$\tau_1 \tau_{2-} g^*$ -closed sets

Dr.T.INDIRA

PG & Research department of Mathematics SeethalakshmiRamaswamycollege Tiruchirappalli – 620002, Tamilnadu.

Mobile: 9486612112

Abstract:

This paper is to introduce a new class of sets called $\tau_1 \tau_2$ -g*-closed sets in bi topological spaces and to analyses the properties of this set.

Ams classification:54E55

Keywords: $\tau_1 \tau_2$ -g*-closed, $\tau_1 \tau_2$ - g*-open sets.

1.Introduction

Levine [9] introduced semi open sets in 1963 and also Levine [10] introduced generalized closed sets in 1970. AbdEl Monsef et al [1] introduced -open sets. M.K.R.S.Veerakumar [12] introduced *g-closed sets in topological spaces. J.C.Kelley [7] initiated the study of bitopological spaces in 1963. A nonempty set X equipped with two topological spaces $_1$ and τ_2 is called a bitopological space and is denoted by (X, 1, 2). Since then several topologists generalized many of the results in topological spaces to bitopological spaces. Fukutake [5] introduced generalized closed sets in bitopological spaces. Fukutake [6] introduced semi open sets in bitopologicalspaces .K.chandrasekharaRao and M.Mariasingam [3] defined and studied regular generalized closed sets in bitopological settings. This paper is to introduce a new class of sets called $\tau_1 \tau_2$ - g*-closed sets in bitopological spaces and to study about their properties.

2. Preliminaries

DEFINITION 2.1

A subset A of a bitopological space (X,τ_1,τ_2) is called

- 1. $\tau_1\tau_2$ -semi open if $A \subset \tau_2 cl(\tau_1 int(A))$ and it is called $\tau_1\tau_2$ -semi closed if $\tau_2 int(\tau_1 cl(A)) \subset A$
- 2. $\tau_1 \tau_2$ -preopen if $A \subset \tau_2$ int $(\tau_1 \operatorname{cl}(A))$ and $\tau_1 \tau_2$ -pre closed if $\tau_2 \operatorname{cl}(\tau_1 \operatorname{int}(A)) \subset A$.
- 3. $\tau_1 \tau_2$ - α -open if $A \subset \tau_1 \operatorname{nt}(\tau_2 \operatorname{cl}(\tau_1 \operatorname{int}(A)))$.

- 4. $\tau_1 \tau_2$ -semi preopen if $A \subset \tau_1 cl(\tau_2 int(\tau_1 cl(A)))$.
- 5. $\tau_1 \tau_2$ -regular open if $A = \tau_2 int(\tau_1 cl(A))$.
- 6. $\tau_1 \tau_2$ -regular closed if $A = \tau_2 cl(\tau_1 int(A))$.

DEFINITION 2.2:

