# New Results of New Type of Sets by S.M-Open Set

# Hanan K. Mousa

Department of Mathimatics, College of Education, AL-Mustansirya University, Iraq

# Abstract:

The definitions of S.M-open sets, S.M-continuous function and S.M-Connected sets are introduced and some of their properties are studied.

**<u>Key words:</u>** S. M-open set, S. M-closed set, S. M-continuous function, S. M-connected space.

### INTRODUCTION

The concept of  $\theta$ -interior set,  $\theta$ -closure set,  $\delta$ -interior set and  $\delta$ -closure set, were first introduced by Velicko[8]. A subset A of a topological space(X,T) is called regular open (resp. regular closed)[8] if  $A=\inf(cl(A))$  (resp.  $A=cl(\inf(A))$ ). A point  $x\in X$  is said to be  $\theta$ -adherent point of A[9] iff  $cl(U)\cap A\neq \Phi$ , For every open set U containing x. The set of all  $\theta$ -adherent points of A is called  $\theta$ -closure of A, and is denoted by  $cl_{\theta}(A)$ . The complement of  $\theta$ -closed set is called  $\theta$ -open set, a point  $x\in X$  is called  $\theta$ -interior of A [9] if there exist an open set U containing x such that  $cl(U)\subseteq A$ . The set of all  $\theta$ -interior points of A is called  $\theta$ -interior set and denoted by  $int_{\theta}(A)$ . A subset A is  $\theta$ -open if  $A=int_{\theta}(A)$ .

The  $\delta$ -interior point [6]of a subset A of topological space(X,T) is the union of all regular open sets of (X,T) contained A and is denoted by  $\operatorname{int}_{\delta}(A)$ . A subset A of (X,T) is called  $\delta$ -open[3] if  $A=\operatorname{int}_{\delta}(A)$ . The complement of  $\delta$ -open set is called  $\delta$ -closed , a point x of a topological space (X,T) is called  $\delta$ -adherent point of A if and only if  $\operatorname{int}(\operatorname{cl}(U))\cap A\neq \Phi$ , for every open set U containing x . The set of all  $\delta$ -adherent points of A is called  $\delta$ -closure of A and denoted by  $\operatorname{cl}_{\delta}(A)$ , and A is  $\delta$ -closed set if  $A=\operatorname{cl}_{\delta}(A)$ .

### **PRELIMINARIES**

In this section we recall the following known definitions, notations , and some properties . A subset A of a topological space (X,T) is called pre-open[2] (resp.  $\delta$ -pre open [10], semi open[7],  $\delta$ -semi open[5],  $\theta$ -semi open [4]) if  $A \subseteq int(cl(A))$  (resp.  $A \subseteq int(cl_{\delta}(A))$ ,  $A \subseteq cl(int(A))$ ,  $A \subseteq cl(int_{\delta}(A))$ ,  $A \subseteq cl(int_{\theta}(A))$ ).

And A is M-open set[1] if  $A \subseteq cl(int_{\theta}(A) \cup int(cl_{\delta}(A))$ .

The union of all  $\delta$ -semi open (resp.  $\delta$ -preopen , semi open ,preopen ,  $\theta$ -semi open , $\theta$ -preopen ) set contained A is called the  $\delta$ -semi interior (resp.  $\delta$ -pre interior, semi interior, pre interior , $\theta$ -semi interior , $\theta$ -pre interior ) of A and is denoted by  $Sint_{\delta}(A)$  (resp.  $Pint_{\delta}(A)$  ,Sint(A) ,Pint(A) , $Sint_{\theta}(A)$  , $Pint_{\theta}(A)$ ).

