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Abstract

This paper focuses on numerical method used to solve a linear and nonlinear system of
Volterra or Fredholm integral equations using Legendre and Chebyshev collocation method.
The method is based on replacement of the unknown function by a reduced series to length
size by discarding the high degree terms of the Legendre or Chebyshev polynomials. This lead
to a system of linear or nonlinear algebraic equations with Legendre or Chebyshev coefficients
which will be solved using conjugate gradient or Newton iteration method respectively. Thus, by
solving the matrix equation, Legendre or Chebyshev coefficients are obtained. Some numerical
examples are included to demonstrate the validity and applicability of the proposed technique.

Keywords: System Volterra-Fredholm Integral equation, Legendre and Chebyshev polynomials,
gradient method, Newton Method

1 Introduction

Volterra and Fredholm integral equations arise in many problems pertaining to mathematical
physics like heat conduction problems. They plays an important role in many branches of lin-
ear and nonlinear analysis and their applications in the theory of engineering, mechanics, physics,
chemistry, astronomy, biology [3]-[7]. In [12]-[16], the authors presented several method for solving
linear and nonlinear Fredholm Integral equations. In [2, 1], chniti consider only the solution of a lin-
ear Fredholm or Volterra-Fredholm integral equation with singuler Kernel. There is no information
what happen for a system of nonlinear Volterra-Fredholm Integral equation with singular kernel.
To give a correct answer to this question, we will introduce a technique that can be generalized
to the case of singuler Kernel. Here, we will consider the case of a nonlinear Fredholm integral
equations of the type

Φ(x) +

b∫
a

K(x, s)F [s,Φ(s)]ds = 0, a ≤ x ≤ b,

where K(x, s) and F(x, s) are known functions, while Φ(x) is the unknown function. The
function K(x, s) is known as the kernel of the Fredholm integral equation as play an important
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role for solving the problem and it’s can be smooth or singular function. A. Hammerstein, who
considered the case where K(x, s) is a symmetric and positive Fredholm kernel, i.e. all its eigenvalues
are positive. If, in addition, the function F(x, s) is continuous and satisfies the condition

|F(x, s)| ≤ β1|s|+ β2,

where β1 and β2 are positive constants and β1 is smaller than the first eigenvalue of the kernel
K(x, s), the Hammerstein equation has at least one continuous solution. If, on the other hand,
F(x, s) happens to be a nondecreasing function of s for any fixed x from the interval (a, b), Ham-
merstein’s equation cannot have more than one solution. This property holds also if F(x, s) satisfies
the condition

|F(x, s1)−F(x, s2)| ≤ β|s1 − s2|,

where the positive constant β is smaller than the first eigenvalue of the kernel K(x, s).
Let us consider the following integral equation:

Φ(t) = g(t) + η1

∫ 1

0
K1(t, s)F (Φ(s))ds+ η2

∫ t

0
K2(t, s)G(Φ(s))ds, (1)

where g, K1 and K2 are known functions and η1, η2 are two constants. and then we will give more
general case, and we will solve a system of nonlinear Volterra-Fredholm integral equation of the
form, for i = 0, . . . , n:

φi(s) = fi(s) +

n∑
j=0

∫ s

−1
Kij(s, t)F (φi(t))dt+

n∑
j=0

∫ 1

−1
Kij(s, t)G(φi(t))dt (2)

where F and G two known nonlinear functions, fi are known functions and φi are the unknown
functions must be determined. The paper is organized as follows. In section 2, we present some
results about Legendre polynomial. In section 3, we transform Fredholm integral equation to a
system of algebraic equations. In section 4, some numerical examples are presented. We generalize
our method to a nonlinear system 5, finally we conclude.

2 Legendre Polynomials

Orthogonal polynomials are widely used in applications in mathematics, mathematical physics,
engineering and computer science. One of the most common set of orthogonal polynomials is the
Legendre polynomials. The Legendre polynomials Pn satisfy the recurrence formula:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n ∈ N
P0(x) = 1
P1(x) = x

An important property of the Legendre polynomials is that they are orthogonal with respect to
the L2 inner product on the interval [−1, 1]:∫ 1