A subset A of a bitopological space (X, τ_1, τ_2) is called a

- 1. $\tau_1\tau_2$ -g-closed set $\tau_1\tau_2$ -generalized closed set)if τ_2 -cl(A) \subset U, whenever A \subset U, U is τ_1 -open.
- 2. $\tau_1\tau_2$ -sg-closed set $(\tau_1\tau_2$ semi generallized closed set)if τ_2 scl(A) \subset U, whenever A \subset U, U is τ_1 -semi open.
- 3. $\tau_1 \tau_2$ gs-closed set $(\tau_1 \tau_2$ generallized semi closed set)if τ_2 scl(A) \subset U, whenever A \subset U, U is τ_1 -open.
- 4. $\tau_1\tau_2\alpha g$ -closed set $(\tau_1\tau_2\alpha$ generallized closed set)if τ_2 - $\alpha cl(A) \subset U$, whenever $A \subset U$, U is τ_1 -open.
- 5. $\tau_1\tau_2$ -g -closed set $(\tau_1\tau_2$ generallized -closed set)if τ_2 - α cl(A) \subset U, whenever A \subset U, U is τ_1 - α -open.
- 6. $\tau_1\tau_2$ -gp-closed set $(\tau_1\tau_2$ generallized pre-closed set)if τ_2 -pcl(A) \subset U, whenever A \subset U, U is τ_1 -open.
- 7. $\tau_1\tau_2$ -gsp-closed set $(\tau_1\tau_2$ generalized semi preclosed set)if τ_2 -spcl(A) \subset U, whenever A \subset U,U is τ_1 -open.
- 8. $\tau_1\tau_2$ -gpr-closedset($\tau_1\tau_2$ generallized pre regular closed set)if τ_2 -pcl(A) \subset U , whenever A \subset U, U is τ_1 -regular open.
- 9. $\tau_1\tau_2$ - μ -closed set if τ_2 -cl(A) \subset U , whenever A \subset U, U is τ_1 - $g\alpha^*$ -open.
- 10. $\tau_1\tau_2$ - ψ -closed set if τ_2 -scl(A) \subset U , whenever A \subset U, U is τ_1 -sg-open.
- 11. $\tau_1\tau_2$ -pre semi closed set if τ_2 -spcl(A) \subset U , whenever A \subset U, U is τ_1 -g-open.

3. Properties of $\tau_1 \tau_2$ -g*-closed

Definition: 3.1A subset A of (X, τ_1, τ_2) is said to be $\tau_1\tau_2$ -g*-closedif τ_2 - $cl(A) \subseteq U$, whenever $A \subseteq U, U$ is τ_1 -gopen.

The complement of $\tau_1\tau_2$ -g*-closedset is called $\tau_1\tau_2$ -g*-open set.

Example: 3.2Let $X = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a\}\}, \tau_2 = \{\varphi, X, \{b\}\}.$

 $\tau_1 \tau_2$ -g*-closed sets = { φ , X, {a, c}, {b, c}}.

Theorem: 3.3 Every τ_2 -closed set is $\tau_1\tau_2$ -g*-closed.

Proof: Let $A \subset U$, U is τ_1 -g-open.

A is τ_2 -closed $\Rightarrow \tau_2$ -cl(A) = A $\Rightarrow \tau_2$ -clA $\subset U \Rightarrow$ A is $\tau_1\tau_2$ -g*-closed

Theorem: 3.4Every $\tau_1\tau_2$ -g*-closed sets in $\tau_1\tau_2$ -g-closed.

Proof: Assume that A is $\tau_1\tau_2$ -g*-closed.Let $A \subset U, U$ is τ_1 -open.

Uis τ_1 -open $\Rightarrow U$ is τ_1 -g-open $\Rightarrow \tau_2$ - $cl(A) \subset U$ [by the assumption]

 \Rightarrow Ais $\tau_1\tau_2$ -g-closed.

Theorem: 3.5 Every $\tau_1\tau_2$ -g*-closed sets in $\tau_1\tau_2$ -gs-closed.

Proof: Assume that *A* is $\tau_1\tau_2$ -g*-closed.Let $A \subset U$, *U* is τ_1 -open,

then U is τ_1 -g-open $\Rightarrow \tau_2$ - $cl(A) \subset U$ [by the assumption] But τ_2 - $scl(A) \subset \tau_2$ - $cl(A) \subset U \Rightarrow \tau_2$ - $scl(A) \subset U$, whenever $A \subset U$, U is τ_1 -open

 \Rightarrow Ais $\tau_1\tau_2$ -gs-closed.

Theorem: 3.6Every $\tau_1\tau_2g^*$ -closed sets in $\tau_1\tau_2$ - αg -closed.

Proof: Assume that A is $\tau_1\tau_2$ -g*-closed.Let $A \subset U$, U is τ_1 -open, then U is τ_1 -g-open $\Rightarrow \tau_2$ - $cl(A) \subset U$ [by the assumption]

But τ_2 - $\alpha cl(A) \subset \tau_2$ - $cl(A) \subset U \Rightarrow A$ is $\tau_1 \tau_2$ - αg -closed.

