On α^{s*} -Regular, α^{s*} -Normal and α^{s*} -C-Compact spaces # A.Punitha tharani¹ And G.Hari Siva Annam² Department of Mathematics, St.Mary's College (Autonomous) Tuticorin 628 001,India. Research Scholar Manonmaniam Sundaranar University, Abisekapatti, Tirunelveli 627 002, India #### **Abstract** The purpose of this paper is to establish and project the theorems which exhibit the characterization of α^{s*} -Regular, α^{s*} -Normal and C- α^{s*} -compact space and obtain some of interesting properties of α^{s*} -Regular, α^{s*} -Normal and C- α^{s*} -Compact space. **Keywords:** α^{s^*} -Regular, α^{s^*} -Normal, C- α^{s^*} -Compact space, α^{s^*} -Hausdorff, α^{s^*} -continuous, M- α^{s^*} -continuous, α^{s^*} -open, α^{s^*} -closed. #### 1. INTRODUCTION Viglino[11] introduced the family of C-Compact spaces, showing that every continuous function from a C-Compact space into a Hausdorff space is a closed function and that this class of spaces properly contains the class of compact spaces. In[2],Devi et al. introduced the concept of α -regular space study their properties as well as the relation among themselves. In [1], Alias et al. introduced α -Normal and discussed their properties. Recently, the authors [3] introduced some new concepts namely α^{s^*} -closed sets and α^{s^*} -open sets in topological spaces. In this paper we define α^{s^*} -Regular, α^{s^*} -Normal and venture to generalize C-Compact space using α^{s^*} -open sets and shall term them as C- α^{s^*} -Compact space. # 2. PRELIMINARIES Throughout this paper X,Y, and Z will always denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is a subset of a space X, cl(A) and int(A) denote the closure and the interior of A in X respectively. We recall the following definitions and results that will be useful in this paper. A subset A of a topological space(X,τ) is called generalized closed (briefly g-closed)if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X, and generalized open(briefly g-open) if it complement. $X\setminus A$ is g-closed in X. The generalized closure [5] of A is defined as the intersection of all g-closed sets containing A and is denoted by $cl^*(A)$ and the generalized interior of A is defined as the union of all g-closed subsets of A and is denoted by $int^*(A)$. A subset B of a topological space(X, τ) is called α -open[7] if B \subseteq int(cl(intB), α -closed if cl(int(cl(B)) \subseteq B, α^{s^*} -open[3] if B \subseteq int*(cl(intB), α^{s^*} -closed if cl*(int(cl(B)) \subseteq B. The α -closure of a subset A of X is the intersection of all α -closed sets containing A and is denoted by α cl(A). The α^{s^*} -closure of A is analogously defined is denoted by α^{s^*} cl(A)[3]. The α^{s^*} -interior of a subset A of X is the union of all α^{s^*} -open sets contained in A and is denoted by α^{s^*} int(A). The α^{s^*} -closure of A is analogously defined and that is denoted by α^{s^*} Int(A). The collection of all α^{s^*} open (respectively α^{s^*} -closed) sets is denoted by $\alpha^{s^*}O(X,\tau)$ and $\alpha^{s^*}C(X,\tau)$. #### **Definition 2.1[9]** A function $f: X \to Y$ is called α^{s^*} -continuous if inverse image of each open set in Y is α^{s^*} -open in X. # **Definition 2. 2[9]** A function $f: X \to Y$ is called M- α^{s^*} open if image of each α^{s^*} open set in X is α^{s^*} -open in Y. ## **Definition 2.3[9]** A function $f:X\to Y$ is called M- α^{s^*} closed if image of each α^{s^*} closed set in X is α^{s^*} closed in Y. # **Definition 2.4[12]** A space (X,τ) is said to be regular if for every closed set F and a point $x \notin F$, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$ #### **Definition 2.5** - (i) A space (X,τ) is said to be α -regular [2] if for every closed set F and a point $x \notin F$, there exist disjoint α -open sets U and V such that $x \in U$ and $F \subseteq V$. - (ii) A space (X, τ) is said to be pre*-regular [10]if for each pre*-closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $A \subseteq U$, $x \in V$. #### **Definition 2.6** - (i) A