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Poisson Equations is a second order partial di�erential equation (PDE) that appears in

many areas of science an engineering, such as electricity, �uid �ow, and steady heat con-

duction. Poisson equation governs a variety of equilibrium physical phenomena such as

temperature distribution in solids, electrostatics, inviscid and irrotational two-dimensional

�ow (potential �ow), and groundwater �ow. In order to illustrate the numerical solution of

the Poisson equation, we consider the distribution of temperature in a two-dimensional,

rectangular plate, where the temperature is maintained at given values along the four

boundaries to the plate (i.e., Dirichlet-type boundary conditions). Solution of this equa-

tion, in a domain, requires the speci�cation of certain conditions that the unknown func-

tion must satisfy at the boundary of the domain. When the function itself is speci�ed

on a part of the boundary, we call that part the Dirichlet boundary; when the normal

∗Dalanj university, Mathematics department,Sudan

International Journal of Advanced Scientific and Technical Research       Issue 4 volume 6, Nov.-Dec.2014                

Available online on   http://www.rspublication.com/ijst/index.html                                     ISSN 2249-9954________________________________________________

 R S. Publication, rspublicationhouse@gmail.com                                                                               Page 169

_____________________________________________

A higher order Finite di�erence method to solve the

Poisson  equation in a rectangular domain

Musa Adam Aigo

Abstract: In order to illustrate the numerical solution of the Poisson equation we

consider the distribution of temperature in a two-dimensional, rectangular plate, where

the temperature is maintained at given values along the four boundaries to the plate. We

will present a higher order �nite di�erence method to solve the Poisson equation using

�ve and nine point approximation.
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derivative of the function is speci�ed on a part of the boundary, we call that part the

Neumann boundary. In a problem, the entire boundary can be Dirichlet or a part of the

boundary can be Dirichlet and the rest Neumann. A problem with Neumann condition

speci�ed on the entire boundary does not have a unique solution. In some problems,

a linear combination of the function and its normal derivative is speci�ed; such situa-

tions are called Robin or Fourier boundary condition. We will not deal with the Robin

problem or Neumann boundary condition, but it is fairly straightforward to extend the

method described here to these problems. We will not discuss the Neumman problem

in this paper, it's will be presented in a second paper using the same technique. Finite

di�erence methods for partial di�erential equations are studied in [1, 2, 3, 4, 5]. Idea

of �nite di�erence method is to descretize the partial di�erential equation by replacing

partial derivatives with their approximation that is �nite di�erences. In this method, the

PDE is converted into a set of linear, simultaneous equations. Which are written in the

matrix equation and then solution is obtained by solving the matrix equation or solution

can be obtained by solving simultaneous equations iteratively. The purpose of this paper

is to illustrate how to solve linear elliptic PDEs using high order �nite di�erence method.

For concreteness, we will focus on the following PDE:

∂2u

∂x2
+
∂2u

∂y2
= f (x, y)

where the source function f (x, y) is given. We will seek a solution on a rectangular region

of the xy-plane: (x, y) ∈ [−L,L]× [−L,L] subject to Dirichlet boundary conditions:

u(x, y = −L) = g1(x), u(x = L, y) = g2(y), u(x, y = +L) = g3(x), u(x = −L, y) = g4(y)

Here, the functions gi, i = 1, . . . , 4 are assumed to be given. If f (x, y) = 0 this is

known as Poisson's equation, if not it is Poisson's equation. The goal of the numerical

analysis will to be to "�ll-in" the values of u(x, y) interior to the boundary using a accurate

Finite Di�erence Method. This article is organized as follows: In section, 2, we present

a �nite di�erent method using �ve point to solve the Poisson equation. In section 3, we

give a con�guration of nine pooint method used to solve the Poisson equation.
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The key step in solving our PDE numerically using �nite di�erence methods is to replace

the derivatives with so-called "�nite di�erence Method". Here is an example of the a

centered �nite di�erence method for the second derivative:

∂2

∂x2
u (x, y) =

2∑
i=−2

βiu (x+ ih, y) + Error

The method is �centered� because u is evaluated at an equal number of points to the

right and left of the point where we want to approximate the derivative. The coe�cients

