On α^{s*} -Regular, α^{s*} -Normal and α^{s*} -C-Compact spaces

A.Punitha tharani¹ And G.Hari Siva Annam²

Department of Mathematics,
St.Mary's College (Autonomous)
Tuticorin 628 001,India.
Research Scholar

Manonmaniam Sundaranar University,

Abisekapatti, Tirunelveli 627 002, India

Abstract

The purpose of this paper is to establish and project the theorems which exhibit the characterization of α^{s*} -Regular, α^{s*} -Normal and C- α^{s*} -compact space and obtain some of interesting properties of α^{s*} -Regular, α^{s*} -Normal and C- α^{s*} -Compact space.

Keywords: α^{s^*} -Regular, α^{s^*} -Normal, C- α^{s^*} -Compact space, α^{s^*} -Hausdorff, α^{s^*} -continuous, M- α^{s^*} -continuous, α^{s^*} -open, α^{s^*} -closed.

1. INTRODUCTION

Viglino[11] introduced the family of C-Compact spaces, showing that every continuous function from a C-Compact space into a Hausdorff space is a closed function and that this class of spaces properly contains the class of compact spaces. In[2],Devi et al. introduced the concept of α -regular space study their properties as well as the relation among themselves. In [1], Alias et al. introduced α -Normal and discussed their properties.

Recently, the authors [3] introduced some new concepts namely α^{s^*} -closed sets and α^{s^*} -open sets in topological spaces. In this paper we define α^{s^*} -Regular, α^{s^*} -Normal and venture to generalize C-Compact space using α^{s^*} -open sets and shall term them as C- α^{s^*} -Compact space.

2. PRELIMINARIES

Throughout this paper X,Y, and Z will always denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is a subset of a space X, cl(A) and int(A) denote the closure and the interior of A in X respectively.

We recall the following definitions and results that will be useful in this paper. A subset A of a topological space(X,τ) is called generalized closed (briefly g-closed)if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X, and generalized open(briefly g-open) if it

complement. $X\setminus A$ is g-closed in X. The generalized closure [5] of A is defined as the intersection of all g-closed sets containing A and is denoted by $cl^*(A)$ and the generalized interior of A is defined as the union of all g-closed subsets of A and is denoted by $int^*(A)$.

A subset B of a topological space(X, τ) is called α -open[7] if B \subseteq int(cl(intB), α -closed if cl(int(cl(B)) \subseteq B, α^{s^*} -open[3] if B \subseteq int*(cl(intB), α^{s^*} -closed if cl*(int(cl(B)) \subseteq B. The α -closure of a subset A of X is the intersection of all α -closed sets containing A and is denoted by α cl(A). The α^{s^*} -closure of A is analogously defined is denoted by α^{s^*} cl(A)[3]. The α^{s^*} -interior of a subset A of X is the union of all α^{s^*} -open sets contained in A and is denoted by α^{s^*} int(A). The α^{s^*} -closure of A is analogously defined and that is denoted by α^{s^*} Int(A).

The collection of all α^{s^*} open (respectively α^{s^*} -closed) sets is denoted by $\alpha^{s^*}O(X,\tau)$ and $\alpha^{s^*}C(X,\tau)$.

Definition 2.1[9]

A function $f: X \to Y$ is called α^{s^*} -continuous if inverse image of each open set in Y is α^{s^*} -open in X.

Definition 2. 2[9]

A function $f: X \to Y$ is called M- α^{s^*} open if image of each α^{s^*} open set in X is α^{s^*} -open in Y.

Definition 2.3[9]

A function $f:X\to Y$ is called M- α^{s^*} closed if image of each α^{s^*} closed set in X is α^{s^*} closed in Y.

Definition 2.4[12]

A space (X,τ) is said to be regular if for every closed set F and a point $x \notin F$, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$

Definition 2.5

- (i) A space (X,τ) is said to be α -regular [2] if for every closed set F and a point $x \notin F$, there exist disjoint α -open sets U and V such that $x \in U$ and $F \subseteq V$.
- (ii) A space (X, τ) is said to be pre*-regular [10]if for each pre*-closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $A \subseteq U$, $x \in V$.

Definition 2.6

- (i) A space (X,τ) is said to be α -Normal[1] if for every α -closed set F and a point $x \notin F$, there exist disjoint α -open sets U and V such that $x \in U$ and $F \subseteq V$
- (ii) A topological space (X, τ) is said to be pre*-normal [10] if for any two disjoint pre*-closed sets A and B, there exist disjoint open sets U and V such that A \subset U and B \subset V.

Definition 2.7[6]

A space (X,τ) is said to be g-regular if for every g-closed set F and a point $x \notin F$, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$.

Definition 2.8[4]

A collection \mathcal{B} of α^{s^*} -open sets in X is called α^{s^*} -open cover or cover by α^{s^*} -open sets of a subset \mathcal{B} of X if $\mathcal{B} \subseteq \cup \{U_\alpha : U_\alpha \in \mathcal{B}\}$ holds.

