b-t-CONTINUOUS AND**

**b-t-CONTINUOUS FUNCTIONS IN TOPOLOGICAL SPACES

K.Rekha #1, T.Indira #2

#1 Assistant Professor, Department of Mathematics, Bishop Heber College, Tiruchirappali-17.

Tamilnadu, India

Phone No:9940964272

#2Assistant Professor, Department of Mathematics, SeethalakshmiRamaswami College, Tiruchirappali-02.

Tamilnadu, India

Phone No: 9486612112

ABSTRACT We introduce the notion of b**-pre continuous, b**-semi continuous, b**-t-continuous, b**-t-continuous, b**-B-continuous, b**-B*-continuous, contra b**-continuous, contra g-b**-continuous, contra s-b**-continuous, **b-pre continuous, **b-semi continuous, **b-t-continuous, **b-t-continuous, **b-B-continuous, **b-B*-continuous, contra g-**b-continuous, contra s-**b-continuous functions.

Keywords: b**-preopen, b**-semi open, b**-t-set, b**-t-set, b**-B-set, b**-B-set, b**-closed, g-b**-closed, s-b**-generalized closed, **b-preopen, **b-semi open, **b-t-set, **b-t-set, **b-B-set, **b-B-set, **b-closed, g-**b-closed, s-**b-generalized closed.

Corresponding Author: Rekha.K

1. INTRODUCTION

Tong [14]introduced the concept of t-set and B-set in topological space.Indira,Rekha[6] introduced**b-open sets,t*-set,B*-set in topological space.Indira,Rekha[7,11,12]introduced *b-tset,*b-t*-set,*b-B-set,*b-preopen,*b-semiopen set, g-*b-closed, s-*b-generalized closed,b**-preopen, b**-semi open, b**-t-set, b**-t*-set, b**-B-set, b**-B*-set, g-b**-closed, s-b**-generalized closed, **b-preopen, **b-semi open, **b-t-set, **b-t*-set, **b-B-set, **b-B*set, **b-closed, g-**b-closed, s-**b-generalized closed sets in topological spaces. In this paper, we introduce the notion ofb**-t-continuous, b**-t*-continuous, b**-B-continuous, b**-B*continuous, contra b**-continuous, contra g-b**-continuous, contra s-b**-continuous functions, **b-t*-continuous, **b-B-continuous, **b-B*-continuous,contra **b-t-continuous, continuous, contra g-**b-continuous, contra s-**b-continuous functions. All through this paper (X,τ) and (Y,σ) stand for topological spaces with no separation axioms assumed, unless otherwise stated. Let $A \subseteq X$, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. A is regular open if A = Int(Cl(A)) and A is regular closed if its complement is regular open; equivalently A is regular closed if A = Cl(Int(A)).

2. PRELIMINARIES

- **2.1 Definition** A subset A of a space X is said to be:
- 1. Semi-open [9] if $A \subseteq Cl(Int(A))$
- 2. Preopen[10] if $A \subseteq Int(Cl(A))$
- 3. b-open[1] if $A \subset Cl(Int(A)) \cup Int(Cl(A))$
- 4. *b-open[6] if $A \subseteq Cl(Int(A)) \cap Int(Cl(A))$
- 5. b**-open[3] if $A \subseteq Int(Cl(Int(A))) \cup Cl(Int(Cl(A)))$
- 6. **b-open[6] if $A \subset Int(Cl(Int(A))) \cap Cl(Int(Cl(A)))$
- **2.2 Definition**[7,11,12] A subset A of a space X is said to be:
- 1. *b-t-set if Int(A) = Int(*bCl(A))
- 2. *b-t*-set if Cl(A) = Cl(*bInt(A))
- 3.*b-B-set if $A = U \cap V$, where $U \in \tau$ and V is a *b-t-set
- 4.*b-B*-set if $A = U \cap V$, where $U \in \tau$ and V is a *b-t*-set
- 5.*b-semiopen if $A \subseteq Cl(*bInt(A))$