space (X,τ) is said to be α -Normal[1] if for every α -closed set F and a point $x \notin F$, there exist disjoint α -open sets U and V such that $x \in U$ and $F \subseteq V$ - (ii) A topological space (X, τ) is said to be pre*-normal [10] if for any two disjoint pre*-closed sets A and B, there exist disjoint open sets U and V such that A \subset U and B \subset V. # **Definition 2.7[6]** A space (X,τ) is said to be g-regular if for every g-closed set F and a point $x \notin F$, there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$. ## **Definition 2.8[4]** A collection \mathcal{B} of α^{s^*} -open sets in X is called α^{s^*} -open cover or cover by α^{s^*} -open sets of a subset \mathcal{B} of X if $\mathcal{B} \subseteq \cup \{U_\alpha : U_\alpha \in \mathcal{B}\}$ holds. # **Definition 2.9[4]** A topological space X is said to be α^{s^*} -compact if every α^{s^*} -open cover of X has a finite subcover. # **Definition 2.10[8]** A subset A of a space (X, τ) is said to be quasi H-closed relative to X if for every cover $\{V\alpha: \alpha \in \nabla\}$ of A by open sets of X, there exists a finite subset ∇_0 of ∇ such that $A \subseteq \cup \{cl(V\alpha): \alpha \in \nabla_0\}$ # **Theorem 2.11[3]** - (i) Every α -open set is α^{s*} open and every α -closed set is α^{s*} closed. - (ii) Every α^{s*} -open is pre*open and every α^{s*} -closed set is pre*-closed. - (iii) Every open set is α^{s*} open and every closed set is α^{s*} closed # 3. α^{s*} -Regular In this section , we introduce α^{s^*} -Regular spaces using α^{s^*} -closed and α^{s^*} -open sets and find their relations themselves and with already existing spaces. Also , we find some characterizations of α^{s^*} -regular spaces. #### **Definition 3.1** A space (X, τ) is said to α^{s^*} -regular if for each α^{s^*} -closed set A and a point $x \notin A$, there exist disjoint open sets U and V such that $A \subseteq U$, $x \in V$ #### Theorem 3. 2 A space (X, τ) is said to α^{s^*} -regular if and only if (X, τ) is regular and every α^{s^*} -closed is closed. #### **Proof:** Suppose that (X,τ) is α^{s^*} -regular. Then clearly (X,τ) is regular. Now let $A\subseteq X$ be α^{s^*} -closed. For each $x\not\in A$, there exists open sets V_x containing x such that $V_x\cap A=\emptyset$. If $V=\cup\{V_x:x\not\in A\}$ then V is open and $V=X\setminus A$, hence A is closed. The converse is obvious. #### Theorem 3.3 Every pre* regular is α^{s*} -regular #### **Proof:** Let F be a α^{s^*} -closed set and $x \notin F$. Then by Theorem 2.11, F is pre*-closed. Since X is pre*-regular there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$. Therefore X is α^{s^*} -regular. However the converse of the above theorem is not true in the following example. # Example 3.4 Let $X = \{a,b,c\}$ with $\tau = \{\emptyset,\{a,b\},\{c\},X\}$. Clearly (X,τ) is α^{s^*} -regular but not pre*-regular #### Theorem 3.5 In a topological space X, the following are equivalent. - (i) $X \text{ is } \alpha^{s^*}$ -regular - (ii) For every $x \in X$ and every α^{s^*} —open set G containing x, there exists an open set U such that $x \in U \subseteq cl(U) \subseteq G$. - (iii) For every α^{s*} -closed set F, the intersection of all closed neighborhood of F is exactly F - (iv) For any set A and a α^{s^*} -open set B such that $A \cap B \neq \emptyset$, there exists an open set U such that $A \cap U \neq \emptyset$ and $cl(U) \subseteq B$. - (v) For every non-empty set A and a α^{s^*} -closed set B such that $A \cap B = \emptyset$, there exists disjoint open sets U and V such that $A \cap U \neq \emptyset$ and $B \subseteq V$ #### **Proof:** (i)⇒(ii) Suppose X is α^{s^*} -regular. Let $x \in X$ and let G be a α^{s^*} -open set containing x. then $x \notin X \setminus G$ and $X \setminus G$ is α^{s^*} -closed. since X is α^{s^*} -regular, there exist open sets U and V such that $U \cap V = \emptyset$ and $x \in U, X \setminus G \subseteq V$. It follows that $U \subseteq X \setminus V \subseteq G$ and hence $cl(U) \subseteq cl(X \setminus V) = X \setminus