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ABSTRACT: In this paper we present a new computational method to obtain approximate 

solution to one phase Stefan problems. In this method for a fixed space step, higher order 

accurate initial step sizes are obtained by using Green’s theorem of vector calculus. 

Subsequent step sizes are obtained, one by one, by an iterative process with assured 

convergence to the Neumann form of the Stefan problem. 
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1. INTRODUCTION: 

 

Heat-diffusion moving boundary problems have numerous applications in fields such as the 

freezing and thawing of foods, production of ice, thawing or formation of ice around pipes, 

solidification of steel and diffusion limited chemical reactions, where either a moving 

freezing, moving melting or moving reaction front is present. Mathematically these problems 

involve solving the heat-diffusion equation in an unknown region, which has to be 

determined as part of the problem. Exact solutions to moving boundary problems are limited 

in number and for heat-diffusion problems the only physically relevant exact solutions occur 

when the position of the moving boundary (or boundaries) varies as the square root of time 

(that is, similarity solutions). This paper is mainly concerned with the development of 

numerical methodology with less or no emphasis of physical content of the problems. 

 

Several methods have been developed for obtaining approximate solutions to moving 

boundary problems. Some of them are heat balance boundary integral method and boundary 

immobilization method. These methods involve transforming the basic equations into another 

Mathematical problem followed by the solution using finite difference or finite element 

methods.  
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We are primarily concerned with the classical single phase Stefan Problem. In non-

dimensional variables we may summarize this general problem in the general form by [6] 

 

 

 

𝜕𝑇

𝜕𝑡
=

𝜕2𝑇

𝜕𝑥2 , 0 < 𝑥 < 𝑠 𝑡 , 𝑡 > 0

𝑠 0 = 0; 𝑇 𝑥, 0 = 0, 𝑇 𝑠 𝑡 , 𝑡 = 0

𝛽
𝑑𝑠

𝑑𝑡
= −

𝜕𝑇

𝜕𝑥
|𝑥=𝑠 𝑡 ,

𝜕𝑇

𝜕𝑥
= 𝑔 𝑡 , 𝑎𝑡 𝑥 = 0 

 

 

                                                                 (1) 

 

 

Where 𝑇 𝑥, 𝑡 , 𝑥, 𝑆 𝑡  𝑎𝑛𝑑 𝑡 denote the dimensionless temperature of the solid, position, 

moving boundary position and time, respectively. The constant 𝛽 called the Stefan number, is 

the ratio of latent heat of fusion to sensible heat of the solid and is therefore strictly positive. 

Douglas and Gallie [1], Gupta and Kumar [2], Kutluay et al [4] and Marshall [5] also 

developed approximate methods for solving this type of problems. 

 

                   The present work develops a front tracking finite difference method. We assume 

the Problem has a solution and that it is unique. We do not consider the theoretical problem 

of establishing the convergence of the numerical solution to that of mathematical problem as 

the step sizes go to zero. However, we establish the accuracy of solution working with 

varying step sizes in space and time. 

 

                  We choose for fixed space step as  and find 𝑘1, 𝑘2, 𝑘3 …, the intervals of time for 

the interface to move a distance of .  

 

If 𝑇𝑖 ,𝑛  is the temperature at𝑥𝑖 = 𝑖, 𝑡𝑛 =  𝑘𝑙
𝑛
𝑙=1 . 𝑇𝑖 ,𝑛 = 0, 𝑖 ≥ 𝑛and𝑖 = 𝑛 gives a   point on 

the interface. 

 

Crank-Nicholson scheme for the diffusion equation is 

 

𝑇𝑖 ,𝑛+1−𝑇𝑖 ,𝑛

𝑘𝑛+1
=

1

22
  𝑇𝑖−1,𝑛+1 − 2𝑇𝑖 ,𝑛+1 + 𝑇𝑖+1,𝑛+1 +  𝑇𝑖−1,𝑛 − 2𝑇𝑖 ,𝑛 + 𝑇𝑖+1,𝑛             (2) 

 

The finite difference scheme is of second order in space and time and computationally stable. 

Knowing𝑘1, 𝑘2 , 𝑘3 …𝑘𝑛   and  𝑔 𝑡𝑛 = 𝑇0,𝑛 , 𝑇1,𝑛 , 𝑇2,𝑛 …𝑇𝑛−1,𝑛 , 𝑇𝑛 ,𝑛 = 0 , we need to obtain 

𝑘𝑛+1 and 𝑇1,𝑛+!, 𝑇2,𝑛+1, …𝑇𝑛 ,𝑛+1. 

