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Abstract—Cloud security is one of most important issues that has 

attracted a lot of research and development effort in past  few years. 

Particularly,  attackers can  explore  vulnerabilities  of a cloud system 

and  compromise virtual machines to deploy  further large-scale 

Distributed  Denial-of-Service (DDoS). DDoS attacks usually involve 

early stage actions such  as  multistep  exploitation,  low-frequency 

vulnerability scanning, and  compromising identified vulnerable virtual 

machines as  zombies, and  finally DDoS attacks through  the 

compromised zombies. Within the cloud system, especially the 

Infrastructure-as-a-Service (IaaS)  clouds,  the detection of zombie 

exploration  attacks is extremely  difficult. This is because cloud users 

may install vulnerable applications on their virtual machines. To 

prevent  vulnerable virtual machines from being compromised in the 

cloud, we propose a multiphase distributed  vulnerability detection, 

measurement, and  countermeasure selection mechanism called  ICE, 

which is built on attack  graph-based analytical models  and 

reconfigurable virtual network-based countermeasures. The proposed 

framework leverages OpenFlow  network programming APIs to build a 

monitor and control plane  over distributed  programmable virtual 

switches to significantly improve attack  detection and mitigate attack  

consequences. The system and  security  evaluations demonstrate the 

efficiency and  effectiveness of the proposed solution. 

 

Key words—Network security, cloud computing, intrusion detection,  

attack graph, zombie detection 

 

    

 

1    INTRODUCTION 

Recent studies have shown that users migrating to the cloud   Security   Alliance  

(CSA)  survey shows   that among all security issues, abuse  and  nefarious use 

of cloud computing is considered as  the  top  security threat [1], in which   

attackers can  exploit vulnerabilities in  clouds   and utilize   cloud   system  

resources  to   deploy  attacks.   In traditional data  centers,  where system 

administrators have full  control  over  the  host  machines, vulnerabilities can  
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be detected  and   patched by  the  system administrator  in  a centralized  

manner.  However,  patching  known  security holes in cloud  data  centers,  

where cloud  users  usually have the privilege to control  software installed on 

their  managed VMs, may  not  work  effectively  and  can violate  the  service level 

agreement (SLA). Furthermore, cloud  users  can  install vulnerable  software  

on   their   VMs, which essentially contributes to  loopholes in  cloud   security. 

The  challenge is  to  establish an  effective  vulnerability/attack  detection and  

response system for accurately identifying attacks  and minimizing the impact  

of security breach  to cloud  users. cloud  system, where the infrastructure is 

shared by potentially millions of users, abuse and nefarious use of  the shared 

infrastructure benefits  attackers to exploit  vulnerabilities of the  cloud  and  use  

its  resource to  deploy attacks  in  more efficient ways [3]. Such attacks are more 

effective in the cloud environment because  cloud  users  usually share  

computing resources, e.g., being  connected through the  same  switch, sharing 

with  the  same  data  storage and  file systems, even with potential 

attackers[4].Intrusion detection and  Countermeasure selection  in virtual 

network systems (ICE)  to establish a defense-in-depth intrusion detection 

framework. For better attack  detection, ICE  incorporates attack  graph 

analytical procedures into  the  intrusion detection processes. We must  note  

that  the design of ICE does  not  intend to  improve any  of the  existing  

intrusion detection algorithms; indeed, ICE  employs a reconfigurable virtual 

networking approach to detect  and  counter the attempts to compromise VMs, 

thus preventing zombie  VMs. In general, ICE includes two  main  phases:  1) 

deploy a lightweight mirroring-based network intrusion detection agent   (ICE-

A)   on   each   cloud   server   to   capture and analyze  cloud   traffic.   A  ICE-A   

periodically  scans   the virtual  system  vulnerabilities  within  a  cloud   server   

to establish Scenario  Attack  Graph (SAGs), and  then  based  on the  severity of  

identified vulnerability toward  the   collaborative attack  goals,  ICE  will  

decide  whether or not  to put  a VM in network inspection state.  2) Once a VM 

enters   inspection state, Deep Packet  Inspection (DPI) is applied, and/or 

virtual network reconfigurations can be deployed to the inspecting VM to make 

the potential attack  behaviors prominent. 

