NEW TYPE OF C-COMPACT SPACE BY T-PRE OPERATOR

Hanan K. Mousa & Mohammed J. Fari & Adil K. Bagheedh

Department of Mathimatics, College of Education, AL-Mustansirya University, Iraq

Abstract:

In this paper ,we introduce and study new types of C-compact space ,namely T-pre-c-compact space. And several properties of these space are proved.

Keywords: T-pre-open set, T-pre-closed set, T-pre-open cover, T-pre c-compact space.

1. Introduction

In 1969 G.Viglion [2]introduced the concept of c-compact space and investigated its properties. Since then ,a tremendous number of papers such as Sakai[8], Herringaton et al[6], Viglino[3], Goss. And Viglino[1], and Kim[5] have a peared on c-compact space. In 2013 N.G.Mansur. And H.K.Mousa[7] introduced the concept of T-pre-operator topological space. Also introduced the notion of T-pre-open set.

In this paper ,we present c-compact space by using T-pre-open set and shall term them as T-pre c-compact space. Several properties of these space are proved.

2. Preliminaries

Through this paper (X,Γ) will always denoted a topological space. And Γ_{pre} denoted the set of all pre open set

Definition(2-1):

Let (X,Γ) be a topological space and T be an operator from Γ_{pre} to P(X),i.e. ,T: $\Gamma_{pre} \rightarrow P(X)$. We say that T is a pre-operator associated with Γ_{pre} if $U \subseteq T(U)$ for every $U \in \Gamma_{pre}$. And the triple (X,Γ,T) is called T-pre-operator topological space.

Definition(2-2):

Let (X,Γ) be a topological space and T be a pre-operator on Γ . A subset A of X is said to be T-pre open set if for each $x \in A$, there exist a pre open set U containing x such that $T(U)\subseteq A$. We denote the set of all T-pre open sets by $T_{\Gamma pre}$.

A subset B of X is said to be T-pre closed set if its complement is T-pre open set.

Definition(2-3):

Let (X,Γ) and (Y,σ) be two topological spaces and T, L be an operator on Γ and σ , respectively. A function $f:(X,\Gamma,T) \rightarrow (Y,\sigma,L)$ is (T,L) pre-continuous if and only if for every L-open set U in Y, $f^{-1}(U)$ is T-pre open set in X.

Definition(2-4):

Let (X,Γ) and (Y,σ) be two topological spaces and T , L be an operators on Γ and σ , respectively. A function $f:(X,\Gamma,T) \to (Y,\sigma,L)$ is (T,L) pre-irresolute continuous if and only if for every L-pre open set U in Y , $f^{-1}(U)$ is T-pre open set in X.

Definition(2-5):

Let (X,Γ) and (Y,σ) be two topological spaces and T , L be an operators on Γ and σ , respectively. A function $f:(X,\Gamma,T) \to (Y,\sigma,L)$ is said to be (T,L)strongly pre-continuous if and only if for every L-pre open set U in Y , $f^{-1}(U)$ is T-open set in X.

Theorems(2-6):

1. Every (T,L) pre-irresolute continuous function is (T,L) pre –continuous function. But the converse is not true.

- 2. Every (T,L)strongly pre-continuous function is (T,L) pre-irresolute continuous function. But the converse is not true.
- 3. Every (T,L)strongly pre- continuous function is (T,L) pre –continuous function. But the converse is not true.

Definition(2-7):

Let (X,Γ,T) be a pre-operator topological space. A subset A of X is said to be T-pre compact if for any T-pre open cover $\{U_\alpha:\alpha\in\Omega\}$ of A, has a finite collection that covers A and $A\subseteq\bigcup_{i=1}^n T(U_{\alpha_i})$.

3. T-pre c-compact space

Definition(3-1):

Let(X, Γ ,T) be an operator topological space. A T-closed subset A of X is called T-c-compact if for each T-open cover Ω of A there exist a finite subcover β ={ $c_1, c_2, ..., c_n$ } of Ω such that $A \subseteq \bigcup_{i=1}^n cl(ci)$

Definition(3-2):

Let(X, Γ ,T) be a pre-operator topological space. A T-pre closed subset A of X is called T-pre c-compact if for each T-pre open cover Ω of A there exist a finite subcover β ={ $c_1,c_2,...,c_n$ } of Ω such that $A\subseteq \bigcup_{i=1}^n cl(ci)$

Theorem(3-3):

Every T-pre compact space is T-pre c-compact.

Proof:

Suppose that (X,Γ,T) be a T-pre compact space

To prove that X is T-pre-c-compact space , Assume that Ω be a T-pre open cover of X such that $X \subseteq \bigcup_{i \in \Lambda} ci$, where $ci \in \Omega$.

Since X is T-pre compact space therefore there exists a finite subcover $\beta = \{c_1, c_2, ..., c_n\}$ Hence $X \subseteq \bigcup_{i=1}^n cl(ci)$ of Ω such that $X \subseteq \bigcup_{i=1}^n ci$

Thus X is T-pre c-compact space.

Theorem(3-4):

A T-pre c-compact space is (T,L)pre-irresolute topological property.

Proof:

Suppose that $f:(X,\Gamma,T) \rightarrow (Y,\sigma,L)$ be a(T,L) pre-irresolute homeomorphism function from a T-pre c-compact space (X,Γ,T) onto L-pre operator topological space (Y,σ,L) .