Theorem: 3.7Every $\tau_1 \tau_2$ -g*-closed sets in $\mathcal{J}_1 \mathcal{J}_2$ -gp-closed.

Proof: Assume that *A* is $\tau_1 \tau_2$ -g*-closed.

Let $A \subset U$, U is τ_1 -open, then U is τ_1 -g-open.

 $\Rightarrow \tau_2 \text{-}cl(A) \subset U$ [by the assumption].But $\tau_2 \text{-}pcl(A) \subset \tau_2 \text{-}cl(A) \subset U$.

 \Rightarrow Ais $\tau_1\tau_2$ -gp-closed.

Theorem: 3.8 Every $\tau_1\tau_2$ -g*-closed sets in $\tau_1\tau_2$ gpr-closed.

Proof: Assume that *A* is $\tau_1 \tau_2$ -g*-closed.

Let $A \subset U$, U is τ_1 - regular open, then U is τ_1 -open and so it is τ_1 -g-open $\Rightarrow \tau_2$ - $cl(A) \subset U$ [by the assumption] But τ_2 - $pcl(A) \subset \tau_2$ - $cl(A) \subset U \Rightarrow A$ is $\tau_1\tau_2$ -gpr-closed.

Theorem: 3.9Every $\tau_1\tau_2$ -g*-closed sets in $\tau_1\tau_2$ -rg-closed.

Proof: Assume that *A* is $\tau_1 \tau_2$ -g*-closed.

Let $A \subset U$, U is τ_1 -regular open, then U is τ_1 -open

 $\Rightarrow \tau_2$ -cl(A) $\subset U$ [by the assumption] \Rightarrow A is $\tau_1\tau_2$ rg-closed.

Theorem: 3.10 Every $\tau_1 \tau_2$ -g*-closed sets in $\tau_1 \tau_2$ -gsp-closed.

Proof:

The proof follows from the fact that τ_2 -spcl $(A) \subset \tau_2$ -cl(A).

Remark: 3.11

The converses of the above theorems are need not be true. This can be seen from the following examples.

Example: 3.12

Let
$$X = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a\}, \{b\}\}, \tau_2 = \{\varphi, X, \{b\}, \{b, c\}\}.$$

 $\tau_1\tau_2$ g*-closed sets = { φ , X, {a}, {c}, {a, c}, {b, c}}. Here {c}, {b, c} are $\tau_1\tau_2$ -g*-closed sets. But they are not τ_2 -closed.

Example: 3.13

Let

$$X = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a\}, \{b, c\}\}, \tau_2 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}.$$

 $\tau_1 \tau_2 g^*$ -closed sets = $\{\varphi, X, \{c\}, \{a, c\}, \{b, c\}\}.$

 $\tau_1 \tau_2$ -g-closed sets = { φ , X, {b}, {c}, {a, b}, {a, c}, {b, c}}.

 $\tau_1 \tau_2$ -gs-closed sets = $\{\varphi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}\}$.

 $\tau_1 \tau_2$ gp-closed sets = $\{\varphi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}\}.$

 $\tau_1 \tau_2$ - α g-closed sets = { φ , X, {b}, {c}, {a, b}, {b, c}, {a, c}}.

 $\tau_1 \tau_2 \text{gsp-closed sets} = \{ \varphi, X, \{a\}, \{b\}, \{c\}, \{a, b\} \{a, c\}, \{b, c\} \}.$

 $\tau_1 \tau_2$ -rg-closed sets = $\{\varphi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$

 $\tau_1 \tau_2$ gpr-closed sets = $\{\varphi, X, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$

Here $\{b\}$, $\{a,b\}$ are $\tau_1\tau_2$ g-closed, $\tau_1\tau_2$ -gp-closed $\tau_1\tau_2$ - α g-closed, $\tau_1\tau_2$ -gp-closed, $\tau_1\tau_2$ -gpr-closed. But they are not $\tau_1\tau_2$ -g*-closed.