ICE significantly advances the current network IDS/ IPS solutions by 

employing programmable virtual networking approach that allows the system 

to construct a dynamic reconfigurable IDS system. By  using   software 

switching techniques [5], ICE  constructs a  mirroring-based  traffic capturing 

framework to minimize the interference on users’ traffic compared to 

traditional bump-in-the-wire (i.e., proxy-based) IDS/IPS. The programmable 

virtual networking architecture of ICE enables the cloud to establish inspection 

and quarantine modes for suspicious VMs according to their  current 

vulnerability state  in the current SAG. Based  on the  collective  behavior of 

VMs in the  SAG, ICE  can  decide  appropriate actions,  for example, DPI or 

traffic filtering,  on the suspicious VMs. Using this approach, ICE  does  not  need  

to block  traffic  flows  of a suspicious VM in its early  attack  stage.  The 

contributions of ICE are presented as follows: 
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 We  devise   ICE,  a  new   multiphase  distributed network intrusion 

detection and  prevention frame. 

 work in a virtual networking environment that captures and inspects 

suspicious cloud traffic without interrupting users’ applications and  cloud  

services. 

 ICE  incorporates a software switching solution to quarantine and  

inspect suspicious VMs  for  further investigation and  protection. 

Through programmable  network  approaches,  ICE   can   improve  the 

attack  detection probability and  improve the  resiliency  to VM 

exploitation attack  without interrupting existing  normal cloud  services. 

 ICE  employs a  novel  attack  graph approach for attack    detection  and    

prevention  by   correlating attack  behavior and  also suggests effective  

counter- measures. 

 ICE   optimizes  the   implementation  on   cloud servers  to  minimize 

resource consumption. Our study  shows   that   ICE  consumes  less  

computational  overhead compared to proxy-based network intrusion 

detection solutions. 

 

  2 ICE MODELS 

In this  section,  we describe how  to utilize  attack  graphs to model  

security threats and  vulnerabilities in a virtual networked  system, and   

propose a  VM  protection model based   on  virtual  network  reconfiguration 

approaches  to prevent VMs from  being  exploited. 

 

  2.1  Threat Model 

In  our  attack  model,   we  assume that  an  attacker can  be located  either  

outside or  inside  of the  virtual networking system. The attacker’s primary 

goal is to exploit  vulnerable VMs  and   compromise them   as  zombies.  Our   

protection model   focuses   on  virtual-network-based attack   detection and  

reconfiguration solutions to improve the  resiliency to zombie  explorations. 

Our work  does not involve  host-based IDS and  does  not  address how  to 

handle encrypted traffic for attack  detections. Our   proposed  solution can  be  

deployed in  an  Infra-structure-as-a-Service (IaaS) cloud  networking system, 

and we assume that the Cloud  Service Provider (CSP) is benign. We also 

assume that  cloud  service  users  are  free to install whatever operating systems 

or applications they want,  even if  such   action   may   introduce  

vulnerabilities  to   their controlled VMs. Physical  security of cloud  server  is 

out  of scope of this paper. We assume that the hypervisor is secure and  free  of  

any  vulnerabilities.  

  

 2.2 Attack Grahp Model 

 An attack  graph is a modeling tool to illustrate all possible multistage, 

multihost attack  paths that  are crucial  to  understand threats and  then  to 

decide  appropriate counter- measures [14]. In  an  attack  graph, each  node   
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represents either   precondition  or   consequence  of  an   exploit.   The actions  

are not necessarily an active  attack  because  normal protocol interactions can  

also  be  used  for  attacks.  Attack graph is  helpful in  identifying potential 

threats, possible attacks,  and  known vulnerabilities in a cloud  system. Since  

the  attack   graph  provides details   of  all  known vulnerabilities in the  

system and  the  connectivity information, we get a whole  picture of current 

security situation of the  system, where we  can predict the  possible  threats 

and attacks   by  correlating detected events   or  activities. If an event   is  

recognized as  a  potential attack,   we  can  apply specific   countermeasures  to  

mitigate  its  impact   or  take actions  to prevent it from  contaminating the 

cloud  system. To represent the  attack  and  the  result  of such  actions,  we 

extend  the   notation  of  MulVAL   logic   attack   graph  as presented by Ou  

et al. [8] and  define  as Scenario  Attack Graph (SAG). 

Definition 1 (SAG).  An SAG is a tuple SAG =(V , E), where 

 

1.  V  = NC  ND  NR    denotes  a  set  of vertices  that include three types 

namely conjunction  node NC   to represent exploit, disjunction node ND  to 

denote  result of exploit, and root node NR  for showing initial step of an 

attack scenario. 