- 6.*b-preopen if $A \subseteq Int(*bCl(A))$
- 7.b**-t-set if Int(A) = Int(b **Cl(A))
- 8. b^{**} - t^{*} -set if $Cl(A) = Cl(b^{**}Int(A))$
- 9.b**-B-set if $A = U \cap V$, where $U \in \tau$ and V is a b**-t-set
- 10.b**-B*-set if $A = U \cap V$, where $U \in \tau$ and V is a b**-t*-set
- 11.b**-semiopen if $A \subset Cl(b^**Int(A))$
- 12.b**-preopen if $A \subseteq Int(b**Cl(A))$
- 13.**b-t-set if Int(A) = Int(**bCl(A))
- 14. **b-t*-set if Cl(A) = Cl(**bInt(A))
- 15.**b-B-set if $A = U \cap V$, where $U \in \tau$ and V is a **b-t-set
- 16. **b-B*-set if $A = U \cap V$, where $U \in \tau$ and V is a **b-t*-set
- 17.**b-semiopen if $A \subseteq Cl(**bInt(A))$
- 18.**b-preopen if $A \subset Int(**bCl(A))$

2.3 Definition [3,6,7,11,12]

A subset *A* of a space *X* is said to be:

- 1.generalized *b-closed set if * $bcl(A) \subset U$ whenever $A \subseteq U$ and U is open.
- 2.generalized b**-closed set if $b^**cl(A) \subset U$ whenever $A \subseteq U$ and U is open.
- 3. generalized **b-closed set if ** $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open.
- 4. s-*b-generalized closed if $s(*bCl(A)) \subseteq U$ whenever $A \subseteq U$ and U is *b-preopen.
- 5. s-b**-generalized closed if $s(b^{**}Cl(A)) \subset U$ whenever $A \subseteq U$ and U is b**-preopen.
- 6. s-**b-generalized closed if $s(**bCl(A)) \subset U$ whenever $A \subseteq U$ and U is **b-preopen.
- 7. locally *b-closed if $A = U \cap V$, where $U \in \tau$ and V is a *b-closed set.
- 8. locally b**-closed if $A = U \cap V$, where $U \in \tau$ and V is a b**-closed set.
- 9. locally **b-closed if $A = U \cap V$, where $U \in \tau$ and V is a **b-closed set.

2.4Definition[**8,13**]

A function $f: X \to Y$ is called *b-pre continuous(resp.*b-semi continuous,*b-t-continuous,*b-t*-continuous,*b-B-continuous,*b-B*- continuous,contra *b-continuous, contra g-*b-continuous, contra s-*b-continuous, completely continuous, locally b**-closed continuous, locally **b-closed continuous) if $f^{-1}(V)$ is *b-preopen(resp.*b-semiopen,*b-t-set,*b-t*-set,*b-B-set,*b-closed, g-*b-closed,s-*b-generalized closed, regular open, locally b**-closed, locally **b-closed) in X for each open set V of Y.

3. b**-t-CONTINUOUS AND b**-B-CONTINUOUS

- **3.1Definition** A function $f: X \to Y$ is called b**-pre continuous if $f^{-1}(V)$ is b**-preopen in X for each open set V of Y.
- **3.2 Example**Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$, $Y = \{a, b, c\}$, $\sigma = \{Y, \phi, \{b\}, \{c\}, \{b, c\}\}$. Define a map $f : X \to Y$ by f(a) = a; f(b) = a; f(c) = b; f(d) = c. Then f is b**-pre continuous.
- **3.3 Definition**A function $f: X \to Y$ is calledb**-semi continuous if $f^{-1}(V)$ is b**-semi open in X for each open set V of Y.
- **3.4 Example**Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}\}$, $Y = \{a, b, c\}$, $\sigma = \{Y, \phi, \{b\}\}$. Define a map $f : X \to Y$ by f(a) = a; f(b) = a; f(c) = b; f(d) = c.

Then f is b^{**} -semi continuous.

- **3.5 Definition**A function $f: X \to Y$ is calledb**-t-continuous if $f^{-1}(V)$ is b**-t-set in X for each open set V of Y.
- **3.6 Example**Let $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}\}$, $Y = \{a,b,c\}$ $\sigma = \{Y,\phi,\{a\},\{c\},\{a,c\}\}\}$. Define a map $f: X \to Y$ by f(a) = c; f(b) = a; f(c) = b; f(d) = a Then f is b**-t-continuous.
- **3.7 Definition**A function $f: X \to Y$ is called b^{**} -t*-continuous if $f^{-1}(V)$ is b^{**} -t*-set in X for each open set V of Y.
- **3.8 Example**Let $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}\}$, $Y = \{a,b,c,d\}$ $\sigma = \{Y,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\},\{a,b,d\}\}\}$. Define a map $f: X \to Y$ by f(a) = c; f(b) = d; f(c) = a; f(d) = b. Then f is b**-t*-continuous.