Definition 2.9[4]

A topological space X is said to be α^{s^*} -compact if every α^{s^*} -open cover of X has a finite subcover.

Definition 2.10[8]

A subset A of a space (X, τ) is said to be quasi H-closed relative to X if for every cover $\{V\alpha: \alpha \in \nabla\}$ of A by open sets of X, there exists a finite subset ∇_0 of ∇ such that $A \subseteq \cup \{cl(V\alpha): \alpha \in \nabla_0\}$

Theorem 2.11[3]

- (i) Every α -open set is α^{s*} open and every α -closed set is α^{s*} closed.
- (ii) Every α^{s*} -open is pre*open and every α^{s*} -closed set is pre*-closed.
- (iii) Every open set is α^{s*} open and every closed set is α^{s*} closed

3. α^{s*} -Regular

In this section , we introduce α^{s^*} -Regular spaces using α^{s^*} -closed and α^{s^*} -open sets and find their relations themselves and with already existing spaces. Also , we find some characterizations of α^{s^*} -regular spaces.

Definition 3.1

A space (X, τ) is said to α^{s^*} -regular if for each α^{s^*} -closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $A \subseteq U$, $x \in V$

Theorem 3. 2

A space (X, τ) is said to α^{s^*} -regular if and only if (X, τ) is regular and every α^{s^*} -closed is closed.

Proof:

Suppose that (X,τ) is α^{s^*} -regular. Then clearly (X,τ) is regular. Now let $A\subseteq X$ be α^{s^*} -closed. For each $x\not\in A$, there exists open sets V_x containing x such that $V_x\cap A=\emptyset$. If $V=\cup\{V_x:x\not\in A\}$ then V is open and $V=X\setminus A$, hence A is closed. The converse is obvious.

Theorem 3.3

Every pre* regular is α^{s*} -regular

Proof:

Let F be a α^{s^*} -closed set and $x \notin F$. Then by Theorem 2.11, F is pre*-closed. Since X is pre*-regular there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$. Therefore X is α^{s^*} -regular.

However the converse of the above theorem is not true in the following example.

Example 3.4

Let $X = \{a,b,c\}$ with $\tau = \{\emptyset,\{a,b\},\{c\},X\}$. Clearly (X,τ) is α^{s^*} -regular but not pre*-regular

Theorem 3.5

In a topological space X, the following are equivalent.

- (i) $X \text{ is } \alpha^{s^*}$ -regular
- (ii) For every $x \in X$ and every α^{s^*} —open set G containing x, there exists an open set U such that $x \in U \subseteq cl(U) \subseteq G$.
- (iii) For every α^{s*} -closed set F, the intersection of all closed neighborhood of F is exactly F
- (iv) For any set A and a α^{s^*} -open set B such that $A \cap B \neq \emptyset$, there exists an open set U such that $A \cap U \neq \emptyset$ and $cl(U) \subseteq B$.
- (v) For every non-empty set A and a α^{s^*} -closed set B such that $A \cap B = \emptyset$, there exists disjoint open sets U and V such that $A \cap U \neq \emptyset$ and $B \subseteq V$

Proof:

(i)⇒(ii)

Suppose X is α^{s^*} -regular. Let $x \in X$ and let G be a α^{s^*} -open set containing x. then $x \notin X \setminus G$ and $X \setminus G$ is α^{s^*} -closed. since X is α^{s^*} -regular, there exist open sets U and V such that $U \cap V = \emptyset$ and $x \in U, X \setminus G \subseteq V$. It follows that $U \subseteq X \setminus V \subseteq G$ and hence $cl(U) \subseteq cl(X \setminus V) = X \setminus V \subseteq G$. That is $x \in U \subseteq cl(U) \subseteq G$.

(ii)⇒(iii)

Let F be any α^{s^*} -closed set and $x \notin F$. Then $X \setminus F$ is α^{s^*} -open and $x \in X \setminus F$. By assumption, there exists an open sets U such that $x \in U \subseteq cl(U) \subseteq X \setminus F$, Thus $F \subseteq X \setminus cl(U) \subseteq X \setminus U$. Now $X \setminus U$ is closed neighborhood of F which does not contains x. so we get the intersection of all closed neighborhoods of F is exactly F.

(iii)⇒(iv)

Suppose $A \cap B \neq \emptyset$ and B is α^{s^*} —open .Let $x \in A \cap B$. Since B is α^{s^*} —open,X\B is α^{s^*} —closed and $x \notin X \setminus B$.By using (iii), there exists a closed neighborhood V of X\B such that $x \notin V$. Now for the neighborhood V of X\B there exists an open set G such that $X \setminus B \subseteq G \subseteq V$. Take $U = X \setminus V$. Thus U is an open set containing x. Also $A \cap U \neq \emptyset$ and $cl(U) \subseteq X \setminus G \subseteq B$.

