
International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 475

IICCEE:: IInnttrruussiioonn DDeetteeccttiioonn aanndd CC oo uu nn tt ee rr mm ee aa ss uu rr ee

SSeelleeccttiioonn iinn VViirrttuuaall NNeettwwoorrkk SSyysstteemmss

11.. AAsshhwwiinnii BB KKoorrwwaarr,, PPGG SSttuuddeenntt ,,AArryyaabbhhaattaa IInnssttiittuuttee ooff

TTeecchhnnoollooggyy && SScciieennccee,, HHyyddeerraabbaadd

22.. SSaannttoosshh KKuummaarr ,,AAssssiissttaanntt PPrrooffeessssoorr,, AArryyaabbhhaattaa IInnssttiittuuttee ooff

TTeecchhnnoollooggyy && SScciieennccee,,HHyyddeerraabbaadd

Abstract—Cloud security is one of most important issues that has

attracted a lot of research and development effort in past few years.

Particularly, attackers can explore vulnerabilities of a cloud system

and compromise virtual machines to deploy further large-scale

Distributed Denial-of-Service (DDoS). DDoS attacks usually involve

early stage actions such as multistep exploitation, low-frequency

vulnerability scanning, and compromising identified vulnerable virtual

machines as zombies, and finally DDoS attacks through the

compromised zombies. Within the cloud system, especially the

Infrastructure-as-a-Service (IaaS) clouds, the detection of zombie

exploration attacks is extremely difficult. This is because cloud users

may install vulnerable applications on their virtual machines. To

prevent vulnerable virtual machines from being compromised in the

cloud, we propose a multiphase distributed vulnerability detection,

measurement, and countermeasure selection mechanism called ICE,

which is built on attack graph-based analytical models and

reconfigurable virtual network-based countermeasures. The proposed

framework leverages OpenFlow network programming APIs to build a

monitor and control plane over distributed programmable virtual

switches to significantly improve attack detection and mitigate attack

consequences. The system and security evaluations demonstrate the

efficiency and effectiveness of the proposed solution.

Key words—Network security, cloud computing, intrusion detection,

attack graph, zombie detection

1 INTRODUCTION

Recent studies have shown that users migrating to the cloud Security Alliance

(CSA) survey shows that among all security issues, abuse and nefarious use

of cloud computing is considered as the top security threat [1], in which

attackers can exploit vulnerabilities in clouds and utilize cloud system

resources to deploy attacks. In traditional data centers, where system

administrators have full control over the host machines, vulnerabilities can

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 476

be detected and patched by the system administrator in a centralized

manner. However, patching known security holes in cloud data centers,

where cloud users usually have the privilege to control software installed on

their managed VMs, may not work effectively and can violate the service level

agreement (SLA). Furthermore, cloud users can install vulnerable software

on their VMs, which essentially contributes to loopholes in cloud security.

The challenge is to establish an effective vulnerability/attack detection and

response system for accurately identifying attacks and minimizing the impact

of security breach to cloud users. cloud system, where the infrastructure is

shared by potentially millions of users, abuse and nefarious use of the shared

infrastructure benefits attackers to exploit vulnerabilities of the cloud and use

its resource to deploy attacks in more efficient ways [3]. Such attacks are more

effective in the cloud environment because cloud users usually share

computing resources, e.g., being connected through the same switch, sharing

with the same data storage and file systems, even with potential

attackers[4].Intrusion detection and Countermeasure selection in virtual

network systems (ICE) to establish a defense-in-depth intrusion detection

framework. For better attack detection, ICE incorporates attack graph

analytical procedures into the intrusion detection processes. We must note

that the design of ICE does not intend to improve any of the existing

intrusion detection algorithms; indeed, ICE employs a reconfigurable virtual

networking approach to detect and counter the attempts to compromise VMs,

thus preventing zombie VMs. In general, ICE includes two main phases: 1)

deploy a lightweight mirroring-based network intrusion detection agent (ICE-

A) on each cloud server to capture and analyze cloud traffic. A ICE-A

periodically scans the virtual system vulnerabilities within a cloud server

to establish Scenario Attack Graph (SAGs), and then based on the severity of

identified vulnerability toward the collaborative attack goals, ICE will

decide whether or not to put a VM in network inspection state. 2) Once a VM

enters inspection state, Deep Packet Inspection (DPI) is applied, and/or

virtual network reconfigurations can be deployed to the inspecting VM to make

the potential attack behaviors prominent.