βi are speci�ed such that Error is O(h6). That is, we solve for Error, expand in a Taylor

series in h and then we choose the coe�cients such that the �rst 5 terms in the Taylor

series vanish,i.e. Error = O(h5) if and only if:
2 β−2 − β1 + β−1 − 2 β2 = 0

1/6 β−1 − 4/3 β2 + 4/3 β−2 − 1/6 β1 = 0
−1/24 β1 − 1/24 β−1 − 2/3 β2 − 2/3 β−2 = 0

−2 β2 − 2 β−2 − 1/2 β1 − 1/2 β−1 = 0
−β2 − β−2 − β1 − β−1 − β0 = 0

this lead to:

β−2 = − 1

12
h−2, β−1 =

4

3
h−2, β0 = −5

2
h−2, β1 =

4

3
h−2, β2 = − 1

12
h−2

Now, we get the approximation of the second derivative:

∂2

∂x2
u (x, y) = − 1

12
u(x−2h,y)

h2 + 4
3

u(x−h,y)
h2 − 5

2
u(x,y)
h2

+4
3

u(x+h,y)
h2 − 1

12
u(x+2h,y)

h2 +O(h5) (1)

the same is done for the second term in Poisson equation:

∂2

∂y2
u (x, y) = − 1

12
u(x,y−2h)

h2 + 4
3

u(x,y−h)
h2 − 5

2
u(x,y)
h2

+4
3

u(x,y+h)
h2 − 1

12
u(x,y+2h)

h2 +O(h5) (2)
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Notice that we have assumed the same stepsize h in the x and y directions. Putting

(1) and (2) in the Poisson equation we get:

− 1
12

u(x−2h,y)
h2 + 4

3
u(x−h,y)

h2 − 5 u(x,y)
h2 + 4

3
u(x+h,y)

h2

− 1
12

u(x+2h,y)
h2 − 1

12
u(x,y−2h)

h2 + 4
3

u(x,y−h)
h2 + 4

3
u(x,y+h)

h2 − 1
12

u(x,y+2h)
h2 = f (x, y)

The �rst �ve terms are called the ��ve-point� Method of the Laplacian operator in 2

dimensional since it involves evaluation of u(x, y) at �ve di�erent points. Here is a sketch

of the relative orientation of these points, see �gure 2.

Figure 1: Five point Method of the Laplacian

The error in the method by expanding in a Taylor series and then making use of the

original PDE:

(

(
− 1

90
(D1,1,1,1,1,1) (u) (x, y)− 1

90
(D2,2,2,2,2,2) (u) (x, y)

)
h4 +O

(
h6
)
)

It is common in the literature to conclude from this result that the error in the method

is O(h4). On the u terms all being divided by h2, we had instead written our method as

− 1
12
u (x− 2h, y) + 4

3
u (x− h, y)− 5u (x, y) + 4

3
u (x+ h, y)− 4

3
u (x+ 2h, y)

− 1
12
u (x, y − 2h) + 4

3
u (x, y − h) + 4

3
u (x, y + h)− 1

12
u (x, y + 2h) = h2f (x, y)

and expanded about h = 0 the leading order behaviour would have been O(h6).
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Having now obtained a discrete form of the PDE, we now turn our attention to how to

exploit it and obtain a numeric solution. We �rst need to discretize the domain in` (x, y) ∈

[a, b]× [c, d]) over which we seek a solution. We will assume N + 2 lattice points in the x

and y directions, respectively. The coordinates of the lattice point will be explicitly given

by xi = Zi and yj = Zj where Z(i) = −L+ 2iL
N+1

, i = 0, . . . , N + 1. Here is a visualization

of the lattice in the case N = 4 and L = 1, see Figure 3:

Figure 2: Visualization of the lattice in the case N = 4 and L = 1

In Figure 2, each node is labelled by our approximation to the true solution of the

PDE ui,j ' u(xi, yj). The Boundary conditions will be used to �x ui,j at each of the

purple boundary nodes, so we will solve for ui,j at each of the white interior nodes. We

also de�ne fi,j = f(xi, yj), which allows us to re-write the method as:

− 1
12

ui−2,j

h2
+ 4/3

ui−1,j

h2
− 5

ui,j
h2

+
4

3

ui+1,j

h2

− 1
12

ui+2,j

h2
− 1

12

ui,j−2

h2
+

4

3

ui,j−1

h2
+

4

3

ui,j+1

h2
− 1

12

ui,j+2

h2
= fi,j

We will compute the solution ui,j, i = 1, . . . , N, j = 1, . . . , N of our PDE in the interior

point of the lattice. The boundary conditions u(x,−L) = g1(x) etc are implemented by

assigning values to all the boundary nodes (purple diamonds in the above sketch). For
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example, we set, u0,i = g1(xi). There is a potential con�ict at the corners of our lattice

where (i, j) = (0, 0), (N + 1, 0), (N + 1, N + 1), (0, N + 1), if g1(L) 6= g2(−L), g2(−L) 6=

g3(L), g3(−L) 6= g4(L) or g4(−L) 6= g1(−L). Ideally, we should choose boundary data to

ensure that this does not happen, but if there is an ambiguity we will (arbitrarily) assume

that the top and bottom boundary data take precedence over the left and right boundary

data. With N = 5, we will solve a linear system with size 4 × 4, to obtained the value

of u(x, y) in the interior nodes of the lattice. For simplicity, we show here, the shape of

the matrix in the case where, N = 3 Here, we present simple case, where N = 3, and the

linear system obtained AW = F . It is more convenient to reshape them into a vector as

indicated by this before and after plot

A =



− 5
h2

4
3h2 − 1

12h2
4

3h2 0 0 − 1
12h2 0 0

4
3h2 − 5

h2
4

3h2 0 4
3h2 0 0 − 1

12h2 0

− 1
12h2

4
3h2 − 5

h2 0 0 4
3h2 0 0 − 1

12h2

4
3h2 0 0 − 5

h2
4

3h2 − 1
12h2

4
3h2 0 0

0 4
3h2 0 4

3h2 − 5
h2

4
3h2 0 4

3h2 0

0 0 4
3h2 − 1

12h2
4

3h2 − 5
h2 0 0 4

3h2

− 1
12h2 0 0 4

3h2 0 0 − 5
h2

4
3h2 − 1

12h2

0 − 1
12h2 0 0 4

3h2 0 4
3h2 − 5

h2
4

3h2

0 0 − 1
12h2 0 0 4

3h2 − 1
12h2

4
3h2 − 5

h2


W = [u1,1, u2,1, u3,1, u1,2, u2,2, u3,2, u1,3, u2,3, u3,3]

and

F =



1/12 u−1,1

h2 − 4/3 g4(y1)
h2 − 4/3 g1(x1)

h2 + 1/12 u1,−1

h2 + f1,1

1/12 g4(y1)
h2 + 1/12 u2,−1

h2 − 4/3 g1(x2)
h2 + 1/12 g2(y1)

h2 + f2,1

1/12 u5,1

h2 + 1/12 u3,−1

h2 − 4/3 g1(x3)
h2 − 4/3 g2(y1)

h2 + f3,1

1/12 u−1,2

h2 − 4/3 g4(y2)
h2 + 1/12 g3(x1)

h2 + 1/12 g1(x1)
h2 + f1,2

1/12 g4(y2)
h2 + 1/12 g1(x2)

h2 + 1/12 g2(y2)
h2 + f2,2 + 1/12 g3(x2)

h2

1/12 u5,2

h2 + 1/12 g1(x3)
h2 − 4/3 g2(y2)

h2 + 1/12 g3(x3)
h2 + f3,2

1/12 u−1,3

h2 − 4/3 g4(y3)
h2 − 4/3 g3(x1)

h2 + 1/12 u1,5

h2 + f1,3

1/12 g4(y3)
h2 + f2,3 − 4/3 g3(x2)

h2 + 1/12 g2(y3)
h2 + 1/12 u2,5

h2

1/12 u5,3

h2 + f3,3 − 4/3 g2(y3)
h2 + 1/12 u3,5

h2 − 4/3 g3(x3)
h2
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Here is an example of the output when the source function is set to zero f(x, y) =

sin(xy) and g1 = g2 = g3 = 0 and g4(x, y) = (2− x)(2 + x).

Figure 3: Solution of Poisson equation with N = 10

A second example can be proposed for the Poisson equation: g(x, y) = sin(πx) cos(2πy)

with f(x, y) = −5π2 sin(πx) cos(2πy).