 $(iv)\Rightarrow(v)$

Suppose A is a non-empty set and B is α^{s^*} -closed such that $A \cap B = \emptyset$. Then $X \setminus B$ is α^{s^*} -open and $A \cap (X-B) \neq \emptyset$. By our assumption, there exists an open set U such that $A \cap U \neq \emptyset$ and $cl(U) \subseteq X \setminus B$. Take $V = X \setminus cl(U)$. since cl(U) is closed, we have V is open. Also $B \subseteq V$ and $U \cap V \subseteq cl(U) \cap (X \setminus cl(U)) = \emptyset$.

(v)⇒(i)

Let S be α^{s^*} —closed and $x \notin S$. Then $S \cap \{x\} = \emptyset$. By (v), there exists disjoint open sets U and V such that $U \cap \{x\} \neq \emptyset$ and $S \subseteq V$. That is U and V are disjoint open sets containing x and S respectively. This proves that (X, τ) is α^{s^*} -regular

Theorem 3.6

Every quasi H-closed subset relative to a α^{s^*} -regular space is g-closed.

Proof:

Suppose X is α^{s^*} -regular and a subset A of X is quasi H-closed relative to X. Let U be a open set in X containing A. Then by Theorem 2.11, U is a α^{s^*} -open in X containing A. since X is α^{s^*} -regular, by using Theorem3.5 (ii) for each $x \in A$, there exists an open set V_x such that $x \in V_x \subseteq \operatorname{cl}(V_x) \subseteq U$. clearly $\{V_x : x \in A\}$ is an open cover for A. since A is quasi H-closed relative to X, there exists a finite subset A_0 of A such that $A \subseteq U\{\operatorname{cl}(V_x) : x \in A_0\}$. Since finite union of closed set is closed, we have $A \subseteq \operatorname{cl}(A) \subseteq U\{\operatorname{cl}(V_x) : x \in A_0\} \subseteq U$. that is $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. This shows that A is g-closed.

Theorem 3.7

A topological space X is α^{s^*} -regular if and only if for each α^{s^*} -closed F of X and each x \in X\F, there exists open sets U and V such that x \in U and F \subseteq V and cl(U) \cap cl(V)= \emptyset

Proof:

Suppose X is α^{s^*} -regular. Let F be a α^{s^*} -closed set in X and $x \notin F$. Then there exists an open sets U_x and V such that $x \in U_x$, $F \subseteq V$ and $U_x \cap V = \emptyset$. This implies that $U_x \cap cl((V) = \emptyset$. also cl(V) is a closed set and hence cl(V) is α^{s^*} -closed set and $x \notin cl(V)$. since X is α^{s^*} -regular, there exist open sets G and H of X such that $x \in G$ and $cl(V) \subseteq H$ and $G \cap H = \emptyset$. This implies $cl(G) \cap H \subseteq cl(X \setminus H) \cap H = \emptyset$. Take U = G. Now U and V are open sets in X such that $x \in U$ and $F \subseteq V$. Also $cl(U) \cap cl(V) \subseteq cl(G) \cap H = \emptyset$.

Conversely , suppose for each α^{s^*} -closed set F of X and $x \in X \setminus F$, there exists open sets U and V of X such that $x \in U$ and $F \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$. Now $U \cap V \subseteq cl(U) \cap cl(V) = \emptyset$. Therefore $U \cap V = \emptyset$. Hence X is α^{s^*} -regular.

Theorem 3.8

Let $f: X \rightarrow Y$ be a bijective function

(i) If f is M- α^{s^*} -continuous, open and X is α^{s^*} -regular. Then Y is α^{s^*} -regular.

(ii) If f is continuous, M- α^{s^*} closed and Y is α^{s^*} -regular, then X is α^{s^*} -regular

Proof:

- (i) Suppose X is α^{s^*} -regular. Let S be any α^{s^*} -closed subset in Y such that $y \notin S$. since f is M- α^{s^*} -Continuous, $f^l(S)$ is α^{s^*} -closed in X. since f is onto, there exists $x \in X$ such that y=f(x). Now $f(x)=y\notin S \Rightarrow x\notin f^l(S)$. since X is α^{s^*} -regular, there exists open sets U and V in X such that $x\in U, f^l(S)\subseteq V$ and $U\cap V=\emptyset$. Now $x\in U\Rightarrow f(x)\in f(U)$ and $f^l(S)\subseteq V\Rightarrow S\subseteq f(V)$. Also $U\cap V=\emptyset\Rightarrow f(U\cap V)=\emptyset\Rightarrow f(U)\cap f(V)=\emptyset$. since f is open map, f(U) and f(V) are disjoint open sets in Y containing y and S respectively. Thus Y is α^{s^*} -regular.
- (ii) Suppose Y is α^{s^*} -regular.Let F be any α^{s^*} -closed subset in X such that $x \notin F$. since f is M- α^{s^*} -Closed function, f(F) is α^{s^*} -closed in Y and $f(x) \notin f(F)$. Since Y is α^{s^*} -regular, there exists disjoint open sets U and V in Y such that $f(x) \in U$, $f(F) \subseteq V$. Clearly $x \in f^1(U)$ and $F \subseteq f^1(V)$. since f is continuous, $f^1(U)$ and $f^1(V)$ are disjoint open sets in X containing x and F respectively. Thus X is α^{s^*} -regular.

