$.

Proof: Let $\pi: N \to \frac{N}{B}$ be the natural epimorphisim. Consider $\pi \circ f$: $M \to \frac{N}{B}$. Now $\pi \circ f \mid_A : A \to \frac{N}{B}$ but A is s-singular and $\frac{N}{B}$ is s-nonsingular (since $B \leq_{sy} N$) therefore $\pi \circ f \mid_A = 0$, thus $\pi(f(A)) = 0$ and hence $f(A) \subseteq \ker \pi$, $f(A) \subseteq B$.

Proposition (3.14): Let M be an R-module and $A \leq_{sv} M$. Then $Z^s(M) = Z^s(A)$.

Proof: It is enough to show that $Z^s(M) \subseteq Z^s(A)$. Let i: $Z^s(M) \to M$ be the inclusion map and $\pi: M \to \frac{M}{A}$ be the natural epimorphism. Consider the map $\pi \circ i: Z^s(M) \to \frac{M}{A}$. Since $Z^s(M)$ is s-singular and $\frac{M}{A}$ is s-nonsingular (since $A \leq_{sy} M$) then $\pi \circ i = 0$, (by Pro.(2.5). So $\pi \circ i$ ($Z^s(M)$) = $\pi(Z^s(M)) = 0$. Thus $Z^s(M) \subseteq \ker A = A$. But $Z^s(A) = Z^s(M) \cap A$, therefore $Z^s(A) = Z^s(M)$.

Proposition (3.15): Let M be an R-module and $A \leq_{sy} M$. Then $\frac{M}{B}$ is s-singular if and only if B $\leq_{se} M$.

Proof: Let $A \leq_{sy} M$ and $\frac{M}{B}$ is s-singular. By the third isomorphism theorem $\frac{M}{B} \cong \frac{M/A}{B/A}$ since $\frac{M}{B}$ is s-nonsingular by([12, Pro.(2.7)] $\frac{B}{A} \leq_{se} \frac{M}{A}$. Let $\pi : M \to \frac{M}{A}$ be the natural epimorphism $B = \pi^{-1}(\frac{B}{A}) \leq_{se} \pi^{-1}(\frac{M}{A}) = M$.

Conversely, let $B \leq_{sy} M$ and consider the following exact sequence $0 \to B \xrightarrow{i} M \to M/B \to 0$ and since i is s-essential monomorphism then by proposition M/A is s-singular.

4. SY-Extending Modules

In this section, we introduce small-y-extending (shortly sy-extending), which is generalization of y-extending modules.

Definition (4.1): An R-module M called an sy-extending, if every sy-closed submodule is a direct summand.

Proposition (4.2): Every sy-closed submodule of sy-extending module is sy-extending.

Proof: Let M be sy-extending module and $A \leq_{sy} M$. We want to show that is sy-extending module. Let $K \leq_{sy} A$ and $A \leq_{sy} M$ then by Pro. (3.11) $K \leq_{sy} M$. But M is sy-extending, therefore K is a direct summand of M and by [10] K is a direct summand of A.

Proposition (4.3): Any direct summand of sy-extending modules is a sy-extending module.

Proof: Suppose $M = K \oplus K'$ for some submodules K and K'of M. let L be a sy-closed submodule of K. Since $\frac{M}{L \oplus K'} = \frac{K \oplus K'}{L \oplus K'} \cong \frac{K}{L}$ then $L \oplus K'$ is a sy-closed submodule of M and M is sy-extending, so that $L \oplus K'$ is a direct summand of M which gives that L is a direct summand of M and since L a submodule of K. Then L is a direct summand of K. It follows that K is sy-extending module.

The following proposition gives a characterization of sy-extending modules.

Proposition (4.4): An R-module M is sy-extending module if and only if every sy-closed submodule of M is s-essential in a direct summand.

Proof:(\Rightarrow)It is clear.

(\Leftarrow) Let A \leq_{sy} M, we want to show that A is a direct summand of M. Sine A \leq_{sy} M, then by our assumption A \leq_{se} K, where K is a direct summand of M. Thus K/A is s-singular by Pro. (2.6). But K/A \subseteq M/A and M/A is s-nonsingular so K/A is s-nonsingular by Rem. (2.7) since K/A is s-singular and s-nonsingular. Then A = K and hence A is a direct summand of M. Hence M is syextending module.

Theorem (4.5): Let $M = M_1 \oplus M_2$ be a direct sum of sy-extending modules M_1 and M_2 such that M_1 is M_2 -injective. Then M is a sy-extending module.