 

To initiate this scheme, we need to know 𝑇(0,2), 𝑇(1,2) 𝑎𝑛𝑑 𝑇(2,2).   𝑇(2,2) = 0, 𝑇(0,2), 𝑇(1,2) are 

unknown. In this problem we incorporate the condition into the difference scheme at (0, 1), 

(0, 2). To know these starting ingredients, we need to find 𝑘1and 𝑘2. In section 2, we derive 

equations to find 𝑘1and 𝑘2. In section 3 we develop an iterative procedure to find 𝑘𝑛 , 𝑓𝑜𝑟 𝑛 ≥
3. in section 4 convergence of the iterative method is given and in section 5 two examples are 

given. 
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                                        MOVING BOUNDARY PROBLEM 

 

2.  FINDING 𝒌𝟏 AND 𝒌𝟐: 

 

Our search for better approximation culminated in the application of Green’s Theorem 

covering the region in the first cell. We need in the process, the second degree polynomial as 

an approximation for the interface through  0, 0 ,  𝑘1,   and  𝑘1 + 𝑘2, 2  as 

 

     𝑠 𝑡 =
𝑡

𝑘1
+ 𝑡 𝑡 − 𝑘1 

 𝑘1−𝑘2 

𝑘1𝑘2 𝑘1+𝑘2 
   (Newton divided difference polynomial) 

 

𝑑𝑠

𝑑𝑡𝑡=0
= 𝑠  0 = 

 𝑘2
2 − 𝑘1

2 + 2𝑘1𝑘2 

𝑘1𝑘2 𝑘1 + 𝑘2 
= −

1

𝛽
𝑇𝑥  0,0  

 

𝑑𝑠

𝑑𝑡𝑡=𝑡1

= 𝑠  𝑡1 = 
 𝑘2

2 + 𝑘1
2 

𝑘1𝑘2 𝑘1 + 𝑘2 
= −

1

𝛽
𝑇𝑥  1,1  

 

𝑑𝑠

𝑑𝑡𝑡=𝑡2

= 𝑠  𝑡2 = 
 𝑘1

2 − 𝑘2
2 + 2𝑘1𝑘2 

𝑘1𝑘2 𝑘1 + 𝑘2 
= −

1

𝛽
𝑇𝑥  2,2  
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Fig.2 

 

To find the two relations for 𝑘1and 𝑘2 we need approximations for T along AB and CD. 

 

At A:  𝑥, 𝑇𝑥 =  0, 𝑔 𝑡1  and B: 𝑥, 𝑇𝑥 =  , −𝛽𝑠  𝑡1   

 

Straight line through A and B is: 𝑇𝑥 = 𝑔 𝑡1 −
𝑥


 𝛽𝑠  𝑡1 + 𝑔 𝑡1   

 

Hence        𝑇 = 𝑔 𝑡1 𝑥 −
𝑥2

2
 𝛽𝑠  𝑡1 + 𝑔 𝑡1  +



2
 𝛽𝑠  𝑡1 − 𝑔 𝑡1   

[Constant of integration is obtained, imposing 𝑇  = 0  at B] 

 

Similarly using C:  𝑥, 𝑇𝑥 =  0, 𝑔 𝑡2  , D:  𝑥, 𝑇𝑥 =  2, −𝛽𝑠  𝑡2  & T(2h)=0 at D 

 

We obtain the approximations for CD as  𝑇𝑥 = 𝑔 𝑡2 −
𝑥


 𝛽𝑠  𝑡2 + 𝑔 𝑡2   

 

Hence        𝑇 = 𝑔 𝑡2 𝑥 −
𝑥2

4
 𝛽𝑠  𝑡2 + 𝑔 𝑡2  +  𝛽𝑠  𝑡2 − 𝑔 𝑡2   

 

𝑇  =


4
 3𝛽𝑠  𝑡2 − 𝑔 𝑡2   and  𝑇(0) =  𝛽𝑠  𝑡2 − 𝑔 𝑡2   

 