Theorem 3.9

Every α^{s^*} -compact subset of a space X is quasi H- closed relative to X.

Proof:

Let A be a α^{s^*} -compact relative to X. Let $\{V_\alpha:\alpha\in\nabla\}$ be an opencover for A in X. since every open set is α^{s^*} -open, $\{V_\alpha:\alpha\in\nabla\}$ is a α^{s^*} -open cover for A in X. since A is α^{s^*} -compact in X, there exists a finite subset ∇_o of ∇ such that $A\subseteq \cup \{V_\alpha:\alpha\in\nabla_o\}$.clearly $A\subseteq \cup \{V_\alpha:\alpha\in\nabla_o\}\subseteq \cup \{c|(V_\alpha):\alpha\in\nabla_o\}$. By definition A is quasi H-closed relative to X.

Theorem 3.10

If X is a α^{s^*} -regular space and a subset A of X is quasi H-closed relative to X, then A is α^{s^*} -compact in X.

Proof:

Suppose X is a α^{s^*} -regular space and a subset A of X is quasi H-closed relative to X. Let $\{V_\alpha:\alpha\in\nabla\}$ be a α^{s^*} -open cover or A. Then $A\subseteq\cup\{V_\alpha:\alpha\in\nabla\}$. Let $x\in A$. Then $x\in V_\alpha$ for some α . For each $x\in A$, take $V_x=V_\alpha$, where V_α is any one of the α^{s^*} -open sets in X containing x. since X is α^{s^*} -regular space and V_x is α^{s^*} -open. By Theorem 3.5 (ii), for each $x\in A$, there exists an open set U_x such that $x\in U_x\subseteq cl(U_x)\subseteq V_x$. Clearly $\{U_x:x\in A\}$ is an open cover of A. since A is quasi H-closed relative to X. there exists a finite subset A_α of A such that $A\subseteq U\{cl(U_x):x\in A_\alpha\}\subseteq U\{V_x:x\in A_\alpha\}$. That is $\{V_x:x\in A_\alpha\}$ is a finite sub cover for the α^{s^*} -open cover $\{V_\alpha:\alpha\in\nabla\}$ of A. This shows that A is α^{s^*} -compact in X.

Theorem 3.11

A topological space X is α^{s^*} -regular if and only if every pair consisting of a compact set and a disjoint α^{s^*} -closed set can be separated by open set.

Proof:

Let X be α^{s^*} -regular and A be a compact set B be α^{s^*} -closed set with $A \cap B = \emptyset$. Since X is α^{s^*} -regular A, for each A, there exist disjoint open set A and A such that $A \in A$ is an open covering of A. Since A is compact, there exists a finite subfamily $\{U_{xi}:1 \le i \le n\}$ which covers A. It follows that $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Then $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Then $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Then $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$

Conversely, suppose every pair consisting of a compact set and a disjoint α^{s^*} -closed set can be separated by open sets. Let F be a α^{s^*} -closed set and $x \notin F$. Then $\{x\}$ is compact subset of x and $\{x\} \cap F = \emptyset$. By our assumption there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$. This proves that X is α^{s^*} -regular.

4. α^{s^*} -Normal

A topological (X,τ) is said to be α^{s^*} -Normal if for any two disjoint α^{s^*} -closed set A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.1

Every pre* Normal space is α^{s*} –Normal.

Proof:

Suppose X is pre* - Normal. Let A and B be two disjoint α^{s^*} -closed sets in X . since every α^{s^*} -closed set is pre*-closed, A and B are pre*-closed in X. By Definition 2.6 there exists disjoint open sets U and V such that A \subseteq U and B \subseteq V. This proves that X is α^{s^*} -normal.

Remark 4. 2

But the converse of the above theorem is not true as shown by the following example.

Example 4.3

Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset,\{b\},\{a,c\},X\}$. Clearly (X,τ) is α^{s^*} -Normal but not pre*-Normal.

Theorem 4.4

For a topological space X. the following are equivalent.

- (i) $X \text{ is } \alpha^{s^*}$ -Normal
- (ii) For every pair of α^{s^*} -open sets U and V whose union in X, there exists closed sets E and F such that $E\subseteq U$ and $F\subseteq V$ and $E\cup F=X$.