−1
Pn(x)Pm(x)dx =

2

2n+ 1
δnm
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where δnm denotes the Kronecker delta, equal to 1 if m = n and to 0 otherwise. The polynomials
form a complete set on the interval [−1, 1], and any piecewise smooth function may be expanded
in a series of the polynomials. The series will converge at each point to the usual mean of the
right and left-hand limits. There are many application of the Legendre polynomial, for instance,
when we solve Laplace’s equation on a sphere, we want solutions that will be valid at the north
and south poles (whose polar coordinates are cos θ = ±1), therefore, the physically meaningful
solutions to Laplace’s equation on a sphere are the polynomials of the first kind. The Legendre and
Chebyshev polynomials are used also to solve several problems of differential equations or integral
equations, for instance the Legendre pesudospectral method is used to solve the delay and the
diffusion differential equations ([8], [9]). Other orthogonal polynomial like Chebyshev polynomials
are used to introduce an efficient modification of homotopy perturbation00 method [10]. Also, the
polynomial approximation is used to solve high order linear Fredholm integro differential equations
with constant coefficient [13] and others ([11], [17]-[19]). The Legendre polynomial is used to
approximate any continuous function. If we note by P the set all real-valued polynomials on [−1, 1],
then P is a dense subspace of the space of continuous function on the same interval equipped with
the uniform norm, this is a particular case of the theorem of f the Stone-Weierstrass. basing on
these properties of the Legendre polynomials we will solve the Fredholm integral equation.

3 System of algebraic equations

The Fredholm-Volterra integral equation (1) is considered in this paper. The expansion of the
function Φ using infinite series of Legendre polynomials is given by:

Φ(t) =
∞∑
n=0

αnPn(t), (3)

where αn = (Φ(t), Pn(t)). If we truncate the infinite series in Equation(3) to only N + 1 terms, we
obtain

Φ(t) '
N∑
n=0

αnPn(t) = αTP (t), (4)

where α and P are matrices given by

α = [α0, . . . , αn], P = [P0, . . . , PN ]T . (5)

Substituting the truncated series (4) into Equation(1) we obtain

αTP (t) = g(t) + η1

∫ 1

0
K1(t, s)F (αTP (s))ds+ η2

∫ t

0
K2(t, s)G(αTP (s))ds. (6)

Using the Legendre collocation points defined by

ti =
i

N
, i = 0, 1, . . . , N, (7)

and substituting the variable t by ti defined in (7) to get

αTP (tj) = g(tj) + η1

∫ 1

0
K1(tj , s)F (αTP (s))ds+ η2

∫ tj

0
K2(tj , s)G(αTP (s))ds. (8)
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The domain [0, 1] discretized into m equally spaced panels, or N + 1 grid points, where the grid
spacing is h = 1

N , trapezoidal rules gives∫ 1

0
K1(tj , s)F (αTP (s))ds ∼=

h

2
(F(s0) + F(sN ) + 2

N−1∑
k=1

F(sk)), (9)

where F(s) = K1(tj , s)F (αTP (s)), h = 1
N , for any integer N, si = ih, i = 0, 1, . . . , N and∫ tj

0
K2(tj , s)G(αTP (s))ds ∼=

hj
2

(G(s̃0) + G(s̃N ) + 2
N−1∑
k=1

G(s̃k)), (10)

where G(s) = K2(tj , s)G(αTP (s)), hj =
tj
N , for an arbitrary integer N, s̃i = ih. Now, we obtain the

following system:

αTP (tj) = g(tj) + η1
h

2

(
F(s0) + F(sN ) + 2

N−1∑
k=1

F(sk)

)
+ η2

hj
2

(
G(s̃0) + G(s̃N ) + 2

N−1∑
k=1

G(s̃k)

)
(11)

The system (11) is a (N + 1) linear or nonlinear algebraic equations, which can be solved for
αi , i = 0, 1, . . . , N . Therefore the unknown function Φ can be determined. We recall that the
conjugate gradient method is an algorithm for the numerical solution of particular systems of linear
equations, it’s implemented as an iterative algorithm used to solve a sparse systems that are too
large to be handled by a direct implementation or other direct methods such as the Cholesky
decomposition. Large sparse systems can be obtained when we solve a partial differential equations
or optimization problems. In the other hand, the nonlinear system will be solved using Newton’s
method. A special code written using MATLAB is implemented for solving nonlinear equations
using Newton’s method. We note that Matlab has its routines for solving systems of nonlinear
equations (one can look to ”fsolve” in Matlab) which is based on Newton’s method. The linear
and nonlinear system will be solved using the conjugate gradient method and Newton’s method
respectively.