2.  E = Epre  Epost denotes the set of directed edges. An edge e ϵ Epre   

ND ×NC  represents that ND  must be satisfied to achieve NC . An edge e ϵ 

Epost    NC × ND means  that  the  consequence shown  by  ND    can  

be obtained if NC   is satisfied. 

Node   vc ϵ NC    is  defined as  a  three   tuple   (Hosts, vul, alert) representing 

a set of IP addresses, vulnerability information  such   as  CVE  [15]and   alerts   

related  to  vc , respectively. ND   behaves like  a logical  OR operation and 

contains details  of the  results of actions.  NR   represents the root  node  of the 

SAG. 

For  correlating  the   alerts,   we   refer   to  the   approach described in [15] 

and  define  a new  Alert Correlation Graph (ACG)  to map  alerts  in  ACG  to 

their  respective nodes  in SAG. To keep  track  of attack  progress, we track  the 

source and  destination IP addresses for attack  activities. 

Definition  2  (ACG).   An  ACG   is  a  three  tuple  ACG =(A, E, P ), where 

 

1. A is a set of aggregated alerts. An alert a 2 A is a data structure (src, dst, cls, ts)   

representing  source  IP address, destination IP address, type of the alert, and 

time stamp of the alert respectively. 

 

2 .    Each alert a maps to a pair of vertices 𝑣𝑐, 𝑣𝑑 in SAG using map(a)  function, i.e., 

        𝑚𝑎𝑝 𝑎 : 𝑎 ↦   𝑣𝑐, 𝑣𝑑   𝑎. 𝑠𝑟𝑐 𝜖 𝑣𝑐. 𝐻𝑜𝑠𝑡𝑠 ˄  𝑎. 𝑑𝑠𝑡 𝜖 𝑣𝑑. 𝐻𝑜𝑠𝑡𝑠 ˄ (𝑎. 𝑐𝑙𝑠 =
𝑣𝑐. 𝑣𝑢𝑙)} 

 

3.  E  is a set of directed edges representing  correlation between two alerts (a, a' ) if 
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criteria below satisfied: 

       a.    𝑎. 𝑡𝑠 < 𝑎′. 𝑡𝑠  ˄  𝑎′. 𝑡𝑠 − 𝑎. 𝑡𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . 
       b.  ∃ 𝑣𝑑, 𝑣𝑐 ∈ 𝐸𝑝𝑟𝑒:  𝑎. 𝑑𝑠𝑡 ∈ 𝑣𝑑. 𝐻𝑜𝑠𝑡𝑠 ∧                 𝑎′. 𝑠𝑟𝑐 𝜖 𝑣𝑐. 𝐻𝑜𝑠𝑡𝑠 . 
 

4.     P  is set of paths in ACG. A path 𝑆𝑖 ⊂ 𝑃  is a set of   
 related alerts in chronological order. 

We assume that A contains aggregated alerts  rather than raw  alerts.  Raw 

alerts  having same  source  and  destination IP addresses, attack type, and  time 

stamp within a specified window are  aggregated as Meta Alerts. Each  

ordered pair (a, a' )  in ACG maps  to two  neighbor vertices  in SAG with time  

stamp  difference of  two  alerts   within a  predefined threshold. ACG shows  

dependency of alerts  in chronological order   and  we  can  find  related alerts  in  

the  same  attack scenario  by searching the alert path  in ACG. A set P is used to 

store  all paths from  root  alert  to the  target  alert  in  the SAG, and  each path  

Si    P  represents alerts  that  belong  to the same  attack  scenario. 

  

Algorithm 1. Alert_Correlation 

Require:    alert  ac , SAG, ACG 

1: if (ac  is a new  alert)  then 

2:      create  node  ac  in ACG 

3:      n1  ←vc ϵ map ( ac )
 

4:      for all n2  ϵ parent(n1 ) do 

5:           create  edge  (n2 .alert,ac ) 

6:           for all Si  containing a do 

7:              if a is the last element in Si then 

8:                   append ac  to Si 

9:              else 

  10:               create  path 𝑆𝑖 + 1 = {𝑠𝑢𝑏𝑠𝑒𝑡 𝑆𝑖, 𝑎 , 𝑎𝑐} 

 11:              end if  

   12:        end  for 

   13:        add  ac  to n1.alert 

   14:     end  for 

   15:  end if 

   16:  return S 

 

   2.3    VM Protection Model 

The   VM  protection  model   of  ICE   consists   of  a  VM profiler,  a security 

indexer, and  a state monitor. We specify security index  for  all  the  VMs  in  the  

network depending upon various factors  like connectivity, the number of 

vulnerabilities present and  their  impact  scores.  The impact score of a 

vulnerability, as defined by the CVSS guide [16], helps  to judge  the 

confidentiality, integrity, and  availability impact   of  the  vulnerability being  

exploited. Connectivity metric of  a  VM  is  decided by  evaluating incoming 
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and outgoing connections. 