3.9 DefinitionA function $f: X \to Y$ is calledb**-B-continuous if $f^{-1}(V)$ is b**-B-set in X for each open set V of Y.

3.10 ExampleLet
$$X = \{a,b,c,d\}, \tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}, Y = \{a,b,c,d\},$$

 $\sigma = \{Y, \phi, \{a, c\}\}$. Define a map $f: X \to Y$ by f(a) = b; f(b) = c; f(c) = d; f(d) = a. Then f is b^{**} -B-continuous.

3.11 DefinitionA function $f: X \to Y$ is called b^{**} -B*-continuous if $f^{-1}(V)$ is b^{**} -B*-set in X for each open set V of Y.

3.12 ExampleLet
$$X = \{a,b,c,d\}, \tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}\}, Y = \{a,b,c\},$$

$$\sigma = \{Y, \phi, \{a\}\}$$
. Define a map $f: X \to Y$ by $f(a) = c$; $f(b) = b$; $f(c) = a$; $f(d) = b$.

Then f is b^{**} -B*-continuous.

3.13 DefinitionA function $f: X \to Y$ is called Contra b**-continuous if $f^{-1}(V)$ is b**-closed in X for each open set V of Y.

3.14 ExampleLet
$$X = \{a,b,c,d\}, \tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}$$

Define a map
$$f: X \to X$$
 by $f(a) = d$; $f(b) = c$; $f(c) = a$; $f(d) = b$.

Then f is Contra b**-continuous.

3.15 DefinitionA function $f: X \to Y$ is called Contra g-b**-continuous if $f^{-1}(V)$ is g-b**-closed in X for each open set V of Y.

3.16 ExampleLet
$$X = \{a,b,c,d\}, \tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}$$
.

Define a map
$$f: X \to X$$
 by $f(a) = d$; $f(b) = c$; $f(c) = a$; $f(d) = b$.

Then f is Contra g-b**-continuous.

3.17 DefinitionA function $f: X \to Y$ is called Contra s-b**-continuous if $f^{-1}(V)$ is s-b**-generalized closed in X for each open set V of Y.

3.18 ExampleLet
$$X = \{a,b,c,d\}$$
, $\tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}$.

Define a map
$$f: X \to X$$
 by $f(a) = c$; $f(b) = d$; $f(c) = a$; $f(d) = b$.

Then f is Contra s-b**-continuous.

3.19 Theorem

Let $f: X \to Y$ be a function. Then f is continuous if and only if it is b**-pre continuous and b**-B-continuous.

Proof:Assume that f is continuous.Let V be open in Y.Since f is continuous $\Rightarrow f^{-1}(V)$ is open in X [Since open \Rightarrow b**-preopen and a b**-B-set[11]] $\Rightarrow f^{-1}(V)$ is b**-preopen and a b**-B-set in X. $\Rightarrow f^{-1}(V)$ is b**-preopen and a b**-B-set in X for each open set V of $Y \Rightarrow f$ is b**-pre continuous and b**-B-continuous. Assume that f is b**-pre continuous and b**-B- continuous. Let V be open in Y. Since f is b**-pre continuous and b**-B- continuous $\Rightarrow f^{-1}(V)$ is b**-preopen and b**-B-set in $X \Rightarrow f^{-1}(V)$ is b**-preopen and b**-B-set in X for each open set V of Y [Since b**-preopen and a b**-B-set \Rightarrow open[11]] $\Rightarrow f^{-1}(V)$ is open in X for each open set V of $Y \Rightarrow f$ is continuous.

3.20 Theorem

Let $f: X \to Y$ be a function. Then f is completely continuous if and only if f is b**-pre continuous and b**-t-continuous.

Proof:Assume that f is completely continuous. Let V be open in Y. Since f is completely continuous. $\Rightarrow f^{-1}(V)$ is regular open in X. [Since regular open \Rightarrow b**-preopen and b**-t-set[11]] $\Rightarrow f^{-1}(V)$ isb**-preopen and b**-t-set in $X \Rightarrow f$ is b**-pre continuous and b**-t-continuous. Assume that f is b**-pre continuous and b**-t-continuous. Let V be open in Y. Since f is b**-preopen and b**-t-set in X [Since b**-preopen and a b**-t-set X [Since b**-preopen

3.21 Theorem

Let $f: X \to Y$ be a function. Then f is completely continuous if and only if f is b^{**} -pre continuous and contra s- b^{**} -continuous.