V \subseteq G$. That is $x \in U \subseteq cl(U) \subseteq G$. (ii)⇒(iii) Let F be any α^{s^*} -closed set and $x \notin F$. Then $X \setminus F$ is α^{s^*} -open and $x \in X \setminus F$. By assumption, there exists an open sets U such that $x \in U \subseteq cl(U) \subseteq X \setminus F$, Thus $F \subseteq X \setminus cl(U) \subseteq X \setminus U$. Now $X \setminus U$ is closed neighborhood of F which does not contains x. so we get the intersection of all closed neighborhoods of F is exactly F. (iii)⇒(iv) Suppose $A \cap B \neq \emptyset$ and B is α^{s^*} —open .Let $x \in A \cap B$. Since B is α^{s^*} —open,X\B is α^{s^*} —closed and $x \notin X \setminus B$.By using (iii), there exists a closed neighborhood V of X\B such that $x \notin V$. Now for the neighborhood V of X\B there exists an open set G such that $X \setminus B \subseteq G \subseteq V$. Take $U = X \setminus V$. Thus U is an open set containing x. Also $A \cap U \neq \emptyset$ and $cl(U) \subseteq X \setminus G \subseteq B$. $(iv)\Rightarrow(v)$ Suppose A is a non-empty set and B is α^{s^*} -closed such that $A \cap B = \emptyset$. Then $X \setminus B$ is α^{s^*} -open and $A \cap (X-B) \neq \emptyset$. By our assumption, there exists an open set U such that $A \cap U \neq \emptyset$ and $cl(U) \subseteq X \setminus B$. Take $V = X \setminus cl(U)$. since cl(U) is closed, we have V is open. Also $B \subseteq V$ and $U \cap V \subseteq cl(U) \cap (X \setminus cl(U)) = \emptyset$. (v)⇒(i) Let S be α^{s^*} —closed and $x \notin S$. Then $S \cap \{x\} = \emptyset$. By (v), there exists disjoint open sets U and V such that $U \cap \{x\} \neq \emptyset$ and $S \subseteq V$. That is U and V are disjoint open sets containing x and S respectively. This proves that (X, τ) is α^{s^*} -regular #### Theorem 3.6 Every quasi H-closed subset relative to a α^{s^*} -regular space is g-closed. # **Proof:** Suppose X is α^{s^*} -regular and a subset A of X is quasi H-closed relative to X. Let U be a open set in X containing A. Then by Theorem 2.11, U is a α^{s^*} -open in X containing A. since X is α^{s^*} -regular, by using Theorem3.5 (ii) for each $x \in A$, there exists an open set V_x such that $x \in V_x \subseteq \operatorname{cl}(V_x) \subseteq U$. clearly $\{V_x : x \in A\}$ is an open cover for A. since A is quasi H-closed relative to X, there exists a finite subset A_0 of A such that $A \subseteq U\{\operatorname{cl}(V_x) : x \in A_0\}$. Since finite union of closed set is closed, we have $A \subseteq \operatorname{cl}(A) \subseteq U\{\operatorname{cl}(V_x) : x \in A_0\} \subseteq U$. that is $\operatorname{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open. This shows that A is g-closed. #### Theorem 3.7 A topological space X is α^{s^*} -regular if and only if for each α^{s^*} -closed F of X and each x \in X\F, there exists open sets U and V such that x \in U and F \subseteq V and cl(U) \cap cl(V)= \emptyset #### **Proof:** Suppose X is α^{s^*} -regular. Let F be a α^{s^*} -closed set in X and $x \notin F$. Then there exists an open sets U_x and V such that $x \in U_x$, $F \subseteq V$ and $U_x \cap V = \emptyset$. This implies that $U_x \cap cl((V) = \emptyset$. also cl(V) is a closed set and hence cl(V) is α^{s^*} -closed set and $x \notin cl(V)$. since X is α^{s^*} -regular, there exist open sets G and H of X such that $x \in G$ and $cl(V) \subseteq H$ and $G \cap H = \emptyset$. This implies $cl(G) \cap H \subseteq cl(X \setminus H) \cap H = \emptyset$. Take U = G. Now U and V are open sets in X such that $x \in U$ and $F \subseteq V$. Also $cl(U) \cap cl(V) \subseteq cl(G) \cap H = \emptyset$. Conversely , suppose for each α^{s^*} -closed set F of X and $x \in X \setminus F$, there exists open sets U and V of X such that $x \in U$ and $F \subseteq V$ and $cl(U) \cap cl(V) = \emptyset$. Now $U \cap V \subseteq cl(U) \cap cl(V) = \emptyset$. Therefore $U \cap V = \emptyset$. Hence X is α^{s^*} -regular. #### Theorem 3.8 Let $f: X \rightarrow Y$ be a bijective function (i) If f is M- α^{s^*} -continuous, open