4 Examples

We confirm our theoretical discussion with numerical examples in order to achieve the validity, the
accuracy. The computations, associated with the following examples, are performed by MATLAB
7.

Example 1. Here, we will apply the technique presented in previous section to a linear integral
equation, in order to show that the method presented can be applied. We consider the equation (1)
with

g(x) = x3 − (6− 2e)ex, η1 = 1, η2 = 1,

K1(x, y) = e(x+y), K2(x, y) = 0, F (Φ(y)) = Φ(y), G(Φ(y)) = 0.

The equation (1) is as follows

Φ(x) = x3 − (6− 2e)ex +

∫ 1

0
e(y+x)Φ(y)dy. (12)
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The suggested method will be considered with N = 4, and the approximate solution Φ(x) can be
written in the following way

Φ4(x) =
4∑
i=0

αiPi(x) = αTP (x). (13)

Using the same technique presented in previous section and using Equation(8) we obtain

4∑
i=0

αiPi(xj)− (x3
j − (6− 2e)exj )− h

2
(F(y0) + F(ym) + 2

m−1∑
k=1

F(yk)) = 0, j = 0, 1, 2, 3, 4, (14)

where F(y) = e(y+xj)
∑4

i=0 αiPi(y) and the nodes yl+1 = yl +h, l = 0, 1, . . . , N , y0 = 0 and h = 1
N .

Equation(14) represents linear system of 5 algebraic equations in the coefficients αi, i = 0, . . . , 4,
which will be solved by the conjugate gradient method and we get the following coefficients:

α0 = −0.0048, α1 = 0.5955, α2 = −0.0015, α3 = 0.3998, α4 = −0.0001.

Hence, the approximate solution of Equation(13) is as follows:

Φ(x) = −0.0048P0(x) + 0.5955P1(x)− 0.0015P2(x) + 0.3998P3(x)− 0.0001P4(x).

corresponding to exact solution Φ(x) = x3.
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Error example 1

Figure 1: Error between exact solution and the present method with N = 4

In example 1, we have considered only N = 4 terms in the expansion of the solution using
Legendre polynomials, the Figure 1 gives the behavior of true (exact) and the approximate solution
and the behavior of the error between them, we notice that the technique used is much more pertinent
and can be considered as a profitable method to solve the linear integral equations.
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Example 2. Unlike, the first example, here we will consider the case of a nonlinear integral equation
with: Consider the equation (1) with the following functions and coefficients

g(x) = 2xex − ex + 1, η1 = 1, η2 = −1, K1(x, y) = 0,

K2(x, y) = (x+ y), F (Φ(y)) = 0, G(Φ(y)) = eΦ(y).

Equation(1) takes the following form

Φ(x) = 2xex − ex + 1−
∫ t

0
(y + x)eΦ(y)dy. (15)

The suggested method will be considered with N = 4, and the approximate solution Φ(x) can be
written in the following way

ΦN (x) =
4∑
i=0

αiPi(x) = αTP (x). (16)

The technique presented can be applied and using Eq.(8) we obtain

4∑
i=0

αiPi(xj)− f(xj) +
hj
2

(F(y0) + F(ym) + 2

m−1∑
k=1

F(yk)) = 0, j = 0, 1, 2, 3, 4, (17)

where the nodes yl+1 = yl + h, l = 0, 1, . . . ,m, y0 = 0 and hj =
tj
m , F(y) = (y + xj)e

CTP (y). The
Equation (17) presents nonlinear system of N + 1 algebraic equations in the coefficients αi. By
solving it by using the Newton iteration method with suitable initial solution we obtain

α0 = 0.0002, α1 = 0.9895, α2 = 0.0022, α3 = −0.0088, α4 = 0.0023.

Hence, the approximate solution obtained from (16) written in he following way

Φ(x) = 0.0002P0(x) + 0.9895P1(x) + 0.0022P2(x)− 0.0088P3(x) + 0.0023P4(x).

associated to exact solution Φ(x) = x. Figure 2 presents the behavior of the approximate solution
using the proposed method with N = 4 and the exact solution. From this Fig. 2 we notice that the
proposed method can be considered as an pertinent method to solve the nonlinear integral equations.