Proof:Assume that f is completely continuous. Let V be open in Y. Since f is completely continuous. $\Rightarrow f^{-1}(V)$ is regular open $\Rightarrow f^{-1}(V)$ is b**-preopen and s-b**-generalized closed. [Since regular open \Rightarrow b**-preopen and s-b**-generalized closed[11]] \Rightarrow f is b**-pre continuous and contra s-b**-continuous. Assume that f is b**-pre continuous and contra s-b**-continuous. Let V be open in Y. Since f is b**-pre continuous and contra s-b**-continuous $\Rightarrow f^{-1}(V)$ is b**-preopen and s-b**-generalized closed. [Since b**-preopen and s-b**-generalized closed \Rightarrow regular open [11]] $\Rightarrow f^{-1}(V)$ is regular open in X for each open set V of Y \Rightarrow f is completely continuous.

3.22 Theorem

Let $f: X \to Y$ be a function. Then f is contra b**-continuous if and only if it is locally b**-closed-continuous and contra g-b**-continuous.

Proof:Assume that, f is contra b**-continuous. Let V be open in Y. Since f is contra b**-continuous $\Rightarrow f^{-1}(V)$ is b**-closed in X. [Since b**-closed $\Rightarrow g$ -b**-closed and locally b**-closed [11]] $\Rightarrow f^{-1}(V)$ is g-b**-closed and locally b**-closed in $X \Rightarrow f$ is contra-g-b**-continuous and locally b**-closed continuous. Conversely, Assume that f is contra g-b**-continuous and locally b**-closed continuous. Let V be open in Y. Since f is contra-g-b**-continuous and locally b**-closed continuous $\Rightarrow f^{-1}(V)$ is g-b**-closed and locally b**-closed in X [Since g-b**-closed and locally b**-closed \Rightarrow b**-closed[11]] $\Rightarrow f^{-1}(V)$ is b**-closed in X \Rightarrow $f^{-1}(V)$ is b**-closed in X for each open set V of Y \Rightarrow f is contra b**-continuous.

4. **b-t-CONTINUOUS AND **b-B-CONTINUOUS

- **4.1 Definition**A function $f: X \to Y$ is called**b-pre continuous if $f^{-1}(V)$ is **b-preopen in X for each open set V of Y.
- **4.2 Example**Let $X = \{a,b,c,d\}$, $\tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}\}$, $Y = \{a,b,c\}$ $\sigma = \{Y,\phi,\{a\},\{b\},\{a,b\}\}\}$. Define a map $f: X \to Y$ by f(a) = c; f(b) = c; f(c) = a; f(d) = b Then f is **b-pre continuous.
- **4.3 Definition**A function $f: X \to Y$ is called**b-semi continuous if $f^{-1}(V)$ is **b-semi open in X for each open set V of Y.
- **4.4 Example**Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$, $Y = \{a, b, c, d\}$ $\sigma = \{Y, \phi, \{c\}\}$. Define a map $f : X \to Y$ by f(a) = a; f(b) = d; f(c) = b; f(d) = c Then f is**b-semi continuous.
- **4.5 Definition** A function $f: X \to Y$ is called**b-t-continuous if $f^{-1}(V)$ is **b-t-set in X for each open set V of Y.
- **4.6 Example**Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$, $Y = \{a, b, c, d\}$ $\sigma = \{Y, \phi, \{b\}, \{b, c\}\}$. Define a map $f : X \to Y$ by f(a) = a; f(b) = b; f(c) = d; f(d) = c Then f is**b-t-continuous.
- **4.7 Definition**A function $f: X \to Y$ is called**b-t*-continuous if $f^{-1}(V)$ is **b-t*-set in X for each open set V of Y.
- **4.8 Example**Let $X = \{a,b,c,d\}, \tau = \{X,\phi,\{c\},\{d\},\{c,d\},\{a,c,d\},\{b,c,d\}\}, Y = \{a,b,c,d\}$ $\sigma = \{Y,\phi,\{a\},\{b\},\{a,b\},\{a,b,c\},\{a,b,d\}\}$. Define a map $f: X \to Y$ by

f(a) = c; f(b) = d; f(c) = a; f(d) = b. Then f is **b-t*-continuous.