The intersection of all  $\delta$ -semi closed (resp.  $\delta$ -pre closed, semi closed , pre closed,  $\theta$ -semi closed ,  $\theta$ -pre closed)sets containing A is called the  $\delta$ -semi closure (resp.  $\delta$ -pre closur , semi closure , pre closure,  $\theta$ -semi closure,  $\theta$ -pre closure) of A and denoted by  $Scl_{\delta}(A)$  (resp.  $Pcl_{\delta}(A)$  ,Scl(A), Pcl(A),  $Scl_{\theta}(A)$ ,  $Pcl_{\theta}(A)$ )

### Proposition (1-2):

Let A,B be subsets of a topological space(X,T), The following statements hold:

1.  $Scl_{\theta}(A) = A \bigcup int(cl_{\theta}(A))$ 

 $Sint_{\theta}(A) = A \cap cl(int_{\theta}(A))$ 

2.  $Pcl_{\delta}(A) = A \cup cl(int_{\delta}(A))$ 

 $Pint_{\delta}(A) = A \cap int(cl_{\delta}(A))$ 

3.  $\delta$ -Scl<sub> $\theta$ </sub>(X\A)=X\  $\delta$ -int<sub> $\theta$ </sub>(A)

 $\delta$ -Scl<sub> $\theta$ </sub>(A  $\cup$  *B*) $\subseteq$   $\delta$ -Scl<sub> $\theta$ </sub>(A)  $\cup$   $\delta$ -Scl<sub> $\theta$ </sub>(B)

4.  $\delta$ -Pcl<sub> $\theta$ </sub>(X\A)=X\ $\delta$ -Pint<sub> $\theta$ </sub>

 $\delta$ -Pcl<sub> $\theta$ </sub>(A  $\bigcup$  B) $\subseteq$   $\delta$ -Pcl<sub> $\theta$ </sub>(A)  $\bigcup$   $\delta$ -Pcl<sub> $\theta$ </sub>(B)

5.  $X\setminus(int_{\delta}(A))=cl_{\delta}(X\setminus A)$ 

 $X \setminus (cl_{\delta}(A) = int_{\delta}(X \setminus A)$ 

### 2. S. M-OPEN SET

### **Definition(2-1):**

Let (X,T) be a topological space , A subset A of X is said to be Semi M-open set if  $A \subseteq cl[cl(int_{\theta}(A)) \cup int(cl_{\delta}(A))]$ 

And A is Semi M- closed set if

 $A \supset int[int(cl_{\theta}(A)) \cap cl(int_{\delta}(A)).$ 

The family of all Semi M-open (Semi M-closed) subset of (X,T) will be denoted by S.M-open (S.M-closed) set

# Theorem(2-2):

Every M-open set is S. M-open set.

**Proof**: Let A be M-open set in topological space(X,T)

 $A \subseteq cl(int_{\theta}(A)) \cup int(cl_{\delta}(A))$ 

Since  $A \subseteq cl(A)$ 

Then  $A \subseteq cl[cl(int_{\theta}(A)) \cup int(cl_{\delta}(A))]$ 

∴ A is S.M-open set

# *Remark*(2-3):

The converse of the above theorem is not true. As shown that by the following example

**Example(2-4)**:- Let 
$$X = \{1,2,3,4\}$$
  $T = \{\Phi,X,\{1\},\{2\},\{1,2\},\{2,4\},\{1,2,3\}\}$ 

Then  $\{2,3\}$  is S. M-open set but not M-open set.

# Proposition(2-5):-

The union of Semi M-open sets is Semi M-open set

### **Proof**:

Let  $\{Ai, i \in I\}$  be a family of S.M-open set. Then  $A \subseteq cl[cl(int_{\theta}(A)) \cup int(cl_{\delta}(A))]$ 

$$\bigcup_{i} Ai \subseteq \bigcup_{i} [\operatorname{cl}(\operatorname{cl}(\operatorname{int}_{\theta}(A)) \cup \operatorname{int}(\operatorname{cl}_{\delta}(A)))]$$

$$\subseteq \operatorname{cl}[\operatorname{cl}(\operatorname{int}_{\theta}(\bigcup_{i} Ai)) \cup \operatorname{int}(\operatorname{cl}_{\delta}(\bigcup_{i} Ai))], \forall i \in I$$

 $\therefore \bigcup_i Ai$  is Semi M-open set

### **Proposition(2-6):**

The intersection of Semi M-closed sets is Semi M-closed set

#### *Remark*(2-7):

The intersection of any two Semi M-open sets is not semi M-open set.