and X is α^{s^*} -regular. Then Y is α^{s^*} -regular. (ii) If f is continuous, M- α^{s^*} closed and Y is α^{s^*} -regular, then X is α^{s^*} -regular #### **Proof:** - (i) Suppose X is α^{s^*} -regular. Let S be any α^{s^*} -closed subset in Y such that $y \notin S$. since f is M- α^{s^*} -Continuous, $f^l(S)$ is α^{s^*} -closed in X. since f is onto, there exists $x \in X$ such that y=f(x). Now $f(x)=y\notin S \Rightarrow x\notin f^l(S)$. since X is α^{s^*} -regular, there exists open sets U and V in X such that $x\in U, f^l(S)\subseteq V$ and $U\cap V=\emptyset$. Now $x\in U\Rightarrow f(x)\in f(U)$ and $f^l(S)\subseteq V\Rightarrow S\subseteq f(V)$. Also $U\cap V=\emptyset\Rightarrow f(U\cap V)=\emptyset\Rightarrow f(U)\cap f(V)=\emptyset$. since f is open map, f(U) and f(V) are disjoint open sets in Y containing y and S respectively. Thus Y is α^{s^*} -regular. - (ii) Suppose Y is α^{s^*} -regular.Let F be any α^{s^*} -closed subset in X such that $x \notin F$. since f is M- α^{s^*} -Closed function, f(F) is α^{s^*} -closed in Y and $f(x) \notin f(F)$. Since Y is α^{s^*} -regular, there exists disjoint open sets U and V in Y such that $f(x) \in U$, $f(F) \subseteq V$. Clearly $x \in f^1(U)$ and $F \subseteq f^1(V)$. since f is continuous, $f^1(U)$ and $f^1(V)$ are disjoint open sets in X containing x and F respectively. Thus X is α^{s^*} -regular. ## Theorem 3.9 Every α^{s^*} -compact subset of a space X is quasi H- closed relative to X. #### **Proof:** Let A be a α^{s^*} -compact relative to X. Let $\{V_\alpha:\alpha\in\nabla\}$ be an opencover for A in X. since every open set is α^{s^*} -open, $\{V_\alpha:\alpha\in\nabla\}$ is a α^{s^*} -open cover for A in X. since A is α^{s^*} -compact in X, there exists a finite subset ∇_o of ∇ such that $A\subseteq \cup \{V_\alpha:\alpha\in\nabla_o\}$.clearly $A\subseteq \cup \{V_\alpha:\alpha\in\nabla_o\}\subseteq \cup \{c|(V_\alpha):\alpha\in\nabla_o\}$. By definition A is quasi H-closed relative to X. # Theorem 3.10 If X is a α^{s^*} -regular space and a subset A of X is quasi H-closed relative to X, then A is α^{s^*} -compact in X. #### **Proof:** Suppose X is a α^{s^*} -regular space and a subset A of X is quasi H-closed relative to X. Let $\{V_\alpha:\alpha\in\nabla\}$ be a α^{s^*} -open cover or A. Then $A\subseteq\cup\{V_\alpha:\alpha\in\nabla\}$. Let $x\in A$. Then $x\in V_\alpha$ for some α . For each $x\in A$, take $V_x=V_\alpha$, where V_α is any one of the α^{s^*} -open sets in X containing x. since X is α^{s^*} -regular space and V_x is α^{s^*} -open. By Theorem 3.5 (ii), for each $x\in A$, there exists an open set U_x such that $x\in U_x\subseteq cl(U_x)\subseteq V_x$. Clearly $\{U_x:x\in A\}$ is an open cover of A. since A is quasi H-closed relative to X. there exists a finite subset A_α of A such that $A\subseteq U\{cl(U_x):x\in A_\alpha\}\subseteq U\{V_x:x\in A_\alpha\}$. That is $\{V_x:x\in A_\alpha\}$ is a finite sub cover for the α^{s^*} -open cover $\{V_\alpha:\alpha\in\nabla\}$ of A. This shows that A is α^{s^*} -compact in X. #### Theorem 3.11 A topological space X is α^{s^*} -regular if and only if every pair consisting of a compact set and a disjoint α^{s^*} -closed set can be separated by open set. #### **Proof:** Let X be α^{s^*} -regular and A be a compact set B be α^{s^*} -closed set with $A \cap B = \emptyset$. Since X is α^{s^*} -regular A, for each A, there exist disjoint open set A and A such that $A \in A$ is an open covering of A. Since A is compact, there exists a finite subfamily $\{U_{xi}:1 \le i \le n\}$ which covers A. It follows that $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Then $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Then $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Then $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and $A \subseteq U\{U_{xi}:1 \le i \le n\}$. Thus $A \subseteq U\{U_{xi}:1 \le i \le n\}$ and Conversely, suppose every pair consisting of a compact set and a disjoint α^{s^*} -closed set can be separated by open sets. Let