To prove that Y is L-pre-c-compact space assume that Ω be L-pre open cover of Y such that $Y \subseteq \bigcup_{i \in \Lambda} ci$ where $ci \in \Omega$, for each $i \in \Lambda$

Since f is (T,L) pre-irresolute continuous function, therefore $f^{-1}(Y) \subseteq f^{-1}(\bigcup_{i \in A} ci)$

$$X \subseteq \bigcup_{i \in \Lambda} f^{-1}(ci)$$

Since X is T-pre c-compact space, then there exists a finite sub collection $\{f^{-1}(c_1), f^{-1}(c_2), \dots, f^{-1}(c_n)\}$ covers X.

Also f is onto then $f(X) \subseteq \bigcup_{i=1}^{n} cl(f^{-1}(c_i))$

Then $Y \subseteq \bigcup_{i=1}^{n} cl(c_i)$, Thus Y is L-pre c-compact space.

Theorem(3-5):

If (X,Γ,T) is T-pre c-compact space and A \subseteq X be both T-pre open and T- pre closed set .Then a subspace (A,Γ_A,T) is T-pre c-compact space

Proof:

Suppose that $B \subseteq A$ is T-pre closed set in A and $k = \{c_\alpha : \alpha \in \Lambda\}$ be T-pre open cover of B where c_α is T-pre open set in A for all $\alpha \in \Lambda$. Since B is T-pre closed set in A and A is T-pre closed set in X then B is T-pre closed set in X.

Also c_{α} is T-pre open set in A and A is T-pre open in X ,then c_{α} is T-pre open set in X.

Since X is T-pre c-compact space, B is T-pre closed set in X and k is T-pre open cover of B then there exist $\{c_{\alpha 1}, c_{\alpha 2}, ..., c_{\alpha n}\}$ covers B such that $B \subseteq \bigcup_{i=1}^{n} cl(c_{\alpha i})$.

Thus (A,Γ_A,T) is T-pre c-compact space.

Theorem(3-6):

Every (T,L) pre-continuous image of T-pre c-compact space is T-c-compact space.

proof:

suppose that $f: (X,\Gamma,T) \rightarrow (Y,\sigma,L)$ is (T,L) pre-continuous function from T-pre c-compact space (X,Γ,Y) onto L-operator topological space (Y,σ,L) .

To prove Y is T-c-compact then let Ω be T-open cover of Y that is $Y \subseteq \bigcup_{i \in \Lambda} ci$ where $ci \in \Omega$ for each $i \in \Lambda$.

Since f is (T,L)pre-continuous function therefore $X \subseteq \bigcup_{i \in \Lambda} f^{-1}(ci)$, but X is T-pre c-compact space ,then there exist $\{f^{-1}(c_1), f^{-1}(c_2), \dots, f^{-1}(c_n)\}$ of Ω such that $X \subseteq \bigcup_{i=1}^n f^{-1}(cl(ci))$

$$f(X) \subseteq f(\bigcup_{i=1}^n f^{-1}(cl(ci)))$$

$$Y \subseteq \bigcup_{i=1}^{n} cl(ci)$$

Hence Y is T-c-compact space.

Corollary(3-7):

Every (T,L) strongly pre-continuous image of T-c-compact space is T-pre c-compact space.

Proof:

suppose that $f: (X,\Gamma,T) \rightarrow (Y,\sigma,L)$ is (T,L)strongly pre-continuous function from T-compact space (X,Γ,Y) onto L-pre operator topological space (Y,σ,L) .

To prove Y is T-pre c-compact then let Ω be T-pre open cover of Y that is $Y \subseteq \bigcup_{i \in \Lambda} ci$ where $ci \in \Omega$.

Since f is (T,L)strongly pre-continuous function therefore $f^{-1}(Y) \subseteq \bigcup_{i \in \Lambda} f^{-1}(ci)$, where $ci \in \Omega$ is T-pre open cover of X such that $X \subseteq \bigcup_{i \in \Lambda} f^{-1}(ci)$.

Since X is T-pre c-compact space therefore there exist $f^{-1}(c_1), f^{-1}(c_2), ..., f^{-1}(c_n)$ of Ω such that

$$X \subseteq \bigcup_{i=1}^{n} f^{-1}(cl(ci))$$

$$Y \subseteq \bigcup_{i=1}^{n} cl(ci)$$

Thus Y is T-pre c-compact space.

Corollary(3-8):

Every (T,L)pre-irresolute continuous image of T-pre-c-compact space is T-pre-c-compact space.

References:

- **1** . G. Goss, and G. Viglino "C-Compact space and functionally compact space, Pacific J. Math.,37, 667-681, 1971.
- 2. G. Viglino "C-compact spaces", Duke Math. J., 36, 761-764, 1969.
- 3. G. Viglino "Semi normal and C-compact spaces", Duke Math. J., 38, 57-61, 1971.
- 4. H.K.Mousa, "Pre-Operator compact space", IOSR-JM, 11(2015), 37-42.
- **5** . H. Kim " Notes on C-compact space and functionally compact spaces, Kyungpook Math. J.,10, 75-80, 1970.
- **6** . Larre L. Herringaton, and P.E.Long "characterizations of c-compact space, Proc. Amer. Math. Soc., 52, 417-426, 1975.
- 7. N. G. Mansour, H. K. Moussa "T-pre-operators", IOSR-JM, 5(2013), 56-65.
- 8 . S. Sakai " A note on compact spaces, Proc. Japan Acad., 46, 917-920, 1970.