As shown that by the following example.

#### *Example*(2-8):

Let 
$$X=\{1,2,3\}$$
,  $T=\{X,\Phi,\{2\},\{3\},\{2,3\}\}$ 

Then  $A=\{1,3\}$  and  $B=\{1,2\}$  are Semi M-open sets but  $A \cap B=\{1\}$  is not Semi M-open set.

# Definition(2-9):

Let A be a subset of topological space (X,T)then

1 . The union of all Semi M-open sets of X contained in A is called Semi M- Interior point of A . And is denoted by  $\,S.M\text{-int}(A)\,$ 

2. The intersection of all Semi M-closed sets of X containing A is called the Semi M-closure of A and is denoted by S.M-cl(A)

# *Theorem*(2-10):

Let  $A \subseteq X$ , Then

- 1 . S.M-cl(A)=int [Scl<sub> $\theta$ </sub>(A)  $\cap$  Pcl<sub> $\delta$ </sub>(A)]
- 2. S.M-int(A)= cl [Sint<sub> $\theta$ </sub>(A)  $\bigcup Pint_{\delta}(A)$ ]

# **Proof**:

1. It easy to see that  $S.M-cl(A)\subseteq int[Scl_{\theta}(A)\cap Pcl_{\delta}(A)]$ 

And

 $int[Scl_{\theta}(A) \cap Pcl_{\delta}(A)] = int[(A \cup int(cl_{\theta}(A))) \cap (A \cup cl(int_{\delta}(A)))]$ 

=int(A) $\bigcup$  int(int(cl<sub> $\theta$ </sub>(A)))  $\cap$  int(A)  $\bigcup$  int(cl(int<sub> $\delta$ </sub>(A)))

=int(A)  $\bigcup$ [int(cl<sub> $\theta$ </sub>(A)) $\cap$ int(cl(int<sub> $\delta$ </sub>(A)))]

But S.M-cl is S.M.closed set

 $S.M.CL(A) \supset int(int(cl_{\theta}(S.M.CL(A)) \cap int(cl(int_{\delta}(S.M.CL(A)))))$ 

 $\supset int[int(cl_{\theta}(A) \cap cl(int_{\delta}(A))]$ 

$$\therefore$$
 int(A) $\bigcup$ [int(cl <sub>$\theta$</sub> (A)) $\cap$ cl(int <sub>$\delta$</sub> (A))]=int(A) $\bigcup$  S.M-CL(A)

=S.M-CL(A)

2. Abvious

# **Theorem(2-11):**

Let A be a subset of topological space (X,T) then:

- 1. A is S.M-open set if and only if  $A=cl(Sint_{\theta}(A) \cup Pint_{\delta}(A))$
- 2. A is S.M-closed set if and only if  $A=int (Scl_{\theta}(A) \cap Pcl_{\delta}(A))$

Proof:

 $(\rightarrow)$ Let A be A S.M-open set ,Then

 $A \subseteq cl[cl(int_{\theta}(A)) \cup int(cl_{\delta}(A))]$ 

Hence by proposition(1-2)

 $cl(Sint_{\theta}(A) \cup Pint_{\delta}(A)) = cl[(A \cap cl(int_{\theta}(A))) \cup (A \cap int(cl_{\delta}(A)))]$ 

 $=\!\!cl[A\!\cap\!(cl(int_{\theta}(A)\!\cup\;int(cl_{\delta}(A))]$ 

=cl(A)

⊃Α

 $\therefore$  A=cl[Sint<sub> $\theta$ </sub>(A) $\bigcup$  Pint<sub> $\delta$ </sub>(A)]

 $(\leftarrow)$  Let A=cl [Sint<sub> $\theta$ </sub>(A)U Pint<sub> $\delta$ </sub>(A)]

Then by proposition (1-2)