(iii) For every α^{s^*} -closed set F and every α^{s^*} -open set G containing F, there exists an open set U such that $F \subseteq U \subseteq cl(U) \subseteq G$.

Proof:

(i)⇒(ii)

Let U and V be pair of α^{s^*} -open sets in a α^{s^*} -Normal space X such that $X=U\cup V$. Then $(X\setminus U)\cap (X\setminus V)=X\setminus U\cup V=X\setminus X=\emptyset$ and $X\setminus U$ and $X\setminus V$ are disjoint α^{s^*} -closet sets. Since X is α^{s^*} -Normal, there exists disjoint open sets G and H such that $X\setminus U\subseteq G$ and $X\setminus V\subseteq H$. Let $E=X\setminus G$ and $F=X\setminus H$, then E and F are closed sets such that $E\subseteq U, F\subseteq V$. Also $E\cup F=(X\setminus G)\cup (X\setminus H)=X\setminus (G\cap H)=X\setminus \emptyset=X$.

(ii)⇒(iii)

Let F be a α^{s^*} -closed and Let G be a α^{s^*} -open set containing F.Then X\F and G are α^{s^*} -open sets whose union is X. Then by (ii) , there exists closed sets V_1 and V_2 such that $V_1 \subseteq X \setminus F$ and $V_2 \subseteq G$ and $V_1 \cup V_2 = X$. Then $F \subseteq X \setminus V_1$, $X \setminus G \subseteq X \setminus V_2$ and $(X \setminus V_1) \cap (X \setminus V_2) = X \setminus (V_1 \cup V_2) = X \setminus X = \emptyset$. Let $U = X \setminus V_1$ and $V = X \setminus V_2$. Then U and V are disjoint open sets such that $F \subseteq U \subseteq X \setminus V = V_2 \subseteq G$. As $X \setminus V$ is closed, we have $cl(U) \subseteq X \setminus V$ and $F \subseteq U \subseteq cl(U) \subseteq G$.

(iii)⇒(i)

Let F_1 and F_2 be any two disjoint α^{s^*} —closed sets in X. Put $G=X\setminus F_2$, then $F_1\subseteq G$ and G is a α^{s^*} —open set in X. Then by (iii), there exists an open set U of X such that $F_1\subseteq U\subseteq cl(U)\subseteq G$. This implies that $F_2\subseteq X\setminus cl(U)$. Take $V=X\setminus cl(U)$. Then V is an open set containing F_2 and $U\cap V\subseteq cl(U)\cap (X\setminus cl(U))=\emptyset$. That is F_1 and F_2 are separated by open set U and V. It follows that X is α^{s^*} —Normal

Theorem 4.5

If X is α^{s^*} -Normal, then every pair of disjoint α^{s^*} -closed sets have open neighborhoods whose closures are disjoint.

Proof:

Assume that X is α^{s^*} -Normal.Let A and B be disjoint α^{s^*} -closed sets in X. since X is α^{s^*} -Normal , there exists open sets U_1 and U_2 such that $A \subseteq U_1$ and $B \subseteq U_2$ and $U_1 \cap U_2 = \emptyset$.By the above theorem 4.4, there exists open sets V_1 and V_2 such that $A \subseteq V_1 \subseteq cl(V_1) \subseteq U_1$ and $B \subseteq V_2 \subseteq cl(V_2) \subseteq U_2$. Moreover, $cl(V_1) \cap cl(V_2) \subseteq U_1 \cap U_2 = \emptyset$.

Theorem 4.6

Let $f:X \rightarrow Y$ be a function

- (i) If f is injective, M- α^{s^*} -continuous, open and X is α^{s^*} -Normal. Then Y is α^{s^*} -Normal.
- (ii) If f is continuous, M- α^{s*} closed and Y is α^{s*} -Normal, then X is α^{s*} -Normal

Proof:

- (i) Suppose X is α^{s^*} -Normal. Let A and B be disjoint α^{s^*} -closed sets in Y. since f is M- α^{s^*} -Continuous, $f^l(A)$ and $f^l(B)$ are α^{s^*} -closed in X. since X is α^{s^*} -Normal, there exists disjoint open sets U and V in X such that $f^l(A) \subseteq U$ and $f^l(B) \subseteq V$. Now $f^l(A) \subseteq U \Rightarrow A \subseteq f(U)$ and $f^l(B) \subseteq V \Rightarrow B \subseteq f(V)$. since f is an open map, f(U) and f(V) are open sets in Y. Also $U \cap V = \emptyset \Rightarrow f(U \cap V) = \emptyset \Rightarrow f(U) \cap f(V) = \emptyset$. Thus f(U) and f(V) are disjoint open sets in Y containing A and B respectively. Thus Y is α^{s^*} -Normal.
- (ii) Suppose Y is α^{s^*} -Normal. Let A and B be disjoint α^{s^*} -closed sets in X.since f is M- α^{s^*} -Closed function, f(A) and f(B) are α^{s^*} -closed in Y. Since Y is α^{s^*} -normal, there exists disjoint open sets U and V in Y such that $f(A)\subseteq U, f(B)\subseteq V$. That is $A\subseteq f^1(U)$ and $B\subseteq f^1(V)$.since f is continuous, $f^1(U)$ and $f^1(V)$ are disjoint open sets in X containing A and B respectively. Thus X is α^{s^*} -Normal.