Similarly{a}, {b}, {a, b} are $\tau_1\tau_2$ -gs-closed and $\tau_1\tau_2$ gsp-closed but they are not $\tau_1\tau_2$ g*-closed.

Example: 3.14

 $\tau_1\tau_2g^*$ -closed sets in independent from $\tau_1\tau_2$ - α -closed sets, $\tau_1\tau_2$ -semi-closed sets, $\tau_1\tau_2$ -pre-closed sets, $\tau_1\tau_2$ -semi-pre-closed sets,

 $\tau_1\tau_2 sg\text{-closed}$ sets and $\tau_1\tau_2\text{-}g\alpha\text{-closed}$ sets.This can be seen from

the following examples.

Example: 3.15

Let
$$X = \{a, b, c\},\$$

 $\tau_1 = \{\varphi, X, \{a\}, \{b, c\}\}, \tau_2 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}.$

$$\tau_1 \tau_2 - g^*$$
-closed sets = $\{\varphi, X, \{c\}, \{a, c\}, \{b, c\}\}.$

 $\tau_1 \tau_2$ -semi-closed sets = { φ , X, {a}, {b}, {b, c}}.

Here $\{a\}$, $\{b\}$ are $\tau_1\tau_2$ -semi-closed sets,

but they are not $\tau_1 \tau_2$ -g*-closed.

Also $\{c\}$, $\{a, c\}$ are $\tau_1\tau_2$ -g*-closed but they are not $\tau_1\tau_2$ -semiclosed.

Example: 3.16

Let
$$X = \{a, b, c\},\$$

 $\tau_1 = \{\varphi, X, \{a\}, \{b, c\}\}, \tau_2 = \{\varphi, X, \{a\}, \{b\}, \{a, b\}\}.$

$$\tau_1 \tau_2$$
-g*-closed sets = { φ , X , { c }, { a , c }, { b , c }}.

 $\tau_1 \tau_2$ - α -closed sets = { φ , X, { α }, {b, c}}.

 $\tau_1 \tau_2$ -pre-closed sets = { φ , X, {b}, {c}, {a, c}, {b, c}}.

 $\tau_1 \tau_2$ -semi-pre-closed sets = { φ , X, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}.

Here $\{a\}$ is $\tau_1\tau_2$ - α -closed but not $\tau_1\tau_2$ - g^* -closed and $\{c\}$ and $\{a,c\}$ are $\tau_1\tau_2$ - g^* -closed but not $\tau_1\tau_2$ - α -closed.

Here $\{b\}$ is $\tau_1\tau_2$ -pre-closed but not $\tau_1\tau_2$ -g*-closed.

Here $\{a\}$, $\{b\}$, $\{a,b\}$ are $\tau_1\tau_2$ -semi-pre-closed but they are not $\tau_1\tau_2$ -g*-closed.

 $\tau_1\tau_2\text{-sg-closed sets} = \{\varphi, X, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}.$

Here $\{a\}$, $\{b\}$, $\{a,b\}$ are $\tau_1\tau_2$ -sg-closed sets but they are not $\tau_1\tau_2$ - g*-closed.

 $\tau_1 \tau_2 g \alpha$ -closed sets = $\{\varphi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}.$

 \Rightarrow {b}, {a, b}are $\tau_1\tau_2$ -g α -closed but they are not $\tau_1\tau_2$ – g*-closed.