- **4.9 Definition**A function $f: X \to Y$ is called**b-B-continuous if $f^{-1}(V)$ is **b-B-set in X for each open set V of Y.
- **4.10 Example** Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$, $Y = \{a, b, c, d\}$ $\sigma = \{Y, \phi, \{b, c\}\}$. Define a map $f : X \to Y$ by f(a) = b; f(b) = c; f(c) = d; f(d) = a Then f is**b-B-continuous.
- **4.11 Definition**A function $f: X \to Y$ is called**b-B*-continuous if $f^{-1}(V)$ is **b-B*-set in X for each open set V of Y.
- **4.12 Example**Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$, $Y = \{a, b, c\}$ $\sigma = \{Y, \phi, \{b\}\}$. Define a map $f : X \to Y$ by f(a) = c; f(b) = a; f(c) = b; f(d) = b Then f is**b-B*-continuous.
- **4.13 Definition**A function $f: X \to Y$ is called Contra **b-continuous if $f^{-1}(V)$ is **b-closed in X for each open set V of Y.
- **4.14 Example**Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define a map $f: X \to X$ by f(a) = d; f(b) = c; f(c) = a; f(d) = b. Then f is Contra **b-continuous.
- **4.15 Definition**A function $f: X \to Y$ is called Contra g -**b-continuous if $f^{-1}(V)$ is g -**b-closed in X for each open set V of Y.
- **4.16 Example**Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define a map $f: X \to X$ by f(a) = c; f(b) = d; f(c) = a; f(d) = b. Then f is Contra g-**b-continuous.
- **4.17 Definition** A function $f: X \to Y$ is called Contra s-**b-continuous if $f^{-1}(V)$ is s-**b-generalized closed in X for each open set V of Y.
- **4.18 Example**Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Define a map $f: X \to X$ by f(a) = c; f(b) = d; f(c) = a; f(d) = b. Then f is Contra s-**b-continuous.

4.19 Theorem

Let $f: X \to Y$ be a function. Then f is continuous if and only if it is **b-pre continuous and **b-B-continuous.

Proof:Assume that f is continuous. Let V be open in Y. Since f is continuous. $\Rightarrow f^{-1}(V)$ is open in X. [Since open \Rightarrow **b-preopen and a **b-B-set[12]]. $\Rightarrow f^{-1}(V)$ is **b-preopen and a **b-B-set[12]].

set in X. \Rightarrow f is**b-pre continuous and **b-B-continuous. Assume that f is **b-pre continuous and **b-B- continuous. Let V be open in Y. Since f is **b-pre continuous and **b-B-continuous. \Rightarrow $f^{-1}(V)$ is**b-preopen and **b-B-set in X. [Since **b-preopen and a **b-B-set \Rightarrow open[12]] \Rightarrow $f^{-1}(V)$ is open in X for each open set V of Y. \Rightarrow f is continuous

4.20 Theorem

Let $f: X \to Y$ be a function. Then f is completely continuous if and only if f is **b-pre continuous and **b-t-continuous.

Proof:Assume that f is completely continuous. Let V be open in Y. Since f is completely continuous. $\Rightarrow f^{-1}(V)$ is regular open in X. [Since regular open \Rightarrow **b-preopen and **b-t-set[12]]. $\Rightarrow f^{-1}(V)$ is**b-preopen and **b-t-set in X. $\Rightarrow f$ is**b-pre continuous and **b-t-continuous. Assume that f is **b-pre continuous and **b-t-continuous. Let V be open in Y. Since f is **b-preopen and **b-t-set in X. [Since **b-preopen and a **b-t-set \Rightarrow regular open[12]] $\Rightarrow f^{-1}(V)$ is regular open in X for each open set V of Y. \Rightarrow f is completely continuous.

4.21 Theorem

Let $f: X \to Y$ be a function. Then f is completely continuous if and only if f is **b-pre continuous and contra s-**b-continuous.