5. C- α^{s^*} compact

In this section we introduce C - α^{s^*} -Compact space.

Definition 5.1 [11]

A topological space X is called C- Compact if for each closed subset $A \subseteq X$ and for each open cover $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \nabla\}$ of A, there exists a finite sub collection $\{U_{\alpha i} \mid 1 \le i \le n\}$ of \mathcal{U} , such that $A \subseteq \bigcup_{i=1}^n cl(U_{\alpha i})$

Definition 5.2

An α^{s^*} -open set U is said to be α^{s^*} -regular if α^{s^*} int(α^{s^*} cl(U))=U. Also α^{s^*} -closed set U is said to be α^{s^*} -regular if α^{s^*} cl(α^{s^*} int(U))=U.

Definition 5.3

X is said to be an α^{s^*} -Hausdorff space if for any pair of distinct points x and y in X, there exists an α^{s^*} -open sets U and V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Definition 5.4

A set U in a topological space X is an α^{s^*} -neighborhood of a point x if U contains an α^{s^*} -open set V, such that $x \in V$.

Theorem 5.5

If A is α^{s^*} -closed then α^{s^*} intA is α^{s^*} -regular open

Proof:

Clearly α^{s^*} int $A \subseteq \alpha^{s^*}$ cl $(\alpha^{s^*}$ intA)

$$\Rightarrow \alpha^{s^*} int A \subseteq \alpha^{s^*} int(\alpha^{s^*} cl(\alpha^{s^*} int(A))).$$

Also α^{s^*} int(A) \subseteq A,

$$\Rightarrow \alpha^{s^*} cl(\alpha^{s^*} int(A)) \subseteq \alpha^{s^*} cl(A) = A \text{ (since A is } \alpha^{s^*} - closed)$$

$$\Rightarrow \alpha^{s^*} int(\alpha^{s^*} cl(\alpha^{s^*} int(A))) \subseteq \alpha^{s^*} int(A)$$

Theorefore α^{s^*} int(α^{s^*} cl(α^{s^*} int(A)))= α^{s^*} int(A).

Hence α^{s^*} int(A) is α^{s^*} -regular open.

Theorem 5.6

If A is α^{s^*} -open then α^{s^*} cl(A) is α^{s^*} -regular closed

Proof:

Follows pre-Theorem 5.5

Note 5.7

By pre-Theorems we can say that $\alpha^{s^*} \text{int}(\alpha^{s^*} \text{cl}(U))$ is α^{s^*} -regular open and $\alpha^{s^*} \text{cl}(\alpha^{s^*} \text{int}(U))$ is α^{s^*} -regular closed.

Definition 5.8

A topological space X is called C- α^{s^*} -Compact if for each α^{s^*} -closed subset $A \subseteq X$ and for each α^{s^*} -open cover $\mathcal{U} = \{U_\alpha \mid \alpha \in \nabla\}$ of A, there exists a finite sub collection $\{U_{\alpha i} \mid 1 \le i \le n\}$ of \mathcal{U} , such that $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$

Lemma 5.9

A topological space X is C- α^{s^*} -compact iff for each α^{s^*} -closed subset $A \subseteq X$ and for each α^{s^*} -regular open cover $\{U_\alpha: \alpha \in \nabla\}$ of A, there exists a finite subcollection $\{U\alpha_i: 1 \le i \le n\}$ such that $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$

Proof:

If X is $\text{C-}\alpha^{s^*}\text{-compact,}$ the condition follows from Definition.

Now suppose the condition holds and let $\{U_\alpha\colon \alpha\in \nabla\}$ be any cover of A by α^{s^*} —open sets. Then $\gamma=\alpha^{s^*}$ int $(\alpha^{s^*}\mathrm{cl}(U_\alpha))$ is a α^{s^*} —regular open cover of A and so there exists a finite sub collection $\{\alpha^{s^*}\mathrm{int}(\alpha^{s^*}\mathrm{cl}(U_{\alpha i}))\colon 1\le i\le n\}$ of γ such that $A\subseteq \bigcup_{i=1}^n\alpha^{s^*}\mathrm{cl}(\alpha^{s^*}\mathrm{int}(\alpha^{s^*}\mathrm{cl}(U_{\alpha i})))$. But for each i, we have $\alpha^{s^*}\mathrm{cl}(\alpha^{s^*}\mathrm{int}(\alpha^{s^*}\mathrm{cl}(U_{\alpha i})))=\alpha^{s^*}\mathrm{cl}(U_{\alpha i})$ Therefore $A\subseteq \bigcup_{i=1}^n\alpha^{s^*}\mathrm{cl}(U_{\alpha i})$ which shows that X is C- α^{s^*} -Compact