Example 3. Equation (1) will be considered with

g(x) = xe+ 1, η1 = −1, η2 = 1, K1(x, y) = y + x,

K2(x, y) = 0, F (Φ(y)) = eΦ(y), G(Φ(y)) = 0.

Equation(1) can be written as follows:

Φ(x) = xe+ 1−
∫ 1

0
(y + x)eΦ(y)dy. (18)

The exact solution associated to this problem the linear function Φ(x) = x.
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Figure 2: Error between exact solution and the present method with N = 4

The suggested method will be considered with N = 3, and the approximate solution Φ(x) can be
written in the following way:

3∑
i=0

αiPi(xj)− g(xj) +
h

2
(F(y0) + F(ym) + 2

m−1∑
k=1

F(yk)) = 0, j = 0, 1, 2, 3, (19)

where yl+1 = yl + h, l = 0, 1, . . . , N , y0 = 0 and h = 1
N and F(y) = (y + xj).e

(
∑3

i=0 αiPi(y)). We
have a system of nonlinear algebraic equations (19). The solution can be obtained using Newton
iteration method with suitable initial solution, and one can obtain:

α0 = −0.0023, α1 = 1.0013, α2 = 0.0, α3 = 0.0 .

The approximated solution derived in this example is:

Φ(x) = −0.0023P0(x) + 1.0013P1(x) + 0.0P2(x) + 0.0P3(x).

Figure 3 gives the behavior of the approximate solution using the proposed method with N = 3
and the exact solution.

Example 4. We consider here a nonlinear integral equation with the following function and coef-
ficients:

g(x) =
x

2
− x4

12
− 1

3
, η1 = 1, η2 = −1, K1(x, y) = y + x,

K2(x, y) = y − x, F (Φ(y)) = Φ(y), G(Φ(y)) = Φ2(y).

Equation(1) becomes

Φ(x) =
x

2
− x4

12
− 1

3
+

∫ 1

0
(y + x)Φ(y)dy +

∫ t

0
(y − x)Φ2(y)dy. (20)
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Error example 3

Figure 3: Error between exact solution and the present method with N = 3

The technique presented can be applied using only the first five Legendre Polynomials function and
the approximate solution can be written as:

ΦN (x) =

4∑
i=0

αiPi(x) = αTP (x). (21)

The same technique and using equation (8) we get

4∑
i=0

αiPi(xj)− g(xj)−
h

2
(F(ȳ0) + F(ȳN ) +2

∑N−1
k=1 F(ȳk))−

hj
2 (G(y0) + G(yN )

+2
∑N−1

k=1 G(yk)) = 0, (22)

where ȳl+1 = ȳl + h, yl+1 = yl + hj , l = 0, 1, . . . , N, s0 = ȳ0 = 0 h = 1
N , hj =

xj
N , and

F(y) = (y + xj)(
∑4

i=0 αiPi(y)), G(y) = (xj − y)(αTP (y))
2
. Equation (22) is a nonlinear system

of 5 algebraic equations. The Newton iteration method can be used and we obtain the following
coefficients:

α0 = −0.0012, α1 = 0.9987, α2 = −0.0039, α3 = 0.0007, α4 = −0.0017.

Hence, the approximate solution can be written using the first five Legendre polynomial as:

Φ(x) = −0.0012P0(x) + 0.9987P1(x)− 0.0039P2(x) + 0.0007P3(x)− 0.0017P4(x).

and it’s will be compared to the exact solution which is Φ(x) = x. Figure (4) presents the behavior
of the approximate solution and the exact solution, we notice that the proposed technique can be
well chosen as a pertinent way to solve the nonlinear Volterra Fredholm integral equations.

The figure 4 and Table (1) show the behavior of the exact solution and the approximate solution
using N = 4.
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Figure 4: Error between exact solution and the present method with N = 4

5 System of Nonlinear Volterra-Fredholm integral equations

In this section, we will develop a general method to solve a system of nonlinear Volterra-Fredholm
integral equation system by using the Chebyshev polynomials instead of Legendre polynomials used
in the first part, but the computation it’s the same. We will solve the system of n + 1 nonlinear
Volterra-Fredholm integral equations are defined as follows: for i = 0, . . . , n:

φi(s) = fi(s) +
n∑
j=0

∫ s

−1
Kij(s, t)F (φi(t))dt+

n∑
j=0

∫ 1

−1
Kij(s, t)G(φi(t))dt (23)

where F and G two known nonlinear functions, fi are known functions and φi are the unknown
functions must be determined. The system (23) introduce a n+1 Volterra-Fredholm integral equation
with n + 1 unknowns. We use Chebyshev polynomials for solving nonlinear Volterra-Fredholm
integral equations, one can propose other type of polynomials to solve the same problem using the
same technique.