 $cl(Sint_{\theta}(A) \cup Pint_{\delta}(A)) = cl[(A \cap cl(int_{\theta}(A))) \cup (A \cap int(cl_{\delta}(A)))]$ 

 $=cl[A\cap(cl(int_{\theta}(A)\cup int(cl_{\delta}(A))])]$ 

Then we have  $A \subseteq cl [cl(int_{\theta}(A)) \cup int(cl_{\delta}(A))]$ 

Hence A is S.M-open set

# *Theorem*(2-12):

Let A be a subset of topological space (X,T), Then

- 1. A is S.M-open set iff A=S.M-int(A)
- 2. A is S.M-closed set iff A = S.M-cl(A)

### **Proof**:

Let A be a Semi M-open set, Then by theorem(2-10)

A=cl [Sint<sub> $\theta$ </sub>(A) $\cup$  Pint<sub> $\delta$ </sub>(A)] and by theorem (2-9)

 $Cl [Sint_{\theta}(A) \cup Pint_{\delta}(A)] = S.M-int(A)$ 

Then we have A=S.M-int(A).

Conversely:

Let A=S.M-int(A), Then by theorem(2-9)

A=cl [Sint $_{\theta}(A) \cup Pint_{\delta}(A)$ ] and by theorem (2-10)

A is S.M-open set

#### <u>Definition(2-13):</u>

Let A be a subset of topological space (X,T), A point  $x \in X$  is called S.M-limit point of A if for every S.M-open set U containing x contains a point of A other than x.

The set of all S.M-limit points of A is called S.M-Derived set of A and is denoted by S.M-D(A)

# Definition(2-14):

Asubset A of a topological space(X,T)is called S.M-neighborhood of a point  $p \in X$  if there exists a S.M-open set U such that  $p \in U \subseteq A$  and denoted by S.M-nbd

The set of all S.M-nbd of  $p \in X$  is called S.M-nbd system of p and denoted by S.M-N<sub>P</sub>.

# *Theorem*(2-15):

A subset A of a topological space(X,T) is S.M-open set iff it is S.M- neighborhood for every point  $p \in A$ .

# Proof:-

Let A be a S.M-open set. Then A is S.M-nbd. for each point  $p \in A$ 

Conversely:

Let A be S.M-nbd for each  $p \in A$ , Then there exists a S.M-open set  $U_P$  containing p such that  $p \in U_p \subseteq A$  so  $A = U_{p \in A} U_p$ 

Therefore A is S.M-open set.

#### *Theorem*(2-16):

Let A be a subset of topological space (X,T). Then

1. S.M-cl(S.M-cl(A)) = S.M-cl(A), And

S.M-int(S.M-int(A))=S.M-int(A)

#### **Proof**:

$$\begin{split} S.M\text{-}cl(S.M\text{-}cl(A))&= int[Scl_{\theta}(S.M\text{-}cl(A)) \cap Pcl_{\delta}(S.M\text{-}cl(A))] \\ &= int[Scl_{\theta}\left(int(Scl_{\theta}(A) \cap Pcl_{\delta}(A)\right) \cap (Pcl_{\delta}(int(Scl_{\theta}(A) \cap Pcl_{\delta}(A)))] \\ &= int\left(int)[Scl_{\theta}\left(Scl_{\theta}(A) \cap Pcl_{\delta}(A)\right) \cap (Pcl_{\delta}(Scl_{\theta}(A) \cap Pcl_{\delta}(A)))] \\ &= int[\left(Scl_{\theta}(A) \cap Scl_{\theta}(A) Pcl_{\delta}(A)\right) \cap (Pcl_{\delta}(Scl_{\theta}(A) \cap Pcl_{\delta}(A))] \\ &= int[Scl_{\theta}(A) \cap Pcl_{\delta}(A))] \\ &= S.M\text{-}cl(A) \end{split}$$

 $\therefore$  S.M-cl(S.M-cl(A) $\subseteq$ S.M-cl(A)

But  $S.M-cl(A) \subseteq S.M-cl(S.M-cl(A))$ 

Then we have S.M-cl(S.M-cl(A))=S.M-cl(A)