Proof: Let N be a sy-closed submodule of M. Then M/N is s-nonsingular and $M_1/N \cap M_1 \cong M + N/N \subseteq M/N$. By Pro. (2.7) $M_1/N \cap M_1$ is s-nonsingular. Implies $N \cap M_1$ is sy-closed submodule of M_1 and M_1 is sy-extending so $N \cap M_1$ is a direct summand of M_1 and hence of M. It follows that $N \cap M_1$ is a direct summand of N so $N = (N \cap M_1) \oplus K$ for some

submodule K of M. Let π_i : $M \rightarrow M_i$, i=1,2 denote the projection mapping. Consider the following diagram:

Where $\alpha=\pi_2|_K$ and $\beta=\pi_1|_K$. Note that α is a monomorphism and M_1 is M_2 -injective. Thus, there exists a homomorphism $\phi\colon M_2\to M_1$ such that $\phi\alpha=\beta$. Let $L=\{\ x\in M_2\colon x+\phi(x)\}$ then it can easily be checked that L is a submodule of M and $L\cong M_2$. Moreover, $M=M_1\oplus L$. If $k\in K$, then $k=m_1+m_2$ for some $m_i\in M_i$, i=1,2. Then $m_1=\beta(k)=\phi\alpha(k)=\phi(m_2)$, and this implies that $k=\phi(m_2)+m_2\in L$. Thus, $K\subseteq L$. Since $\frac{M}{N}=\frac{M_1}{N\cap M_1}\oplus \frac{L}{K}$, then L/K is snonsingular, so K is sy-closed submodule of L and $L\cong M_2$ then K is a direct summand of L. Thus, $K\subseteq L$ is a direct summand of L.

Recall that a submodule N of an R-module M is called fully invariant if $f(N) \le N$ for each R-endomorphism f of M [7].

Proposition (4.7): Let $M = \bigoplus_{i \in I} M_i$ be an R-module, such that every sy-closed submodule of M is fully invariant, then M is sy-extending module if and only if M_i is sy-extending for each $i \in I$.

Proof: Clear that by Pro.(3.4). Conversely, let S be sy-closed submodule of M. For each $i \in I$, let $\pi_i : M \to M_i$ be the projection map. Now, let $x \in S$, then $x = \sum_{i \in I} m_i$, $m_i \in M_i$ and $m_i = 0$ for all but finite many element of $i \in I$. $\pi_i(x) = m_i$ for each $i \in I$. Since S is sy-closed, then by fully full invariance of S, $\pi_i(x) = m_i \in S \cap M_i$ so $x \in \bigoplus_{i \in I} (S \cap M_i)$. Thus $S \subseteq \bigoplus_{i \in I} (S \cap M_i)$. But $\bigoplus_{i \in I} (S \cap M_i) \subseteq S$, therefore $S = \bigoplus_{i \in I} (S \cap M_i)$. Since $S \leq_{sy} M$, then by proposition (3.10) $S \cap M_i \leq_{sy} M_i$ for each $i \in I$, but M_i is sy-extending for each $i \in I$, therefore $(S \cap M_i)$ is a direct summand of M_i . Thus S is a direct summand of M.

REFERENCE

- [1] Abbas M. S. and Mohammed F. H.: Small-Closed Submodules, IJST, Vol.1 (JAN-Feb 2016).
- [2] Erdogdu V.: Distributive Modules, Can. Math. Bull 30, 248-254(1987).
- [3] Faith C., Algebra: Rings, Modules and Categories I, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
- [4] Goodearl K. R.: Ring theory, Nonsingular rings and modules, Marcel Dekker, INC. New York and basel (1976).
- [5] Goldie A. W.: Torsion-Free Modules and Rings, J. Algebra1, (1964).
- [6] Johnson R. E. and Wong E. T.: *Quasi-injective modules and irreducible rings*, J. London Math. Soc. 39, 290-268 (1961).
- [7] Kasch F., Modules and Rings, Acad. Press, London, (1982).
- [8] Lam T. Y.: Lectures on Modules and rings, Springer-Verlag, Berlin, Heidelberg. New York, (1988).
- [9] Larsen M. D.; P. J. McCarthy, *Multiplicative Theory of Ideals*, Academic Press, New York, (1971).
- [10] Rowen L. H.: Ring theory, Acadmic Press Inc. Boston, stud., 1, (1991).
- [11] Tercan A.: On CLS-Modules, Rocky Mountain J. Math. 25:1557-1564(1995).
- [12] Zhou D.X. and Zhang X.R.: *Small-Essential Submodules and Morita Duality*, Southeast Asian Bulletin of Mathematics, 35: 1051–1062,(2011).