The Chebyshev polynomials of the first kind can be defined as the unique polynomials satisfying

Tn(cos(ϑ)) = cos(nϑ), n = 0, 1, . . . ,

Then the inner product is given by

< Ti, Tj >=

∫ 1

−1
Ti(x)Tj(x)w(x)dx (24)

where w(x) = (1 − x2)−1/2 With respect to the inner product which is defined in Chebyshev
polynomials are orthogonal

< Ti, Tj >= πδij (25)
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t Exact solution Approximate solution Error

0 0 0.0025 0.0025
0.1 0.1 0.1023 0.0023
0.2 0.2 0.2021 0.0021
0.3 0.3 0.3018 0.0018
0.4 0.4 0.4016 0.0016
0.5 0.5 0.5012 0.0012
0.6 0.6 0.6007 0.0007
0.7 0.7 0.6999 0.0001
0.8 0.8 0.7988 0.0012
0.9 0.9 0.8972 0.0028
1 1 0.9950 0.0050

Table 1: Example 4. Comparison between exact and approximate solution

where δij denote the Kronecker’s delta. We will use Chebyshev polynomials to approximate the un-
known function, they are used as a collocation basis to solve system of nonlinear Volterra-Fredholm
integral equation and reduce it to a linear or nonlinear system of algebraic equations. Newton’s
iterative method can be used for solving nonlinear algebraic system. If f defined on [−1, 1], then we
have

f(s) =

∞∑
i=0

ciTi(s)

and after truncation we have

f(s) =

N∑
i=0

ciTi(s) = CtT (s)

where

C = [c0, c1, c2, . . . , cN ]t, T (s) = [T0(s), T1(s), T2(s), . . . , TN (s)]t

where the coefficient ci are defined as

ci =

{
1
π

∫ 1
−1(1− s2)−1/2f(s)ds if i = 0

2
π

∫ 1
−1(1− s2)−1/2f(s)Ti(s)ds if i > 0

For simplicity we will consider some special cases where F (φi) = φpi and G(φi) = φqi where p, q
two integer. In this case, we have

F (φi(s)) = φpi (s) = C̃tpT (s)

where C̃t can be obtained from the vector C. For example, in the case where p = 2 we have (Thanks
to the software Maple for helping us to do the computation)
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C̃2 =
1

2


2c2

0 + c2
1 + c2

2 + c2
3

4c0c1 + 2c1c2 + 2c2c3

c2
1 + 4c0c2 + c1c3

2c1c2 + 4c0c3


The kernel

K(x, t) =
N∑
i=1

N∑
j=1

Ti(s)KijTj(t)

where
Kij =< Ti(s), < K(s, t), Tj(t) >>

So K becomes a (N + 1)× (N + 1) matrix with elements Kij Therefore

K(s, t) = T t(s)K(s, t)T (t)

For i, j = 0, . . . , N , we have the following relation:

φi(s) = T t(s)Φi =⇒ (φi(s))
p = T t(s)Φ̃ip

and
Kij = T t(s)KijT (t)

where
F̃ip = [fi0, fi1, fi2, . . . , fiN ]t

Some special formula will be used in our computation:∫ x

−1
Tn−1(t)dt =

1

2n
Tn(x)− 1

2(n− 1)
Tn−2(x) +

(−1)n−1

1− (n− 1)2
T0(x), n > 3

∫ x

−1
T0(t)dt = T0(x) + T1(x)

∫ x

−1
T1(t)dt =

1

4
(−T0(x) + T2(x))

these integral can be written using a matrix form P :∫ x

−1
T (t)dt = PT (x),

∫ 1

−1
T (t)dt = PT (1)

where P is a (n+ 1)× (n+ 1) matrix defined as follows:

P =



1 1 0 0 . . . 0 0
−1

4 0 1
4 0 . . . 0 0

−1
3 −1

2 0 1
6 . . . 0 0

...
...

...
...