**2** . S.M.cl( $X \setminus A$ )= $X \setminus S$ .M-int(A), And

 $S.M.int(X \setminus A) = X \setminus S.M-cl(A)$ 

# **Proof**:

$$S.M-cl(X\backslash A)=int[Scl_{\theta}(X\backslash A)\cap Pcl_{\delta}(X\backslash A))]$$

$$=$$
int[( $X \setminus Sint_{\theta}(A)$ )  $\cap (X \setminus Pint_{\delta}(A))$ ]

Then by proposition (1-2)

$$=X \setminus [int(Sint_{\theta}(A)) \cap Pint_{\delta}(A))]$$

$$=X \setminus S.M-int(A)$$

# **Theorem(2-17):**

Let A and B be subsets of a topological space (X,T), Then the following are hold

**1** . If 
$$A \subseteq B$$
 ,Then  $S.M-cl(A) \subseteq S.M-cl(B)$  , And

$$S.M-int(A) \subseteq S.M-int(B)$$

### **Proof:**

$$S.M-cl(A) = int[Scl_{\theta}(A) \cap Pcl_{\delta}(A)]$$
, And  $A \subseteq B$ 

$$\therefore$$
 S.M-cl(A)=int[Scl<sub>\theta</sub>(A)  $\cap$  Pcl<sub>\theta</sub>(A)] $\subseteq$  int[Scl<sub>\theta</sub>(B)  $\cap$  Pcl<sub>\theta</sub>(B)]  $\subseteq$ S.M-cl(B)

**2** . S.M-int(A
$$\cap$$
B)  $\subseteq$  S.M-int(A)  $\cap$  S.M-int(B) , And

$$S.M-cl(A \cap B) \subseteq S.M-cl(A) \cap S.M-cl(B)$$

### **Proof**:

 $S.M-int(A\cap B)=cl[Sint_{\theta}(A\cap B) \cup Pint_{\delta}(A\cap B)]$ 

$$\subseteq$$
 cl[(Sint <sub>$\theta$</sub> (A) $\cap$ Sint <sub>$\theta$</sub> (B)) $\cup$ (Pint <sub>$\delta$</sub> (A) $\cap$ Pint <sub>$\delta$</sub> (B))]

$$\subseteq cl[(Sint_{\theta}(A) \cup (Pint_{\delta}(A)) \cap (Sint_{\theta}(B) \cup (Pint_{\delta}(B)))]$$

$$\subseteq cl[Sint_{\theta}(A) \cup Pint_{\delta}(A)] \cap cl[Sint_{\theta}(B) \cup Pint_{\delta}(B)]$$

$$\subseteq$$
S.M-int(A)  $\cap$  S.M-cl(B)

$$\therefore$$
 S.M-int(A\cap B)  $\subseteq$  S.M-int(A) \cap S.M-int(B)

3. S.M-cl(A) 
$$\bigcup$$
 S.M-cl(B)  $\subseteq$  S.M-cl(A $\bigcup$  B), And

$$S.M-int(A) \cup S.M-int(B) \subseteq S.M-int(A \cup B)$$

### **Proof**:

 $S.M\text{-}cl(A) \cup S.M\text{-}cl(B) = int[Scl_{\theta}(A) \cap Pcl_{\delta}(A)] \cup int[Scl_{\theta}(B) \cap Pcl_{\delta}(B)]$ 

 $\subseteq int [(Scl_{\theta}(A) \cap Pcl_{\delta}(A)) \cup (Scl_{\theta}(B) \cap Pcl_{\delta}(B))]$ 

 $\subseteq$ int [(Scl<sub> $\theta$ </sub>(A) U(Scl<sub> $\theta$ </sub>(B)) $\cap$ (Pcl<sub> $\delta$ </sub>(A)U Pcl<sub> $\delta$ </sub>(B))]

 $\subseteq$ int [(Scl<sub> $\theta$ </sub>(AUB)  $\cap$ Pcl<sub> $\delta$ </sub>(AUB))]

 $\subseteq$ S.M-cl(AUB).