Theorem 5.10

A M- α^{s^*} -continuous image of a C- α^{s^*} -compact space is C- α^{s^*} -compact

Proof:

Let A be a α^{s^*} -closed subset of Y and γ be an α^{s^*} -open cover of A. By M- α^{s^*} -continuity of f, $f^l(A)$ is an α^{s^*} -closed subset of X and P={ $f^l(V):V \in \gamma$ } is a cover of f l(A) by α^{s^*} -open sets. By C- α^{s^*} -compactness of X, there exists a finite collection say{Pi:1 $\leq i \leq n$ } of P such that $f^l(A) \subseteq \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}(f^l(Vi)):1\leq i \leq n\}$. Now by M- α^{s^*} -continuity of f, $A \subseteq \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}((Vi):1\leq i \leq n\}$. Thus Y is C- α^{s^*} -compact.

Theorem 5.11

For any Topological space X, the following properties of X are equivalent

- (i) X is C- α^{s^*} -compact
- (ii) For each α^{s^*} -closed $A \subseteq X$ and each α^{s^*} -regular open cover $\{U_\alpha : \alpha \in \nabla\}$ of A there exists a finite sub collection $\{U_{\alpha i} : 1 \le i \le n\}$ such that $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$
- (iii) For each α^{s^*} -closed $A \subseteq X$ and each collection of non-empty α^{s^*} -regular closed sets $\{F_{\alpha}: \alpha \in \nabla\}$ such that $(\bigcap_{\alpha} F_{\alpha}) \cap A = \emptyset$, there exists a finite sub collection $\{F_{\alpha i}: 1 \le i \le n\}$ such that $(\bigcap_{i=1}^n \alpha^{s^*} \operatorname{int}(F_{\alpha i}) \cap A = \emptyset)$
- (iv) For each α^{s^*} -closed $A \subseteq X$ and each collection of non empty α^{s^*} -regular closed sets $\{F_{\alpha}: \alpha \in \nabla\}$, if each finite sub collection $\{F_{\alpha i}: 1 \le i \le n\}$ has the property that $(\bigcap_{i=1}^n \alpha^{s^*} \operatorname{int}(F_{\alpha i}) \cap A \ne \emptyset$, then $(\bigcap_{\alpha} F_{\alpha}) \cap A \ne \emptyset$.

Proof:

(i)if and only if (ii) has been shown in Lemma 5.9

(ii)⇒(iii)

Let A be a α^{s^*} -closed subset of a C- α^{s^*} - compact space X and \mathcal{F} a family of α^{s^*} regular closed sets of X with $\cap \mathcal{F} \cap A = \emptyset$. since $\mathcal{U} = \{X - F / F \in \mathcal{F}\}$ is a family of α^{s^*} regular open sets of X covering A, there is a finite number of elements of \mathcal{U} , say $U_i = X$ - $F_i, 1 \le i \le n$, with $\bigcup_{i=1}^n \alpha^{s^*} \text{cl}(U_i) \supseteq A$. Therefore, $\bigcap_{i=1}^n \alpha^{s^*} \text{int}(F_i) = X - \bigcup_{i=1}^n \alpha^{s^*} \text{cl}(U_i) \subseteq X - A$.

Let $\{U_{\alpha}: \alpha \in \nabla\}$ be a α^{s^*} -regular open cover of A. Then $A \subseteq \bigcup_{\alpha} U_{\alpha}$ implies $(\bigcap_{\alpha} (X - U_{\alpha})) \cap A = \emptyset$. since $X - U_{\alpha}$ is α^{s^*} -regular closed for each $\alpha \in \nabla$, the hypothesis of (iii) implies that there is a finite subcollection $\{X - U_{\alpha i} / 1 \le i \le n\}$ such that $(\bigcap_{i=1}^n \alpha^{s^*} \operatorname{int}(X - U_{\alpha i})) \cap A = \emptyset$. It follows that $A \subseteq i = 1n(X - \alpha^{s^*} \operatorname{int}(X - U_{\alpha i}))$. However, $X - \alpha^{s^*} \operatorname{int}(X - U_{\alpha i}) = \alpha^{s^*} \operatorname{cl}(X - (X - U_{\alpha i})) = \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$ for each $i = 1, 2, 3, 4, \ldots, n$. Therefore, $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$ which is condition(ii).

(iii) If and only if (iv) is clear.

Theorem 5.12

Every M- α^{s^*} -Continuous function from a C- α^{s^*} -compact space to a α^{s^*} -Hausdorff space is M- α^{s^*} -closed.