... 0 0
(−1)n−1

1−(n−1)2
0 0 0 . . . 0 1

2n
(−1)n

1−n2 0 0 0 −1
2(n−1) 0


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using Chebyshev Polynomial we have the following relation:

T (s)T (s)tC = CtT (s)

where C is a (n+ 1)× (n+ 1) square matrix given by

C =
1

2


2c0 c1 . . . ci . . . cn−1 cn
2c1 2c0 + c2 . . . ck−1 + ck+1 . . . cn−2 + cn cn−1

...
...

...
...

... 0 0
2cn−1 cn−2 + cn . . . cn−k−1 . . . 2c0 c1

2cn cn−1 . . . cn−i . . . c1 2c0


Now, the system of Volterra-Fredholm integral equation becomes:

T t(x)Φ̃ip = fi(x) +
n∑
j=0

∫ x

−1
T t(x)KijT

t(t)φ̃ipjdt+
n∑
j=0

∫ 1

−1
T t(x)KijT (t)T t(t)φ̃iqjdt

this lead to the following system: for i = 0, 1, 2, . . . , n we have

fi(x) = T t(x)Φ̃i −
n∑
j=0

T t(x)Kijφ̃ipjP
t(x)−

n∑
j=0

T t(x)Kijφ̃ipjP
t(1) (26)

the equation 26 can be evaluated at the collocation points {xk}, k = 0, . . . , N in the interval
[−1, 1] then we get a system of (n+ 1)× (N + 1) equation with (n+ 1)× (N + 1) unknowns. For
k = 0, . . . , N and i = 0, . . . , n we are going to solve:

fi(xk) = T t(xk)Φ̃i −
n∑
j=0

T t(xk)Kijφ̃ipjP
t(xk)−

n∑
j=0

T t(xk)Kijφ̃ipjP
t(1) (27)

The relation 27 leads to a linear or nonlinear system of equations such that the unknown coefficients
can be found. In the last of this paper and to confirm the strategy proposed we present some
numerical example. We use Newton’s iterative method for solving the generated nonlinear system,
Maple and Matlab are used in our case to do our numerical test.

Consider the following nonlinear integral equations system:

φ1(x) = f1(x) +

∫ x

−1
x2t3φ4

1(t)dt+

∫ 1

−1
(3t− x2)φ7

2(t)dt

φ2(x) = f2(x) +

∫ x

−1
xtφ2

1(t)dt+

∫ 1

−1
3t2xφ5

2(t)dt (28)

where

f1(x) = 2x− 64511

2145
− 2x10 +

2047181

180180
x2 − 32

7
x9 − 4x8 − 8/5x7 − 1/4x6

f2(x) = x2 − 6935

858
x− x5 − 4/3x4 − 1/2x3

and the exact solution are φ1(x) = 2x+ 1, φ2(x) = x2 + x
Table 2 gives a comparison between the exact and approximation solution.
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xi -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

φ1 -1 -0.5 0 0.5 1 1.5 2 2.5 3

φ9
1 -0.987 -0.495 0.001 0.476 1.01 1.4892 1.997 2.4964 2.9987

|Error1| 0.013 0.005 0.001 0.024 0.01 0.0108 0.0030 0.0036 0.0013

φ2 0 -0.1875 -0.25 -0.1875 0 0.3125 0.7500 1.3125 2

φ9
2 0.001 -0.1864 -0.2499 -0.1869 0.001 0.3114 0.7489 1.3114 1.99876

|Error2| 0.0010 0.0011 0.0001 0.0006 0.0010 0.0011 0.0011 0.0011 0.0012

Table 2: Comparison between the approximate solution and exact solution

6 Conclusion

We solved a system of Volterra-Fredholm integral equations by using Chebyshev collocation method.
The properties of Chebyshev or Legendre polynomials are used to reduce the system of Volterra
Fredholm integral equations to a system of nonlinear algebraic equations. The method presented
in this paper based on the Legendre and Chebyshev polynomials is suggested to find the numerical
solution which will be compared to the analytic solution. The iterative method conjugate gradient
method and Newton’s method are used to solve the linear and nonlinear system. Analyzing the
numerical solution and the exact solution declare that the technique used is very effective and con-
venient.The approach used is tested with different examples to show that the accuracy improves
with increasing N . Moreover, using the obtained numerical solution, we can affirm that the pro-
posed method gives the solution in an great accordance with the analytic solution. In addition,
one can investigate other type of a nonlinear Fredholm integro differential equation with singular
kernel.
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