Now considering the region OAB, We know that by Green’s Theorem  

  𝑇𝑥𝑥 − 𝑇𝑡 𝑑𝑥𝑑𝑡
𝑅

= 0 =>   𝑇𝑥𝑑𝑡 + 𝑇𝑑𝑥 
𝐶

= 0, where C is the boundary and 𝐶 = 𝑂𝐴 ∪

𝐴𝐵 ∪ 𝐵𝑂 
 

 𝑔 𝑡 𝑑𝑡
𝑘1

0

+   𝑔 𝑡1 𝑥 −
𝑥2

2
 𝛽𝑠  𝑡1 + 𝑔 𝑡1  +



2
 𝛽𝑠  𝑡1 − 𝑔 𝑡1   𝑑𝑥



0

 

+   −𝛽 
𝑑𝑠

𝑑𝑡
𝑑𝑡 = 0

0

𝑘1

 

 

This simplifies to  
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𝑘1𝑘2 𝑘1 + 𝑘2  3𝑘1𝑔 0 +  3𝑘1 − 2 𝑔 𝑡1 + 6𝛽 + 2𝛽3 𝑘1
2 + 𝑘2

2 = 0            (3)                          

Consider the region ACDB,   𝑇𝑥𝑑𝑡 + 𝑇𝑑𝑥 
𝐶

= 0, 𝐶: 𝐴𝐶 ∪ 𝐶𝐷 ∪ 𝐷𝐵 ∪ 𝐵𝐴 

 

 𝑔 𝑡 𝑑𝑡
𝑡2

𝑡1

+   𝑔 𝑡2 𝑥 −
𝑥2

2
 𝛽𝑠  𝑡2 + 𝑔 𝑡2  +  𝛽𝑠  𝑡2 − 𝑔 𝑡2   𝑑𝑥 +

2

0

 

  −𝛽 
𝑑𝑠

𝑑𝑡
𝑑𝑡 +   𝑔 𝑡1 𝑥 −

𝑥2

2
 𝛽𝑠  𝑡1 + 𝑔 𝑡1  +  𝛽𝑠  𝑡1 − 𝑔 𝑡1   𝑑𝑥

0



= 0
𝑡1

𝑡2

 

 

This simplifies to 

𝑘1𝑘2 𝑘1 + 𝑘2   3𝑘1 + 42 𝑔 𝑡1 +  3𝑘2 − 82 𝑔 𝑡2 + 6𝛽 + 2𝛽3 3𝑘1
2 − 5𝑘2

2 +
8𝑘1𝑘2 = 0                                                                                                                    (4)                                                                                                                                                        

Here we have used the expressions for 𝑠  0 , 𝑠  𝑡1  and 𝑠  𝑡2 . 
 

We can solve the equations (3) and (4) for 𝑘1and  𝑘2. In equation (2), i=0,1,2,…,n, 𝑇0,𝑖  is not 

known. To start the computation, we need,  𝑇0,2, 𝑇1,2,  𝑇2,2 = 0  

𝑇0,2 = 𝑇 0  from the equation to CD and 𝑇1,2 = 𝑇() . Further (2) for i=0, changes as 

follows, using 
𝑇1,𝑛+1−𝑇−1,𝑛+1

2
= 𝑔 𝑡𝑛+1  

 

𝑇0,𝑛+1  
2

𝑘𝑛+1
+

2

2
 −

2

2
𝑇1,𝑛+1 = 𝑇0,𝑛  

2

𝑘𝑛+1
−

2

2
 +

2

2
𝑇1,𝑛 −

2


 𝑔 𝑡𝑛 + 𝑔 𝑡𝑛+1   

Rests of the equations remain same. 

 

3. MAIN ALGOTIRHM FOR THE SOLUTION OF THE PROBLEM: 

 

We have n equations in (n+1) unknowns 𝑇1, 𝑇2, 𝑇3,… , 𝑇𝑛 (at𝑡𝑛+1) and 𝑘𝑛+1 . Much needed 

another relation comes from Stefan condition at (n+1, n+1). 

−𝛽


𝑘𝑛+1
=

 𝑇𝑛−1,𝑛+1 − 4𝑇𝑛 ,𝑛+1 + 3𝑇𝑛+1,𝑛+1 

2h
 

From which we obtain  

4𝑇𝑛 ,𝑛+1 − 𝑇𝑛−1,𝑛+1 = 2𝛽
2

𝑘𝑛+1
                                                                                               (5)                                                                                                         

With i= n, in the system we have only implicit part 

  
𝑇𝑛 ,𝑛+1−𝑇𝑛 ,𝑛

𝑘𝑛+1
=

 𝑇𝑛+1,𝑛+1−2𝑇𝑛 ,𝑛+1+𝑇𝑛−1,𝑛+1 

2
       

         

simplifying to              𝑇𝑛 ,𝑛+1 =
𝑘𝑛+1

 2+2𝑘𝑛+! 
𝑇𝑛−1,𝑛+1 

 