Example: 3.17

Let
$$X = \{a, b, c\}, \tau_1 = \{\varphi, X, \{a\}, \{a, b\}\}, \tau_2 = \{\varphi, X, \{a\}, \{a, c\}\}.$$

$$\tau_1 \tau_2$$
-g*-closed sets = { φ , X , { b }, { c }, { a , c }, { b , c }}

 $\tau_1\tau_2$ -pre-closed sets = $\{\varphi, X, \{b\}, \{c\}, \{b, c\}\}\}$ = $\tau_1\tau_2$ -semi-pre-closed sets= $\tau_1\tau_2$ -sg-closed sets= $\tau_1\tau_2$ -g α -closed sets. Here $\{a,c\}$ is $\tau_1\tau_2$ -g*-closed set but it is $not\tau_1\tau_2$ -pre-closed, $\tau_1\tau_2$ -semi-pre-closed $\tau_1\tau_2$ -sg-closed and $\tau_1\tau_2$ -g α -closed.

Theorem: 3.18 If A and B are $\tau_1\tau_2$ -g*-closed sets then their union $A \cup B$ is $\tau_1\tau_2$ -g*-closed set.

Proof: Let $A \cup B \subset U$, where U is τ_1 -g-open.

$$\Rightarrow A \subset U$$
 and $B \subset U \Rightarrow \tau_2\text{-}cl(A) \subset U$ and $\tau_2\text{-}cl(B) \subset U$.

$$\Rightarrow$$
 τ_2 - $cl(A) \cup \tau_2$ - $cl(B) \subset U$. (since A and B are $\tau_1\tau_2$ - g^* -closed). τ_2 - $(A \cup B) = \tau_2$ - $cl(A) \cup \tau_2$ - $cl(B) \subset U$.

 $\Rightarrow A \cup B$ is $\tau_1 \tau_2$ -g*-closed.

Theorem: 3.19If *A* is both τ_1 -g-open and $\tau_1\tau_2$ -g*-closed, and then *A* is τ_2 -closed.

Proof: Let $A \subset A = U$ and A is τ_1 -g-open.

 $\Rightarrow \tau_2$ -cl(A) $\subset U = A$(1) [since A is $\tau_1 \tau_2$ -g*-closed]

But always $A \subset \tau_2$ -cl(A)(2)

From (1) and (2) $A = \tau_2 - cl(A)$

 \Rightarrow A is τ_2 -closed.

Theorem: 3.20 A subset A of (X, τ_1, τ_2) is $\tau_1 \tau_2$ -g*-closed then

 τ_2 -cl(A) – Adoes not contain any non-empty τ_1 -g-closed set.

Proof: Assume that *A* is $\tau_1 \tau_2$ -g*-closed.

To prove: τ_2 - cl(A) - A does not contain any non-empty τ_1 -g-closed set. Suppose $F \subset \tau_2$ -cl(A) - A, where F is a non-empty τ_1 -g-closed set $\Rightarrow F \subset \tau_2$ -cl(A) and $F \subset A^C$(1)

 $F \subset A^C \Rightarrow A \subset F^C, F^C \text{ is } \tau_1\text{-g-open.}$

 $\Rightarrow \tau_2$ -cl(A) $\subset F^C$ [since A is $\tau_1 \tau_2$ -g*-closed]

 $\Rightarrow F \subset (\tau_2 \text{-}cl(A))^C \dots (2)$

 $\Rightarrow F \subset \tau_2 - cl(A) \cap (\tau_2 - cl(A))^C = \varphi$ [by (1) and (2)]

 $\Rightarrow F = \varphi$. Which is a contradiction.

Therefore, τ_2 -cl(A) - A will not contain any non-empty τ_1 -g-closed.

Theorem: 3.21 If A is $\tau_1\tau_2$ -g*-closed set and $A \subseteq B \subseteq \tau_2 - cl(A)$, B is also $\tau_1\tau_2$ -g*-closed set.