  Definition 3 (VM  State).  Based on the information gathered from the  network  

controller,  VM  states  can  be defined as following: 

 

1.  Stable. 

2.  Vulnerable.  

3.  Exploited. 

4.    Zombie. 

 

3    ICE SYSTEM DESIGN 

In this section, we first present the system design overview of ICE and  then  

detailed descriptions of its components. 

 

3.1    System Design Overview 

The  proposed ICE  framework is illustrated in  Fig. 1. It shows    the   

ICE   framework  within  one   cloud    server cluster.   Major   components  in   

this   framework  are   distributed  and   light-weighted  ICE-A   on   each   

physical cloud  server,  a network controller, a VM profiling server, and  an  

attack  analyzer. The  latter   three  components are located     

in   a   centralized  control    center    connected  to software   switches  on   

each   cloud    server    (i.e.,   virtual switches built  on one  or multiple Linux  

software bridges). ICE-A  is  a  software agent   implemented in  each  cloud 

server  connected to the  control  center  through a dedicated and  isolated secure  

channel, which  is separated from  the normal data  packets  using  OpenFlow 

tunneling or VLAN approaches. The network controller is responsible for 

deploying  attack   countermeasures  based    on   decisions made by  the  attack  

analyzer. 

In the following description, our terminologies are based on the XEN 

virtualization technology. ICE-A is a network intrusion detection engine   that  

can  be  installed in  either Dom0 or DomU  of a XEN cloud  server  to capture and  

filter malicious  traffic.   Intrusion  detection  alerts   are   sent   to control  center  

when suspicious or anomalous traffic is detected. After  receiving an alert,  

attack  analyzer evaluates the severity of the alert  based  on the attack  graph, 

decides what  countermeasure strategies to take, and  then initiates it through the  

network controller. An  attack  graph is established  according to  the  

vulnerability information derived from  both  offline and  real-time vulnerability 

scans.  Offline scanning can  be  done   by  running  penetration tests  and online  

real-time vulnerability scanning can be triggered by the  network controller 

(e.g.,  when new  ports  are  opened and  identified by OFSs) or when new  alerts  

are  generated by the ICE-A. Once new  vulnerabilities are discovered or 

countermeasures are  deployed, the  attack   graph will  be reconstructed. 

Countermeasures are  initiated by the  attack analyzer based   on  the  evaluation 

results  from  the  cost- benefit   analysis  of  the  effectiveness  of  

countermeasures. Then,   the   network  controller  initiates  countermeasure 
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actions  by reconfiguring virtual or physical OFSs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. ICE architecture within one  cloud server cluster. 

 

   3.2.1   ICE-A 

The ICE-A is a Network-based Intrusion Detection System (NIDS)  agent  

installed in  either  Dom0  or  DomU  in  each cloud   server.   It  scans   the   traffic   

going   through  Linux bridges that  control  all the  traffic  among VMs and  

in/out from the physical cloud  servers. In our experiment, Snort is used   to   

implement  ICE-A   in   Dom0.   It  will   sniff   a mirroring port  on each  virtual 

bridge in the  Open  vSwitch (OVS). Each  bridge forms  an isolated subnet in 

the  virtual network  and   connects  to   all   related  VMs.   The   traffic 

generated from  the  VMs on  the  mirrored software bridge will be mirrored to 

a specific port  on a specific bridge using SPAN, RSPAN, or ERSPAN methods. 

The ICE-A sniffing rules have been custom defined to suite our needs.  Dom0 in 

the Xen environment is a privilege domain, that  includes a virtual switch for 

traffic switching among VMs and network drivers for physical network 

interface of the cloud  server.  It is  more  efficient  to  scan  the  traffic  in  Dom0  

because   all traffic in the cloud  server  needs  go through it; however, our design 

is independent to the installed VM.  

 The individual alert detection’s false alarm rate does not change.  However, 

the false alarm  rate could  be reduced through our  architecture design. We will  

discuss more  about  this  issue  in the later  section. 