This, when substituted  in (5), we get  

 

𝑇𝑛−1,𝑛+1 =
2𝛽2 2𝑘𝑛+1+2 

𝑘𝑛+1 2𝑘𝑛+1−2  
                                                                                                     (6)   

 

and  

 

  𝑇𝑛 ,𝑛+1 =
2𝛽2

 2𝑘𝑛+1−2 
                                                                                                                (7)       
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(6) is a quadratic in 𝑘𝑛+1 whose positive root is 

𝑘𝑛+1 =
2

4𝑇𝑛−1,𝑛+1
 𝑇𝑛−1,𝑛+1 + 4𝛽 +   𝑇𝑛−1,𝑛+1 + 4𝛽 

2
+ 16𝛽𝑇𝑛−1,𝑛+1                   (8)        

                         

and one equation (i=n) is reduced in (2). This has been used to obtain (6),(7) and (8). This 

round about looking manipulation is done to ensure the convergence of the following 

iterative process to obtain 𝑘𝑛+1 and T values. 

 

4.  CONVERGENCE OF ITERATIVE METHOD: 

 

            We have (n-1) equations in (2) and another is (8) for the n unknowns 

𝑇1, 𝑇2, 𝑇3,… , 𝑇𝑛−1 (at 𝑡𝑛+1) and 𝑘𝑛+1. This arrangement is made to ensure convergence of the 

iterative process. This assurance comes from a theorem in [3]. We can view (8) as an (n-1) 

dimensional manifold in the space of n variables 𝑇1, 𝑇2, 𝑇3,… , 𝑇𝑛−1 (at 𝑡𝑛+1) and  𝑘𝑛+1.  

 

Choose an initial approximation for  𝑘𝑛+1 lies on the manifold in view of relations (6) and 

(7). This process is termed as implicit iteration in [3]. In our setup, the manifold is simply 

given by (8). 

              If (2) is solved for the n unknowns  𝑇1 … . . 𝑇𝑛  assuming 𝑘𝑛+1 and obtain 𝑘𝑛+1 from 

(8), the initial guess may not be on the manifold given by (7) Theorem in [3] ensures 

convergence for a choice of initial approximation to 𝑘𝑛+1 from (8) and carrying one iteration 

before refining 𝑘𝑛+1(by Jacobi, Gauss-Seidal). In practice we iterated (2) until convergence 

occurred (equivalent to solving the tri-diagonal system). As a test, we started with 𝑘𝑛+1 equal 

to say 5 or even 10, iteration converged. Of course number of iterations increased from 2 or 3 

to 5 or 6. 

 

5. EXAMPLE AND DISCUSSION: 

 

Method described in sections 2 and 3 is used to obtain solution of the following problem. The 

results (points on the interface) are given with varying step sizes. Our method gives results up 

to four significant digits. The purpose of the paper being primarily development of 

methodology. 

 

Example :𝑇𝑥 0, 𝑡 = 𝑔 𝑡 = 𝑡 − 𝑒𝑡 , 𝛽 = 1.0  

    X h=0.1 h=0.05 h=0.025 

0.1 0.1044 0.1015 0.1053 

0.2 0.2221 0.2015 0.218 

0.3 0.3387 0.3014 0.3359 

0.4 0.4608 0.4013 0.4573 

0.5 0.5842 0.5012 0.5805 

1 1.1909 1.1909 1.1904 

2 2.2883 2.291 2.2918 

3 3.2914 3.2944 3.2953 

4 4.2608 4.2638 4.2647 

5 5.2209 5.2241 5.225 
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                   The accuracy achieved in the estimation of k1 and k2 for a given h depends on the 

approximation used for the integrands and the integration formulae while evaluating the line 

integrals. We have observed that it is at least of second order in our calculations. Higher order 

accuracy can perhaps be obtained by improving these approximations. The high accuracy 

achievable in finding k1 and k2 by application of Green’s theorem may not be so important to 

obtain approximate solutions to the problems, However we hope this technique may be useful 

in application elsewhere. The iterative method for finding kn+1 of this paper may be useful in 

problems where one relation is different from rest of the relations. As a last remark, we want 

to observe that the algorithm developed in the paper is simple and easy to implement through 

computer programming. 
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