F be a α^{s^*} -closed set and $x \notin F$. Then $\{x\}$ is compact subset of x and $\{x\} \cap F = \emptyset$. By our assumption there exist disjoint open sets U and V such that $x \in U$ and $F \subseteq V$. This proves that X is α^{s^*} -regular. # 4. α^{s^*} -Normal A topological (X,τ) is said to be α^{s^*} -Normal if for any two disjoint α^{s^*} -closed set A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$. #### Theorem 4.1 Every pre* Normal space is α^{s*} –Normal. #### **Proof:** Suppose X is pre* - Normal. Let A and B be two disjoint α^{s^*} -closed sets in X . since every α^{s^*} -closed set is pre*-closed, A and B are pre*-closed in X. By Definition 2.6 there exists disjoint open sets U and V such that A \subseteq U and B \subseteq V. This proves that X is α^{s^*} -normal. #### Remark 4. 2 But the converse of the above theorem is not true as shown by the following example. #### Example 4.3 Let $X = \{a,b,c\}$ with topology $\tau = \{\emptyset,\{b\},\{a,c\},X\}$. Clearly (X,τ) is α^{s^*} -Normal but not pre*-Normal. # **Theorem 4.4** For a topological space X. the following are equivalent. - (i) $X \text{ is } \alpha^{s^*}$ -Normal - (ii) For every pair of α^{s^*} -open sets U and V whose union in X, there exists closed sets E and F such that $E\subseteq U$ and $F\subseteq V$ and $E\cup F=X$. (iii) For every α^{s^*} -closed set F and every α^{s^*} -open set G containing F, there exists an open set U such that $F \subseteq U \subseteq cl(U) \subseteq G$. #### **Proof:** (i)⇒(ii) Let U and V be pair of α^{s^*} -open sets in a α^{s^*} -Normal space X such that $X=U\cup V$. Then $(X\setminus U)\cap (X\setminus V)=X\setminus U\cup V=X\setminus X=\emptyset$ and $X\setminus U$ and $X\setminus V$ are disjoint α^{s^*} -closet sets. Since X is α^{s^*} -Normal, there exists disjoint open sets G and H such that $X\setminus U\subseteq G$ and $X\setminus V\subseteq H$. Let $E=X\setminus G$ and $F=X\setminus H$, then E and F are closed sets such that $E\subseteq U, F\subseteq V$. Also $E\cup F=(X\setminus G)\cup (X\setminus H)=X\setminus (G\cap H)=X\setminus \emptyset=X$. (ii)⇒(iii) Let F be a α^{s^*} -closed and Let G be a α^{s^*} -open set containing F.Then X\F and G are α^{s^*} -open sets whose union is X. Then by (ii) , there exists closed sets V_1 and V_2 such that $V_1 \subseteq X \setminus F$ and $V_2 \subseteq G$ and $V_1 \cup V_2 = X$. Then $F \subseteq X \setminus V_1$, $X \setminus G \subseteq X \setminus V_2$ and $(X \setminus V_1) \cap (X \setminus V_2) = X \setminus (V_1 \cup V_2) = X \setminus X = \emptyset$. Let $U = X \setminus V_1$ and $V = X \setminus V_2$. Then U and V are disjoint open sets such that $F \subseteq U \subseteq X \setminus V = V_2 \subseteq G$. As $X \setminus V$ is closed, we have $cl(U) \subseteq X \setminus V$ and $F \subseteq U \subseteq cl(U) \subseteq G$. (iii)⇒(i) Let F_1 and F_2 be any two disjoint α^{s^*} —closed sets in X. Put $G=X\setminus F_2$, then $F_1\subseteq G$ and G is a α^{s^*} —open set in X. Then by (iii), there exists an open set U of X such that $F_1\subseteq U\subseteq cl(U)\subseteq G$. This implies that $F_2\subseteq X\setminus cl(U)$. Take $V=X\setminus cl(U)$. Then V is an open set containing F_2 and $U\cap V\subseteq cl(U)\cap (X\setminus cl(U))=\emptyset$. That is F_1 and F_2 are separated by open set U and V. It follows that X is α^{s^*} —Normal # Theorem 4.5 If X is α^{s^*} -Normal, then every pair of disjoint α^{s^*} -closed sets have open neighborhoods whose closures are disjoint. Proof: Assume that X is α^{s^*} -Normal.Let A and B be disjoint α^{s^*} -closed sets in X. since X is α^{s^*} -Normal , there exists open sets U_1 and U_2 such that $A \subseteq U_1$ and $B \subseteq U_2$ and $U_1 \cap U_2 = \emptyset$.By the above theorem 4.4, there exists open sets V_1 and V_2 such that $A \subseteq V_1 \subseteq cl(V_1) \subseteq U_1$ and $B \subseteq V_2 \subseteq cl(V_2) \subseteq U_2$. Moreover, $cl(V_1) \cap cl(V_2) \subseteq U_1 \cap U_2 = \emptyset$. # Theorem 4.6 Let $f:X \rightarrow Y$ be a function - (i) If f is injective, M- α^{s^*} -continuous, open and X is α^{s^*} -Normal. Then Y is α^{s^*} -Normal. - (ii) If f is continuous, M- α^{s*} closed and Y is α^{s*} -Normal, then X is α^{s*} -Normal # **Proof:** - (i) Suppose X is α^{s^*} -Normal. Let A and B be disjoint α^{s^*} -closed sets in Y. since f is M- α^{s^*} -Continuous, $f^l(A)$ and $f^l(B)$ are α^{s^*} -closed in X. since X is α^{s^*} -Normal, there exists disjoint open sets U and V in X such that $f^l(A) \subseteq U$ and $f^l(B) \subseteq V$. Now $f^l(A) \subseteq U \Rightarrow A \subseteq f(U)$ and $f^l(B) \subseteq V \Rightarrow B \subseteq f(V)$. since f is an open map, f(U) and f(V) are open sets in Y. Also $U \cap V = \emptyset \Rightarrow f(U \cap V) = \emptyset \Rightarrow f(U) \cap f(V) = \emptyset$. Thus f(U) and f(V) are disjoint open sets in Y containing A and B respectively. Thus Y is α^{s^*} -Normal. - (ii) Suppose Y is α^{s^*} -Normal. Let A and B be disjoint α^{s^*} -closed sets in X.since f is M- α^{s^*} -Closed function, f(A) and f(B) are α^{s^*} -closed in Y. Since Y is α^{s^*} -normal, there exists disjoint open sets U and V in Y such that $f(A)\subseteq U, f(B)\subseteq V$. That is $A\subseteq f^1(U)$ and $B\subseteq f^1(V)$.since f is continuous, $f^1(U)$ and $f^1(V)$ are disjoint open sets in X containing A and B respectively. Thus X is α^{s^*} -Normal. # 5. C- α^{s^*} compact In this section we introduce C - α^{s^*} -Compact space. # **Definition 5.1** [11] A topological space X is called C- Compact if for each closed subset $A \subseteq X$ and for each open cover $\mathcal{U} = \{U_{\alpha} \mid \alpha \in \nabla\}$ of A, there exists a finite sub collection $\{U_{\alpha i} \mid 1 \le i \le n\}$ of \mathcal{U} , such that $A \subseteq \bigcup_{i=1}^n cl(U_{\alpha i})$ #### **Definition 5.2** An α^{s^*} -open set U is said to be α^{s^*} -regular if α^{s^*} int(α^{s^*} cl(U))=U. Also α^{s^*} -closed set U is said to be α^{s^*} -regular if α^{s^*} cl(α^{s^*} int(U))=U. # **Definition 5.3** X is said to be an α^{s^*} -Hausdorff space if for any pair of distinct points x and y in X, there exists an α^{s^*} -open sets U and V in X such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. #### **Definition 5.4** A set U in a topological space X is an α^{s^*} -neighborhood of a point x if U contains an α^{s^*} -open set V, such that $x \in V$. #### Theorem 5.5 If A is α^{s^*} -closed then α^{s^*} intA is α^{s^*} -regular open #### **Proof:** Clearly α^{s^*} int $A \subseteq \alpha^{s^*}$ cl $(\alpha^{s^*}$ intA) $$\Rightarrow \alpha^{s^*} int A \subseteq \alpha^{s^*} int(\alpha^{s^*} cl(\alpha^{s^*} int(A))).$$ Also α^{s^*} int(A) \subseteq A, $$\Rightarrow \alpha^{s^*} cl(\alpha^{s^*} int(A)) \subseteq \alpha^{s^*} cl(A) = A \text{ (since A is } \alpha^{s^*} - closed)$$ $$\Rightarrow \alpha^{s^*} int(\alpha^{s^*} cl(\alpha^{s^*} int(A))) \subseteq \alpha^{s^*} int(A)$$ Theorefore α^{s^*} int(α^{s^*} cl(α^{s^*} int(A)))= α^{s^*} int(A). Hence α^{s^*} int(A) is α^{s^*} -regular open. #### Theorem 5.6 If A is α^{s^*} -open then α^{s^*} cl(A) is α^{s^*} -regular closed #### **Proof:** Follows pre-Theorem 5.5 #### **Note 5.7** By pre-Theorems we can say that $\alpha^{s^*} \text{int}(\alpha^{s^*} \text{cl}(U))$ is α^{s^*} -regular open and $\alpha^{s^*} \text{cl}(\alpha^{s^*} \text{int}(U))$ is α^{s^*} -regular closed. #### **Definition 5.8** A topological space X is called C- α^{s^*} -Compact if for each α^{s^*} -closed subset $A \subseteq X$ and for each α^{s^*} -open cover $\mathcal{U} = \{U_\alpha \mid \alpha \in \nabla\}$ of A, there exists a finite sub collection $\{U_{\alpha i} \mid 1 \le i \le n\}$ of \mathcal{U} , such that $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$ # Lemma 5.9 A topological space X is C- α^{s^*} -compact iff for each α^{s^*} -closed subset $A \subseteq X$ and for each α^{s^*} -regular open cover $\{U_\alpha: \alpha \in \nabla\}$ of A, there exists a finite subcollection $\{U\alpha_i: 1 \le i \le n\}$ such that $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$ #### **Proof:** If X is $\text{C-}\alpha^{s^*}\text{-compact,}$ the condition follows from Definition. Now suppose the condition holds and let $\{U_\alpha\colon \alpha\in \nabla\}$ be any cover of A by α^{s^*} —open sets. Then $\gamma=\alpha^{s^*}$ int $(\alpha^{s^*}\mathrm{cl}(U_\alpha))$ is a α^{s^*} —regular open cover of A and so there exists a finite sub collection $\{\alpha^{s^*}\mathrm{int}(\alpha^{s^*}\mathrm{cl}(U_{\alpha i}))\colon 1\le i\le n\}$ of γ such that $A\subseteq \bigcup_{i=1}^n\alpha^{s^*}\mathrm{cl}(\alpha^{s^*}\mathrm{int}(\alpha^{s^*}\mathrm{cl}(U_{\alpha i})))$. But for each i, we have $\alpha^{s^*}\mathrm{cl}(\alpha^{s^*}\mathrm{int}(\alpha^{s^*}\mathrm{cl}(U_{\alpha i})))=\alpha^{s^*}\mathrm{cl}(U_{\alpha i})$ Therefore $A\subseteq \bigcup_{i=1}^n\alpha^{s^*}\mathrm{cl}(U_{\alpha i})$ which shows that X is C- α^{s^*} -Compact #### Theorem 5.10 A M- α^{s^*} -continuous image of a C- α^{s^*} -compact space is C- α^{s^*} -compact #### **Proof:** Let A be a α^{s^*} -closed subset of Y and γ be an α^{s^*} -open cover of A. By M- α^{s^*} -continuity of f, $f^l(A)$ is an α^{s^*} -closed subset of X and P={ $f^l(V):V \in \gamma$ } is a cover of f l(A) by α^{s^*} -open sets. By C- α^{s^*} -compactness of X, there exists a finite collection say{Pi:1 $\leq i \leq n$ } of P such that $f^l(A) \subseteq \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}(f^l(Vi)):1\leq i \leq n\}$. Now by M- α^{s^*} -continuity of f, $A \subseteq \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}((Vi):1\leq i \leq n\}$. Thus Y is C- α^{s^*} -compact. #### Theorem 5.11 For any Topological space X, the following properties of X are equivalent - (i) X is C- α^{s^*} -compact - (ii) For each α^{s^*} -closed $A \subseteq X$ and each α^{s^*} -regular open cover $\{U_\alpha : \alpha \in \nabla\}$ of A there exists a finite sub collection $\{U_{\alpha i} : 1 \le i \le n\}$ such that $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$ - (iii) For each α^{s^*} -closed $A \subseteq X$ and each collection of non-empty α^{s^*} -regular closed sets $\{F_{\alpha}: \alpha \in \nabla\}$ such that $(\bigcap_{\alpha} F_{\alpha}) \cap A = \emptyset$, there exists a finite sub collection $\{F_{\alpha i}: 1 \le i \le n\}$ such that $(\bigcap_{i=1}^n \alpha^{s^*} \operatorname{int}(F_{\alpha i}) \cap A = \emptyset)$ - (iv) For each α^{s^*} -closed $A \subseteq X$ and each collection of non empty α^{s^*} -regular closed sets $\{F_{\alpha}: \alpha \in \nabla\}$, if each finite sub collection $\{F_{\alpha i}: 1 \le i \le n\}$ has the property that $(\bigcap_{i=1}^n \alpha^{s^*} \operatorname{int}(F_{\alpha i}) \cap A \ne \emptyset$, then $(\bigcap_{\alpha} F_{\alpha}) \cap A \ne \emptyset$. #### **Proof:** (i)if and only if (ii) has been shown in Lemma 5.9 #### (ii)⇒(iii) Let A be a α^{s^*} -closed subset of a C- α^{s^*} - compact space X and \mathcal{F} a family of α^{s^*} regular closed sets of X with $\cap \mathcal{F} \cap A = \emptyset$. since $\mathcal{U} = \{X - F / F \in \mathcal{F}\}$ is a family of α^{s^*} regular open sets of X covering A, there is a finite number of elements of \mathcal{U} , say $U_i = X$ - $F_i, 1 \le i \le n$, with $\bigcup_{i=1}^n \alpha^{s^*} \text{cl}(U_i) \supseteq A$. Therefore, $\bigcap_{i=1}^n \alpha^{s^*} \text{int}(F_i) = X - \bigcup_{i=1}^n \alpha^{s^*} \text{cl}(U_i) \subseteq X - A$. Let $\{U_{\alpha}: \alpha \in \nabla\}$ be a α^{s^*} -regular open cover of A. Then $A \subseteq \bigcup_{\alpha} U_{\alpha}$ implies $(\bigcap_{\alpha} (X - U_{\alpha})) \cap A = \emptyset$. since $X - U_{\alpha}$ is α^{s^*} -regular closed for each $\alpha \in \nabla$, the hypothesis of (iii) implies that there is a finite subcollection $\{X - U_{\alpha i} / 1 \le i \le n\}$ such that $(\bigcap_{i=1}^n \alpha^{s^*} \operatorname{int}(X - U_{\alpha i})) \cap A = \emptyset$. It follows that $A \subseteq i = 1n(X - \alpha^{s^*} \operatorname{int}(X - U_{\alpha i}))$. However, $X - \alpha^{s^*} \operatorname{int}(X - U_{\alpha i}) = \alpha^{s^*} \operatorname{cl}(X - (X - U_{\alpha i})) = \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$ for each $i = 1, 2, 3, 4, \ldots, n$. Therefore, $A \subseteq \bigcup_{i=1}^n \alpha^{s^*} \operatorname{cl}(U_{\alpha i})$ which is condition(ii). (iii) If and only if (iv) is clear. #### Theorem 5.12 Every M- α^{s^*} -Continuous function from a C- α^{s^*} -compact space to a α^{s^*} -Hausdorff space is M- α^{s^*} -closed. #### **Proof:** Let f be α^{s^*} —continuous function from a C- α^{s^*} -compact space X to a α^{s^*} -Hausdorff space Y. Let C be a α^{s^*} -closed set in X and let $p\notin f(C)$. Now for every $x\in f(C)$, $x\neq p$ and hence choose a open neighborhood N_x such that $p\notin \alpha^{s^*}\operatorname{cl}(N_x)$. Clearly $\{f^l(N_x):x\in f(C)\}$ is a α^{s^*} -open cover of C. Let $\{x_i:1\leq i\leq n\}$ be such that $C\subseteq \bigcup_{i=1}^n\alpha^{s^*}\operatorname{cl}(f^l(N_{xi})):1\leq i\leq n\}$ (since X is C- α^{s^*} -Compact space). Thus by the M- α^{s^*} -continuity of f, Y- $\bigcup_{i=1}^n\{\alpha^{s^*}\operatorname{cl}(N_{xi}):1\leq i\leq n\}$ is a α^{s^*} -neighborhood of p disjoint from f(C). Hence f(C) is α^{s^*} -closed, hence M- α^{s^*} -continuous function f from a C- α^{s^*} -Compact space X to a α^{s^*} -Hausdorff space Y is M- α^{s^*} -closed. # Theorem 5.13 A space X is $C-\alpha^{s^*}$ -Compact iff for each α^{s^*} -closed subset C of X and α^{s^*} -open cover $\mathcal F$ of X-C and a α^{s^*} -open -neighborhood U of C, there exists a finite collection $\{G_i \in \mathcal F: 1 \le i \le n\}$ such that $X = U \cup \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}(G_i): 1 \le i \le n\}$ #### **Proof:** Since U is an α^{s^*} -open neighborhood of C, therefore $C \subseteq U \subseteq cl(C)$, or X-U \subseteq X-C where X-U is a α^{s^*} -closed set. Since \mathcal{T} is a α^{s^*} -open cover of X-C, \mathcal{T} is a α^{s^*} -open cover of the α^{s^*} -closed set X-U. Now by C- α^{s^*} -compactness of X, there exists a finite subfamily $\{G_i:1\leq i\leq n\}$ of \mathcal{T} such that X-U $\subseteq \bigcup_{i=1}^n \{\alpha^{s^*}cl(G_i):1\leq i\leq n\}$ which implies X=U $\bigcup_{i=1}^n \{\alpha^{s^*}cl(G_i):1\leq i\leq n\}$. Conversely, Let A be a α^{s^*} -closed subset of X and \mathcal{G} be a α^{s^*} -open cover of A, Therefore $A \subseteq U\{G: G \in \mathcal{G}\} = H(say)$, obviously H is α^{s^*} -open . Therefore X-H is α^{s^*} -closed and $C \subseteq X$ -A. since X-A is α^{s^*} -open. Therefore we can take X-A= U is an α^{s^*} -open neighborhood of C. Thus by the given statement $X=U \cup \bigcup_{i=1}^n \{\alpha^{s^*} \operatorname{cl}(Gi) : 1 \le i \le n\}$. Hence X is $C - \alpha^{s^*}$ -compact # **REFERENCES** - [1] Alias B.Khalaf and Haji M.Hasan, α -covering Dimension , Int.J.Pure Appl. Sci.Technol.,3(1)(2011),pp.1-10. - [2] Devi, R., Balachandran, K, and Maki.H Generalized α -closed maps and α generalized closed maps, Indian J.Pure Appl.Math., 29(1),37-49,1998. - [3] Hari Siva Annam.G and Punitha Tharani.A., *On some New Class of Nearly closed and Open sets*, International Journal of Mathematical Archive-5(11), Nov. 2014, 47-52 - [4] Hari Siva Annam.G and Punitha Tharani.A., On α^{s*} -Connected and α^{s*} -Compact spaces - [5] Levine, N., Generalized closed sets in topology, *Rend. Circ. Mat. Palermo* 19(2)(1970), 89-96. - [6] B. M. Munshi, Separation Axioms, Acta Ciencia Indica, 12 (1986), 140-144. - [7] Njastad, O., Some classes of nearly open sets, Pacific J. Math., 15(1965),961-970. - [8] Porter .J and Thomas.J, *On H-closed and minimal Hausdorff spaces*, Trans. Amer.Math. soc.,138(1969),159-170. - [9] Punitha Tharani. A and Hari Siva Annam. G., $On \alpha^{s*}$ -conitinuous and $M \alpha^{s*}$ -continuous mappings, Archimedes J. Math., 4(4)(2014), 179-186. - [10] Punitha Tharani. A and T. Selvi., On pre*-regular and pre*-normal spaces, Archimedes J. Math., 4(2)(2014), 76-88 - [11] Viglino.G: C- Compact Spaces. Duke Math.J., 36,761-764(1969). - [12] Willard, S., General Topology, Addison Wesley Publishing Company, Inc(1970)