The solution using the �ve point method is presented in the following �gure:
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Figure 4: Numerical solution(left �gure) and Error curve with N = 50

Here, we present a more accurate method to solve the Poisson equation. We will use a

nine point method for the Laplacian of the form:
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∂2

∂x2
u (x, y) +

∂2

∂y2
u (x, y) =

a−1,−1u (x− h, y − h)

h2
+
a0,−1u (x, y − h)

h2
+
a1,−1u (x+ h, y − h)

h2

+
a−1,0u (x− h, y)

h2
+
a0,0u (x, y)

h2
+
a1,0u (x+ h, y)

h2
+
a−1,1u (x− h, y + h)

h2

+
a0,1u (x, y + h)

h2
+
a1,1u (x+ h, y + h)

h2
(3)

This method involves a square array of points centered about (x, y) as shown in the

plot:

Figure 5: Lattice con�guration of nine point method

We will now calculate the error in the method, simplify the expression using the PDE,

and then select the ai,j coe�cients to minimize the error. More speci�cally, we'll try to

eliminate the derivatives of u(x, y) of order 2 and higher from the Taylor series of (3)

using the following relations:
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∂2

∂x2
u(x, y) = − ∂2

∂y2
u(x, y) + f(x, y)

∂3

∂x3
u(x, y) = − ∂3

∂x∂y2
u(x, y) +

∂

∂x
f(x, y)

∂4

∂x4
u(x, y) = − ∂4

∂x2∂y2
u(x, y) +

∂2

∂x2
f(x, y)

Here is our calculation of the error in our approximation in (3). The set of equations

to be satis�ed by the ai,j's to ensure that the error is O(h3) or higher. This yield to a

linear system of 14 equations for 9 unknowns; there is no solution. So, the method of

approximation in (3) cannot be made to yield an error smaller that O(h2) when solving

Poisson's equation. This is no better than the �ve point method of the previous section.

However if we now specialize to Poisson's equation by setting f(x, y) = 0 we can do a

little better. We now have 8 equations for 9 unknowns, yielding a one parameter family

of solutions for the coe�cients:

a−1,−1 = a−1,−1, a−1,0 = 4 a−1,−1, a−1,1 = a−1,−1,
a0,−1 = 4 a−1,−1, a0,0 = −20 a−1,−1, a0,1 = 4 a−1,−1, a1,−1 = a−1,−1,
a1,0 = 4 a−1,−1, a1,1 = a−1,−1

Here, we ask the question: What is the reason behind the di�erent sizes of the system

for Poisson problem and Poisson problem?. Basically, there are more indeterminants in

the Poisson equation error from the source function resulting in more equations that must

be satis�ed to cancel all the terms of order O(h2) or less. The classic nine-point method

is de�ned by the following assumption (of course, this is arbitrary and can be changed),

a1,1 = 1
6
.

a−1,−1 = 1/6, a−1,0 = 2/3, a−1,1 = 1/6, a0,−1 = 2/3,
a0,0 = −10/3, a0,1 = 2/3, a1,−1 = 1/6, a1,0 = 2/3, a1,1 = 1/6

We substitute this back into (3) we get:
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∆u(x, y)− f(x, y) = 1/6
ui−1,j−1

h2
+ 2/3

ui,j−1

h2
+ 1/6

ui+1,j−1

h2
+ 2/3

ui−1,j

h2

− 10/3
ui,j
h2

+ 2/3
ui+1,j

h2
+ 1/6

ui−1,j+1

h2
+ 2/3

ui,j+1

h2
+ 1/6

ui+1,j+1

h2

− 2/3 fi,j − 1/12 fi,j−1 − 1/12 fi,j+1 − 1/12 fi−1,j − 1/12 fi+1,j

Note that we have left the source term in this expression; the reason will be apparent

shortly. Let's calculate the error with these speci�c values of the coe�cients.