 

  3.2.2 VM Profiling 

Virtual  machines in the cloud  can be profiled to get precise information about  

their  state,  services  running, open  ports, and so on. One major factor that counts  

toward a VM profile is  its   connectivity  with   other   VMs.   Any   VM  that   

is connected to  more   number of  machines is  more   crucia  than  the one 

connected to fewer  VMs because  the effect of compromise of  a  highly   

connected VM  can  cause   more damage. Also required is the knowledge of 

services running on a VM so as to verify  the authenticity of alerts  pertaining to 
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that  VM. An attacker can use  port-scanning program to perform an intense 

examination of the  network to look for open ports  on any VM. So information 

about  any open ports on a VM and  the history of opened ports  plays  a 

significant role  in determining how  vulnerable the  VM is.  All  these actors  

combined will form  the VM profile.VM profiles  are  maintained in  a 

database and  contain comprehensive information about  vulnerabilities, alert, 

and traffic. The data  comes  from: 

 

  Attack graph  generator. While  generating the   

attack graph, every  detected vulnerability is added to  its corresponding 

VM entry  in the database. 

 ICE-A. The alert involving the VM will be recorded in the VM profile  

database. 

 Network controller. The traffic  patterns involving the VM are  based  on 

five tuples (source  MAC address, destination MAC  address, source  IP 

address, desti- nation   IP  address,  protocol). 

 

3.2.3   Attack Analyzer 

The  major   functions  of  ICE  system  are  performed  by attack  analyzer, 

which  includes procedures such  as attack graph construction and  update, 

alert  correlation, and countermeasure selection. 

The   process   of  constructing  and   utilizing  the   SAG consists   of  

three   phases:   Information  gathering,  attack graph  construction, and   

potential  exploit   path   analysis. With  this  information, attack  paths can  be 

modeled using SAG. Each node in the attack graph represents an exploit by the 

attacker. Each path  from  an initial  node  to a goal node represents a successful 

attack. 

 

In summary, ICE attack  graph is constructed based  on the following 

information: 

 

  Cloud system information is collected f r o m  the   node controller (i.e., Dom0 

in XenServer).  The information includes the number  of VMs in   the cloud   

server, running services   on each V M , and   VM’s Virtual Interface (VIF) 

information. 

 Virtual network topology and configuration information is collected from the 

network controller, which includes virtual network topology, host  

connectivity, VM connectivity, every  VM’s IP address, MAC address, port  

information, and  traffic flow information. 

 Vulnerability  information  is  generated  by  both   on demand vulnerability 

scanning (i.e., initiated by the network controller and  ICE-A)  and  regular 

penetration testing   using   the  well-known vulnerability databases, such  as 

Open  Source  Vulnerability Data- base (OSVDB) [17], Common 

Vulnerabilities and Exposures List (CVE) [15], and  NIST National 

Vulnerability Database (NVD) [18]. 
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Fig. 2. Workflow of attack  analyzer. 

 

The  attack  analyzer also  handles alert  correlation and analysis operations. 

This  component has  two  major  functions: 1) constructs ACG, and  2) provides 

threat information and  appropriate countermeasures to network controller for 

virtual network reconfiguration. Fig.  2  shows   the   workflow  in   the   attack  

analyzer component. After  receiving  an  alert  from  ICE-A,  alert analyzer 

matches the  alert  in the  ACG. If the  alert  already exists  in the  graph and  it is 

a known attack  (i.e., matching the attack  signature), the attack  analyzer 

performs counter- measure selection   procedure  according to  the  algorithm 

described in  Section  5.3. and   then  notifies   network  controller  immediately 

to deploy countermeasure or mitigation actions. If the alert is new, attack 

analyzer will perform alert correlation and  analysis according to Algorithm 1, 

and updates ACG and  SAG.  

This algorithm correlates each new alert  to  a  matching alert  correlation 

set  (i.e., in  the  same attack  scenario). A selected  countermeasure is applied 

by the  network controller based  on the  severity of evaluation results. If the 

alert is a new  vulnerability and  is not present in  the  ICE  attack  graph, the  

attack  analyzer adds it  to attack  graph and  then  reconstructs it.  