Proof: Let $B \subset U$, where U is τ_1 -g-open $\Rightarrow A \subset B \subset U$

 $\Rightarrow \tau_2 \text{-}cl(A) \subset U \text{ [since } A \text{ is } \tau_1 \tau_2 \text{-} g^* \text{-}closed]$

 $\Rightarrow B \subset \tau_2\text{-}cl(A) \subset U$ [given]

 \Rightarrow $B \subset \tau_2\text{-}cl(B) \subset \tau_2\text{-}cl(A) \subset U$. [since $\tau_2\text{-}cl(B)$ is the smallest closed set containing B]

 $\Rightarrow B \text{ is} \tau_1 \tau_2 \text{-g*-closed.}$

Theorem: 3.22If $A \subset Y \subset (X, \tau_1, \tau_2)$ and suppose that, $A \operatorname{ist}_1 \tau_2 - g * - \operatorname{closed}$ in $X \operatorname{then} A \operatorname{is} \tau_1 \tau_2 - g * - \operatorname{closed}$ relative to Y.

Proof: Given that $A \subset Y \subset (X, \tau_1, \tau_2)$ an A is $\tau_1 \tau_2 - g * -c$ losed in X

To prove: A is $\tau_1 \tau_2$ -g*-closed relative to Y.

Let $A \subset Y \cap U$ where U is τ_1 -g-open in X

 $\Rightarrow A \subset Y \ and A \subset U. Since \ Ais \tau_1 \tau_2 - g^* - closed, \tau_2 - cl(A) \subset U \Rightarrow Y \cap \tau_2 - clA \subset Y \cap U.$

 $\Rightarrow \tau_2$ -cl(A) with respect to $Y \subset Y \cap U \Rightarrow A \text{ is} \tau_1 \tau_2$ -g*-closed with respect to Y.

Theorem: 3.23For each x in X, the set X- $\{x\}$ is a $\tau_1\tau_2$ - g^* -closed or τ_1 -g-open.

Proof: Suppose X-{x}is not τ_1 -g-open,then X is the only τ_1 -g-open set containing X-{x} $\Rightarrow \tau_2$ - $cl(X - \{x\}) \subset X \Rightarrow X$ -{x} is τ_1 - τ_2 -g*-closed.

ACKNOWLEDGEMENT

The author is grateful to University Grants Commission for the financial support.

No.F.MRP-3910/11(MRP/UGC-SERO).

References:

- [1]M.E.Abd El Monsef ,S.N.Deeb and R.A.Mahmoud , -open sets and -continuous
- mappings ,Bull.Fac.Sci.Assiut.,12(1983) , 77-90.
- [2] P.Bhattacharya, B.K.Lahivi, semi-generalized closed sets in topology, Indian J.Math., 29, No. 3 (1987), 375-382.
- [3]S.Bose , semi open sets , semi continuity and semi

Openmappings inbitopological

spaces, Bull. Cal. Math. soc., 73(1981), 237-246.

 $\label{eq:chandraSekaraRao} \ , M. Mariasing am \ , on$

bitopologicalspaces, ActaCienciaIndica,

XXVIM, NO.4 (2000), 283-288.

- [5] T.Fukutake, on generalized closed sets in bitopological spaces, Bull.Fukuoka.univ.of.educ., 35,(1985),19-28.
- [6]T.Fukutake, semi open sets on bitopological

spaces, Bull. Fukuoka. univ. of.educ., 38, No. 39(1989), 1-7.

- [7] J.C.Kelley ,Bitopological spaces , Proc.London.Math.Soc., 13(1963) , 71-89.
- [8]T.Indira, $_{1}$ 2- -closed sets, Antarctica, J.Math,
- 4(10) (2007) ,113-119.
- [9] N.Levine, semi open sets and semi-continuity in topological spaces, Amer.Math.monthly, 70(1963) 36-41.
- [10] N.Levine, generalized closed sets in topological spaces, Rend circMath. Palermo, 19(2)(1970), 89-96.
- [11]M.K.R.S. Veerakumar, g*-closed sets in topological spaces, Mem. Fac. Kochi. Univ. Sec. A. Math., 24(2003), 1-13.
- [12]M.K.R.S.Veerakumar, *g-closed sets in topological spaces, Antarctica J.Math., 2(2)(2005), 239-258.