#### 3. S. M -Continuous Function

# Definition(3-1):

A function f:  $(X,T) \rightarrow (Y,\sigma)$  is called

- 1 . S. M- Continuse if  $f^{-1}(u) \in S.M$ -open (X) for all  $u \in (Y, \sigma)$
- 2. S. M-irresolute if  $f^{-1}(u) \in S.M$ -open (X) for all  $u \in S.M$ -open in  $(Y, \sigma)$
- 3. S. M-open if  $f(u) \in S.M$ -open $(Y,\sigma)$  for all  $u \in (X,T)$
- 4. Pre -S. M-open if  $f(u) \in S$  .M-open $(Y,\sigma)$  for all  $u \in S$ .M-open(X,T)
- 5. Supper S. M-open if  $f(u) \in \sigma$ , for all  $u \in S.M$ -open(X,T)
- 6. S. M- Homeomorphism if f is bijective, S. M- irresolute, and pre-S. M-open function.

# Definition(3-2):

A topological space (X,T) is said to be S. M-connected space if X cannot be expressed as the union of two disjoint non empty S. M-open sets in X.

### *Example*(3-3):

Let 
$$X = \{1,2,3,4\}$$
,  $T = \{\Phi,X,\{1\},\{2\},\{1,2\},\{2,4\},\{1,2,3\}\}$ 

Let A= $\{2\}$  and B= $\{3,4\}$  are disjoint semi M-open sets and AUB  $\neq X$ 

#### *Theorem*(3-4):

If  $f:(X,T)\to (Y,\sigma)$  be S. M-continuous function and (X,T) is S. M-connected space ,Then  $(Y,\sigma)$  is connected space.

# **Proof**:

Assume that Y is not connected space

Then  $Y=U \cup V$ , Where U,V are non empty disjoint open set in Y.

Since f is S.M-continuous function Then  $f^{-1}(U)$ ,  $f^{-1}(V)$  are S.M-open sets in X and  $f^{-1}(U) \cup f^{-1}(V)=X$ 

∴ X is S.M-disconnected C!

Hence Y is connected.

# *Lemma*(3-5):

If  $f:(X,T)\to (Y,\sigma)$  be S.M-irresolute continuous function and (X,T) is S. M-connected space, Then  $(Y,\sigma)$  is S. M-connected space.

### <u>Lemma(3-6):</u>

If  $f:(X,T)\to (Y,\sigma)$  be super S.M-continuous function and (X,T) be connected space ,Then  $(Y,\sigma)$  be S. M-connected space.

#### REFERENCES

- 1. A.I. EL-Maghrabi and M.A. AL-Juhani, M-open sets in topological spaces, Pioneer J. Math. Sciences, 4 (2) (2012), 213-230.
- 2. A.S. Mashhour; M.E. Abd EL-Monsef and S.N. EL-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- 3. D.S.Sivaraj, Extremally disconnected space, Indian J. Pure Appl. Math.17(1986), 1374-1375.
- 4. E. Ekici, On e-open sets, DP\*-sets and DPE\*-sets and decompositions of continuity, Arabian J. Sci., 33 (2) (2008), 269 282.
- 5. J.H. Park ; B .Y. L ee a nd M .J. S on, O n  $\delta$  -semi-open sets in topological spaces, J. Indian Acad. Math., 19 (1) (1997), 59 67.
- 6. J. Dontchev and H. Maki, Groups of  $\theta$ -generalized homeomorphisms and the digital line, Topology Appl. 95(2)(1999), 113-128.
- 7. N. Levine, Semi-open sets and semicontinuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- 8. N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl, 78(1968), 103-118.
- 9. P.E. Long, L.L. Herrington, The  $\tau\theta$ -topology and faintly continuous functions, Kyungpook Math. J. 22 (1982), 7–14.
- 10. S. Raychaudhuri and N. Mukherjee, On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica., 21(1993), 357 366.