 

3.2.4   Network Controller 

The network controller is a key component to support the programmable 

networking capability to realize  the  virtual network  reconfiguration  feature  

based   on   OpenFlow protocol [20]. In ICE, within each  cloud  server  there  is a 

software switch,  for example, OVS [5], which  is used  as the edge  switch  for VMs 

to handle traffic in and  out from VMs. The  communication between cloud   

servers (i.e.,  physical servers) is handled by  physical OpenFlow-capable 

Switch (OFS). In ICE, we integrated the control  functions for both OVS and  OFS 

into  the  network controller that  allows  the cloud  system to set 

security/filtering rules  in an integrated and  comprehensive manner. 
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   The   network  controller  is   responsible  for     collecting network  

information  of  current OpenFlow network and provides input to  the  attack  

analyzer to  construct attack graphs.  Through  the   cloud   internal  discovery 

modules that   use   DNS,  DHCP,   LLDP,  and   flow   initiations  [19], network 

controller is able to discover the network connectivity information from  OVS 

and  OFS. This  information includes current  data   paths on  each  switch   and 

detailed  flow   information  associated  with   these   paths, such  as TCP/IP and  

MAC  header.  

The network flow and topology change informat ion  will be automatically 

sent  to the controller and  then delivered to attack  analyzer to reconstruct attack  

graphs. Another important function of the network controller is to assist the 

attack  analyzer module. According to the OpenFlow protocol [12], when the 

controller receives the first packet of a flow, it holds the packet  and checks the flow 

table  for  complying traffic  policies.  In ICE,  the  network control  also  consults 

with  the  attack  analyzer for the  flow access control by setting up the filtering 

rules on the corresponding  OVS  and   OFS.  Once  a  traffic   flow   is admitted, 

the following packets  of the flow are not handled by the network controller, but  

monitored by the ICE-A. 

Network controller is also  responsible for applying the countermeasure 

from attack analyzer. Based on VM Security Index (VSI) and  severity of an  alert,  

countermeasures are selected  by ICE and  executed by the network controller. If 

a  severe   alert   is  triggered  and   identifies  some   known attacks,   or  a  VM  is  

detected  as  a  zombie,   the  network controller will  block  the  VM  

immediately. An  alert  with medium threat level  is triggered by a suspicious 

compromised   VM.  

 Countermeasure  in  such   case  is  to  put   the suspicious VM with  

exploited state  into  quarantine mode and  redirect all  its  flows  to  ICE-A  DPI  

mode.  An  alert with   a  minor   threat level  can  be  generated  due   to  the 

presence of a vulnerable VM. For this case, to intercept the VM’s normal traffic, 

suspicious traffic to/from the VM will be  put   into  inspection  mode,   in  which   

actions   such   as restricting its flow bandwidth and changing network 

configurations will be taken  to force  attack  exploration behavior to stand out. 

 

 

4  ICE SECURITY  MEASUREMENT  ATTACK MITIGATION, AND   

COUNTERMEASURES 

In  this  section,  we  present the  methods for  selecting   the countermeasures 

for a given attack  scenario. When vulnerabilities are  discovered or  some  

VMs are  identified as  suspicious,  several   countermeasures  can  be  taken   to 

restrict  attackers’ capabilities and it is important to differentiate between 

compromised  and   suspicious  VMs. The  countermeasure serves  the  purpose 

of: 1) protecting the  target  VMs  from  being  compromised, and  2) making 

attack   behavior  stand  prominent  so  that   the   attackers’ actions  can be 

identified. 
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4.1    Security Measurement Metrics 

The issue  of security metrics  has  attracted much  attention and  there  has been  

significant effort in the development of quantitative  security  metrics   in   

recent   years.   Among different approaches,  using   attack   graph as  the  

security metric  model  for  the  evaluation of security risks  [20] is a good  choice.  

To assess  the  network security risk  condition for the  current network 

configuration, security metrics  are needed in the attack  graph to measure risk 

likelihood. After an attack  graph is constructed, vulnerability information is 

included in the graph. For the initial  node  or external node (i.e., the root of the 

graph,  ), the priori probability is assigned on  the  likelihood  of  a  

threat source   becoming active and  the difficulty of the vulnerability to be 

exploited. We use GV  to denote the priori  risk probability for the root node of 

the graph and usually the value of GV  is assigned to a high  probability, e.g., 

from  0.7 to 1. 