Proof:

Let f be α^{s^*} —continuous function from a C- α^{s^*} -compact space X to a α^{s^*} -Hausdorff space Y. Let C be a α^{s^*} -closed set in X and let $p\notin f(C)$. Now for every $x\in f(C)$, $x\neq p$ and hence choose a open neighborhood N_x such that $p\notin \alpha^{s^*}\operatorname{cl}(N_x)$. Clearly $\{f^l(N_x):x\in f(C)\}$ is a α^{s^*} -open cover of C. Let $\{x_i:1\leq i\leq n\}$ be such that $C\subseteq \bigcup_{i=1}^n\alpha^{s^*}\operatorname{cl}(f^l(N_{xi})):1\leq i\leq n\}$ (since X is C- α^{s^*} -Compact space). Thus by the M- α^{s^*} -continuity of f, Y- $\bigcup_{i=1}^n\{\alpha^{s^*}\operatorname{cl}(N_{xi}):1\leq i\leq n\}$ is a α^{s^*} -neighborhood of p disjoint from f(C). Hence f(C) is α^{s^*} -closed, hence M- α^{s^*} -continuous function f from a C- α^{s^*} -Compact space X to a α^{s^*} -Hausdorff space Y is M- α^{s^*} -closed.

Theorem 5.13

A space X is $C-\alpha^{s^*}$ -Compact iff for each α^{s^*} -closed subset C of X and α^{s^*} -open cover $\mathcal F$ of X-C and a α^{s^*} -open -neighborhood U of C, there exists a finite collection $\{G_i \in \mathcal F: 1 \le i \le n\}$ such that $X = U \cup \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}(G_i): 1 \le i \le n\}$

Proof:

Since U is an α^{s^*} -open neighborhood of C, therefore $C \subseteq U \subseteq cl(C)$, or X-U \subseteq X-C where X-U is a α^{s^*} -closed set. Since \mathcal{T} is a α^{s^*} -open cover of X-C, \mathcal{T} is a α^{s^*} -open cover of the α^{s^*} -closed set X-U. Now by C- α^{s^*} -compactness of X, there exists a finite subfamily $\{G_i:1\leq i\leq n\}$ of \mathcal{T} such that X-U $\subseteq \bigcup_{i=1}^n \{\alpha^{s^*}cl(G_i):1\leq i\leq n\}$ which implies X=U $\bigcup_{i=1}^n \{\alpha^{s^*}cl(G_i):1\leq i\leq n\}$.

Conversely, Let A be a α^{s^*} -closed subset of X and \mathcal{G} be a α^{s^*} -open cover of A, Therefore $A \subseteq U\{G: G \in \mathcal{G}\} = H(say)$, obviously H is α^{s^*} -open . Therefore X-H is α^{s^*} -closed and $C \subseteq X$ -A. since X-A is α^{s^*} -open. Therefore we can take X-A= U is an α^{s^*} -open neighborhood of C. Thus by the given statement $X=U \cup \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}(Gi) : 1 \le i \le n\}$. Hence X is $C - \alpha^{s^*}$ -compact

REFERENCES

- [1] Alias B.Khalaf and Haji M.Hasan, α -covering Dimension , Int.J.Pure Appl. Sci.Technol.,3(1)(2011),pp.1-10.
- [2] Devi, R., Balachandran, K, and Maki.H Generalized α -closed maps and α generalized closed maps, Indian J.Pure Appl.Math., 29(1),37-49,1998.
- [3] Hari Siva Annam.G and Punitha Tharani.A., *On some New Class of Nearly closed and Open sets*, International Journal of Mathematical Archive-5(11), Nov. 2014, 47-52
- [4] Hari Siva Annam.G and Punitha Tharani.A., On α^{s*} -Connected and α^{s*} -Compact spaces

- [5] Levine, N., Generalized closed sets in topology, *Rend. Circ. Mat. Palermo* 19(2)(1970), 89-96.
- [6] B. M. Munshi, Separation Axioms, Acta Ciencia Indica, 12 (1986), 140-144.
- [7] Njastad, O., Some classes of nearly open sets, Pacific J. Math., 15(1965),961-970.
- [8] Porter .J and Thomas.J, *On H-closed and minimal Hausdorff spaces*, Trans. Amer.Math. soc.,138(1969),159-170.
- [9] Punitha Tharani. A and Hari Siva Annam. G., $On \alpha^{s*}$ -conitinuous and $M \alpha^{s*}$ -continuous mappings, Archimedes J. Math., 4(4)(2014), 179-186.
- [10] Punitha Tharani. A and T. Selvi., On pre*-regular and pre*-normal spaces, Archimedes J. Math., 4(2)(2014), 76-88
- [11] Viglino.G: C- Compact Spaces. Duke Math.J., 36,761-764(1969).
- [12] Willard, S., General Topology, Addison Wesley Publishing Company, Inc(1970)