Proof:Assume that f is completely continuous. Let V be open in Y. Since f is completely continuous. $\Rightarrow f^{-1}(V)$ is regular open . $\Rightarrow f^{-1}(V)$ is**b-preopen and s-**b-generalized closed[Since regular open \Rightarrow **b-preopen and s-**b-generalized closed[12]]. $\Rightarrow f$ is**b-pre continuous and contra s-**b-continuous. Assume that f is **b-pre continuous and contra s-**b-continuous. Let V be open in Y. Since f is **b-pre continuous and contra s-**b-continuous. $\Rightarrow f^{-1}(V)$ is**b-preopen and s-**b-generalized closed. [Since **b-preopen and s-**b-generalized closed \Rightarrow regular open[12]] $\Rightarrow f^{-1}(V)$ is regular open in X for each open set V of Y. $\Rightarrow f$ is completely continuous.

4.22 Theorem

Let $f: X \to Y$ be a function. Then f is contra **b-continuous if and only if it is locally **b-closed continuous and contra g-**b-continuous.

Proof:Assume that, f is contra **b-continuous. Let V be open in Y. Since f is contra **b-continuous. $\Rightarrow f^{-1}(V)$ is **b-closed in X. [Since **b-closed $\Rightarrow g$ -**b-closed and locally **b-closed[12]] $\Rightarrow f^{-1}(V)$ is g-**b-closed and locally **b-closed in X. $\Rightarrow f$ is contra-g-**b-continuous and locally **b-closed continuous. Conversely, Assume that f is contra-g-**b-continuous and locally **b-closed continuous. Let V be open in Y. Since f is contra-g-**b-continuous and locally **b-closed continuous.

continuous and locally **b-closed continuous. $\Rightarrow f^{-1}(V)$ is g-**b-closed and locally **b-closed in X. $\Rightarrow f^{-1}(V)$ is g-**b-closed and locally **b-closed for each open set V of Y. [Since g-**b-closed and locally **b-closed \Rightarrow **b-closed[12]] $\Rightarrow f^{-1}(V)$ is **b-closed in X

 \Rightarrow f is contra **b-continuous.

CONCLUSION

As an extension of this paper, **b-compact and **b-connected sets in topological spaces can be defined and can obtain theorems based on the above defined concepts.

REFERENCE

978-93-81361-71-9.

- [1] D. Andrijevic, "On b-open sets", Mat. Vesnik, 48(1996), 59-64.
- [2] D. Andrijevic, "Semi-preopen sets", Mat. Vesnik, 38(1)(1986), 24-32.
- [3] S. Bharathi, K. Buvaneshwari, N. Chandramathi, "On Locally b**- closed sets", *International journal of Mathematical Sciences and Applications*, Vol. 1 No. 2(2011)636-641.
- [4] T. Hatice and T. Noiri, "Decomposition of continuity and complete continuity", *ActaMath.Hungar*, 113(4) (2006) 278-281.
- [5] JulianDontchev, Takashi Noiri, "Contra-semi continuous functions", *Mathematic Pannonica*, 10/2 (1999), 159-168.
- [6] T. Indira., K. Rekha., "On locally **b-closed sets", *Proceedings of the Heber International Conference on Applications of Mathematics & Statistics*, (HICAMS 2012), 74-80 ISBN No:
- [7]T.Indira and K. Rekha, "*b-t-sets in topological spaces", *Antarctica journal of Mathematics*, Vol. 9 No.7 (2012), 599-605.
- [8]T. Indiraand K. Rekha, "Applications of *b-open Sets and **b-open Sets inTopological Spaces", *Annals of Pure and Applied Mathematics*, Vol. 1, No. 1, 2012, 44-56.
- [9] N. Levine, "Semi-open sets and semi-continuity in Topological spaces", *Amer Math. Monthly* 70(1963), 36-41.
- [10] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deep, "On pre-continuous and weak pre-continuous mappings", *Proc. Math. Phys. Soc. Egypt* 53(1982),47-53.
- [11] K. Rekha& T. Indira, "b**-t-sets in topological spaces", *Archimedes J. Math.*, 3(3)(2013), 209-216.
- [12] K. Rekha& T. Indira, "**b-t-sets in topological spaces", *International Journal of Applied Mathematics & Statistical Sciences (IJAMSS)*, Vol. 2, Issue 2, May 2013, 55-64.
- [13] K. Rekha& T. Indira, "Decomposition of continuity via *b-open set", Acta Ciencia Indica,

Vol.XXXIX M, No.1, 73-85(2013).

[14] J.Tong, "On Decomposition of continuity in topological spaces", *Acta Math.Hungar*, 54(1-2)(1989), 51-55.