Error(Poisson) =
1

12
h2

∂2

∂x2
f(x, y) +

1

12
h2

∂2

∂y2
f(x, y) +O(h4) (4)

We immediately see that the leading order term in the error is

h2∇2f(x, y) = h4∇4u(x, y)

so it will indeed vanish for Poisson's equation, and we will have a method with error

O(h4). But the crucial thing to note is that f(x, y) is a known function, so we can

actually calculate the h2 term in (4) explicitly. Hence, it is possible to modify our method

in such a way as to cancel this error term. Let us compute:

1
6

u(x− h, y − h)

h2
+

2

3

u(x, y − h)

h2
+

1

6

u(x+ h, y)

h2

+2
3

u(x− h, y)

h2
− 10

3

u(x, y)

h2
+

2

3

u(x+ h, y)

h2
+

1

6

u(x− h, y + h)

h2

+2
3

u(x, y + h)

h2
+

1

6

u(x+ h, y + h)

h2

− f(x, y)− 1

12
h2

∂2

∂x2
f(x, y)− 1

12
h2

∂2

∂y2
f(x, y) (5)

If the source is known analytically, we could in principle calculate the derivatives

directly. But the source might not be known analytically (i.e., we could only have numeric

knowledge), or we may be coding in an environment where we cannot take the derivative

automatically. At any rate, we only need the derivatives to enough accuracy to negate

the leading order term in (4), so we can use the followed centered method ( it's of order

two):

∂2

∂x2
f(x, y) =

f(x− h, y)

h2
− 2

f(x, y)

h2
+
f(x+ h, y)

h2
(6)

∂2

∂y2
f(x, y) =

f(x, y − h)

h2
− 2

f(x, y)

h2
+
f(x, y + h)

h2
(7)
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Subbing (6) in to (5) yield the �nal form of the nine-point method of the Poisson

equation:

Nine-Point-method := 1
6

u(x− h, y − h)

h2
+

2

3

u(x, y − h)

h2
+

1

6

u(x+ h, y)

h2

+2
3

u(x− h, y)

h2
− 10

3

u(x, y)

h2
+

2

3

u(x+ h, y)

h2
+

1

6

u(x− h, y + h)

h2

+2
3

u(x, y + h)

h2
+

1

6

u(x+ h, y + h)

h2

− 2

3
f(x, y)− 1

12
f(x− h, y)

− 1

12
f(x+ h, y)− 1

12
f(x, y − h)− 1

12
f(x, y + h) (8)

We con�rm that the error in this nine point method is of order O(h4) for the Poisson

equation (not just the Poisson equation):

Error(Poisson) =
−1

240
h4

∂4

∂x4
f(x, y) +

1

90
h4

∂4

∂y4
f(x, y) +O(h6) (9)

Note that even this error is only a functional of f(x, y), not of the solution u(x, y). Hence,

we could have even cancelled this term in the error by adding more terms to (8) if an

even more accurate method is desired. However, the �nite di�erence representation of the

higher order derivatives in (9) will require more than the nine points already in (8) which

is not desirable if we cannot take derivatives of analytically. Here is an example problem

the calculates the electric potential around a ring of 2n alternating charges. We model

the charges as discs of radius r located a distance of R away from the origin and with

surface charge density ±1. (For n = 1,this is an electric dipole).

A simple example, we consider the case where n := 2, r = 4, R = 7, L = 25: Let then

g = 0,

f(x, y) =
2n−1∑
i=0

(−1)i H

(
r2 −

(
x−R cos

(
π i

n

))2

−
(
y −R sin

(
π i

n

))2
)

where H is the Heaviside step function, or the unit step function:

∀x ∈ R, H (x) =

{
0 si x < 0
1 si x ≥ 0.

International Journal of Advanced Scientific and Technical Research       Issue 4 volume 6, Nov.-Dec.2014                

Available online on   http://www.rspublication.com/ijst/index.html                                     ISSN 2249-9954________________________________________________

 R S. Publication, rspublicationhouse@gmail.com                                                                               Page 179

_____________________________________________

IJS
T



Figure 6: Visualization of the function f(left �gure) and the solution u(x, y) obtained
using nine point method

Considering the results obtained in this paper, we plan in the future to tackle the following

questions:

• Solve the Poisson equation with mixed boundary condition in a triangular domain.

• Using iterative method and higher order �nite di�erence method to solve the Pois-

son/Poisson equation.

• Give a numerical solution of the Poisson equation in a non regular domain, let say

a non convex domain.
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