For the internal exploitation node,  each attack-step node e ϵ NC    will  have   

a  probability  of vulnerability  exploitation denoted as GM  
[e]

  . GM [e]  is 

assigned according to the  Base Score (BS) from Common Vulnerability Scoring 

System (CVSS). The  BS as  shown in  (1) [16] is calculated by  the impact  and  

exploitability factor of the vulnerability. BS can be directly obtained from  

National Vulnerability Database [18] by searching for the vulnerability CVE 

id 

 

BS= (0:6×IV+0.4×E-1.5× f (IV),            (1) 

 

Where 

 

IV=10.41× ( 1 - ( 1 -C) ×(1-I)×(1-A)), 

 

E= 20×AC×AU×AV, 

 

and 

f (IV) = {  0  if IV = 0,   1.176   otherwise. The   impact value   (IV )  is  

computed  from   three   basic parameters of security namely confidentiality 

(C), integrity (I), and  availability (A). The exploitability (E) score consists of   

access   vector   (AV ),  access   complexity  (AC),   and authentication 

instances (AU ). The value  of BS ranges from 0 to 10. In our  attack  graph, we  

assign  each  internal node with  its BS value  divided by 10, as shown in 

𝐺𝑀 𝑒 = Pr 𝑒 = 𝑇  =
𝐵𝑆 𝑒 

10
, ∀𝑒 𝜖 𝑁𝑐 

In  the  attack  graph, the  relations between exploits  can be  disjunctive or  

conjunctive according  to  how  they  are related through their  dependency 

conditions [21]. Such relationships can  be  represented as  conditional 

probability, where the  risk  probability of current node  is determined by the 

relationship with  its predecessors and  their risk probabilities. We propose the 
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following probability derivation relations: 

 

. for  any  attack-step  node   n ϵ NC    with   immediate    

   predecessors set W = parent(n), 

            P r(n|W ) = GM [n] ×  ∏ 
 
P r(s|W );                     (3) 

                                                sϵW 

 . for   any   privilege  node   n ϵ ND     with   immediate predecessors set W 

= parent(n), and  then 

 

           P r(n|W) = 1- 
   

∏     (1-Pr(s|W)).                          (4) 

                               sϵW 

 

Once  conditional probabilities have  been  assigned to all internal nodes  in 

SAG, we  can  merge  risk  values  from  all predecessors  to  obtain   the   

cumulative  risk  probability  or absolute risk probability for each node according to 

(5) and (6). Based  on  derived  conditional probability assignments on each   

node,   we   can   then   derive   an   effective   security hardening plan  or a 

mitigation strategy: 

 

. for  any   attack-step  node   n ϵ NC    with   immediate predecessor set W 

= parent(n), 

            P r(n) = P r(n|W) ×∏  P r(s);                (5) 

                                            sϵW 

 

 

. for   any   privilege  node   n ϵ ND     with   immediate predecessor set W 

= parent(n), 

 

             P r(n) = 1- ∏    (1- P r(s)).                          (6) 

                             sϵW 

 

4.2    Mitigation Strategies 

Based on the security metrics  defined in the previous subsection,  ICE   is  able   

to   construct  the   mitigation strategies in  response to  detected alerts.  First, 

we  define the term  countermeasure pool as follows: 

Definition 4 (Countermeasure Pool).  A countermeasure pool CM ={ cm1 , cm2 , 

. . . , cmn } is a set of countermeasures. 

Each cm ϵ CM  is a tuple cm = (cost, intrusiveness, condition, effectiveness), 

where 

1.  cost  is the unit  that  describes the expenses required to apply the 

countermeasure in terms of resources and operational complexity, and it is 

defined in a range from 1 to 5, and higher metric means higher cost; 

2.  intrusiveness is the negative effect that a countermeasure brings  to the SLA 

and  its  value ranges from the least intrusive  (1) to the most intrusive  (5), 
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and the value of intrusiveness is 0 if the countermeasure has no impacts on the 

SLA; 

3.  condition  is  the  requirement  for  the  corresponding countermeasure; 

4.  effectiveness is the percentage of probability changes of the node, for which 

this countermeasure is applied. 

In general, there  are many  countermeasures that  can be applied to the  cloud  

virtual networking system depending on   available  countermeasure   

techniques  that   can   be applied.  Without losing   the  generality,  several   

common virtual-networking-based  countermeasures  are   listed   in Table  1. 

The optimal countermeasure selection  is a multi- objective  optimization 

problem, to  calculate MIN(impact, cost) and  MAX(benefit).

   

 
 

In ICE, the  network reconfiguration strategies mainly involve  two levels of 

action: Layer-2 and  layer-3. At layer-2, virtual bridges (including tunnels that  

can  be  established between two  bridges) and  VLANs  are  main  component in 

cloud’s   virtual  networking  system to  connect   two   VMs directly.   A  virtual 

bridge is  an  entity  that  attaches VIFs. Virtual machines on different bridges are 

isolated at layer 2. VIFs on the same virtual  bridge but with different  VLAN 

tags cannot communicate  to each other directly.  Based on this l a y e r -2   

isolation,   ICE  can  deploy layer-2   network reconfiguration to isolate 

suspicious VMs. For example, vulnerabilities due   to  Arpspoofing  [22]  attacks   

are   not possible  when the  suspicious VM is isolated to a different bridge.  As  

a  result,   this  countermeasure disconnects an attack   path   in  the  attack   

graph  causing the  attacker  to explore  an alternate attack  path.  Layer-3  

reconfiguration is another way   to  disconnect an  attack   path.   Through the 

network controller, the flow table  on each OVS or OFS can be modified to 

change  the network topology. 

 

We  must   note  that  using   the  virtual  network  reconfiguration approach at 

lower  layer  has the advantage in that upper layer  applications will  experience 

minimal impact. Especially,   this   approach  is  only   possible  when  using 

software-switching approach to automate the reconfiguration  in a highly  

dynamic networking environment. Countermeasures such as traffic isolation 

can be implemented by utilizing the traffic engineering capabilities of OVS and  
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OFS to restrict  the capacity  and  reconfigure the virtual network for  a 

suspicious flow.  When  a suspicious activity  such  as network and  port 

scanning is detected in the cloud  system, it is important to determine whether 

the detected activity  is indeed malicious or not.  For example, attackers can 

purposely  hide   their   scanning  behavior  to  prevent  the NIDS  from   

identifying  their   actions.   In  such   situation, changing the  network 

configuration will  force the  attacker to perform more  explorations, and  in turn  

will  make  their attacking behavior stand Update_SAG and  Update_ACG out. 

 

4.3    Countermeasure Selection 

 counter- measure for a given attack scenario.  Input to the algorithm is an alert, 

attack graph G, and a pool of countermeasures CM .  

Algorithm 2. Countermeasure_Selection 

Require: Alert, G(E, V ), CM 

1: Let vAlert  =  Source  node  of the Alert 

2: if Distance  to Target(vAlert ) > threshold then 

3:      Update  ACG 

4:      return 

5: end  if 

6: Let T = Descendant(vAlert )   vAlert 

7: Set P r(vAlert) = 1 

8: Calculate_Risk_Prob(T ) 

9: Let benef it [|T|,| CM|]  =  

10:  for each t ϵ T do 

11:       for each cm ϵ CM  do 

12:            if cm.condition(t) then 

13:                 P r(t) = P r(t)   *(1-cm.ef f ectiveness) 

14:                 Calculate_Risk_Prob(Descendant(t)) 

15:      benef it[t, cm]  = P r(target node).              (7) 

16:            end  if 

17:       end  for 

18:  end  for 

19: Let ROI[|T|,|CM|] =  

20:  for each t ϵ T do 

21:   for each cm ϵ CM do 

22: 𝑅𝑂𝐼 𝑡, 𝑐𝑚 =
            𝑏𝑒𝑛𝑓𝑖𝑡  𝑡,𝑐𝑚  

𝑐𝑜𝑠𝑡
. 𝑐𝑚 + 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠. 𝑐𝑚                                          

(8) 

23:       end  for 

24:  end  for 

25:  Update_SAG and Update_ACG 

26:  returne Select_ Optimal _CM(ROI) 
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5    CONCLUSION 

 

The technique of ICE, is  proposed to detect  and  mitigate collaborative attacks  in the 

cloud  virtual networking  environment. ICE utilizes   the  attack  graph model   to  

conduct  attack   detection  and   prediction.  The proposed solution investigates how  to  

use  the  program- mobility of software switches-based solutions to  improve the 

detection accuracy and defeat  victim exploitation phases of collaborative attacks.  The 

system performance evaluation demonstrates the  feasibility of  ICE  and  shows   that  

the proposed solution can  significantly reduce the  risk  of the cloud  system from  

being  exploited and  abused by internal and  external attackers. ICE  only  investigates 

the  network IDS  approach  to counter zombie explorative attacks. To improve the 

detection  accuracy, host-based  IDS solutions are  needed to  be incorporated and  to 

cover the whole  spectrum of IDS in the cloud   system.
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