ICE significantly advances the current network IDS/ IPS solutions by

employing programmable virtual networking approach that allows the system

to construct a dynamic reconfigurable IDS system. By using software

switching techniques [5], ICE constructs a mirroring-based traffic capturing

framework to minimize the interference on users’ traffic compared to

traditional bump-in-the-wire (i.e., proxy-based) IDS/IPS. The programmable

virtual networking architecture of ICE enables the cloud to establish inspection

and quarantine modes for suspicious VMs according to their current

vulnerability state in the current SAG. Based on the collective behavior of

VMs in the SAG, ICE can decide appropriate actions, for example, DPI or

traffic filtering, on the suspicious VMs. Using this approach, ICE does not need

to block traffic flows of a suspicious VM in its early attack stage. The

contributions of ICE are presented as follows:

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 477

 We devise ICE, a new multiphase distributed network intrusion

detection and prevention frame.

 work in a virtual networking environment that captures and inspects

suspicious cloud traffic without interrupting users’ applications and cloud

services.

 ICE incorporates a software switching solution to quarantine and

inspect suspicious VMs for further investigation and protection.

Through programmable network approaches, ICE can improve the

attack detection probability and improve the resiliency to VM

exploitation attack without interrupting existing normal cloud services.

 ICE employs a novel attack graph approach for attack detection and

prevention by correlating attack behavior and also suggests effective

counter- measures.

 ICE optimizes the implementation on cloud servers to minimize

resource consumption. Our study shows that ICE consumes less

computational overhead compared to proxy-based network intrusion

detection solutions.

 2 ICE MODELS

In this section, we describe how to utilize attack graphs to model

security threats and vulnerabilities in a virtual networked system, and

propose a VM protection model based on virtual network reconfiguration

approaches to prevent VMs from being exploited.

 2.1 Threat Model

In our attack model, we assume that an attacker can be located either

outside or inside of the virtual networking system. The attacker’s primary

goal is to exploit vulnerable VMs and compromise them as zombies. Our

protection model focuses on virtual-network-based attack detection and

reconfiguration solutions to improve the resiliency to zombie explorations.

Our work does not involve host-based IDS and does not address how to

handle encrypted traffic for attack detections. Our proposed solution can be

deployed in an Infra-structure-as-a-Service (IaaS) cloud networking system,

and we assume that the Cloud Service Provider (CSP) is benign. We also

assume that cloud service users are free to install whatever operating systems

or applications they want, even if such action may introduce

vulnerabilities to their controlled VMs. Physical security of cloud server is

out of scope of this paper. We assume that the hypervisor is secure and free of

any vulnerabilities.

 2.2 Attack Grahp Model

 An attack graph is a modeling tool to illustrate all possible multistage,

multihost attack paths that are crucial to understand threats and then to

decide appropriate counter- measures [14]. In an attack graph, each node

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 478

represents either precondition or consequence of an exploit. The actions

are not necessarily an active attack because normal protocol interactions can

also be used for attacks. Attack graph is helpful in identifying potential

threats, possible attacks, and known vulnerabilities in a cloud system. Since

the attack graph provides details of all known vulnerabilities in the

system and the connectivity information, we get a whole picture of current

security situation of the system, where we can predict the possible threats

and attacks by correlating detected events or activities. If an event is

recognized as a potential attack, we can apply specific countermeasures to

mitigate its impact or take actions to prevent it from contaminating the

cloud system. To represent the attack and the result of such actions, we

extend the notation of MulVAL logic attack graph as presented by Ou

et al. [8] and define as Scenario Attack Graph (SAG).

Definition 1 (SAG). An SAG is a tuple SAG =(V , E), where

1. V = NC ND NR denotes a set of vertices that include three types

namely conjunction node NC to represent exploit, disjunction node ND to

denote result of exploit, and root node NR for showing initial step of an

attack scenario.

2. E = Epre Epost denotes the set of directed edges. An edge e ϵ Epre

ND ×NC represents that ND must be satisfied to achieve NC . An edge e ϵ

Epost NC × ND means that the consequence shown by ND can

be obtained if NC is satisfied.

Node vc ϵ NC is defined as a three tuple (Hosts, vul, alert) representing

a set of IP addresses, vulnerability information such as CVE [15]and alerts

related to vc , respectively. ND behaves like a logical OR operation and

contains details of the results of actions. NR represents the root node of the

SAG.

For correlating the alerts, we refer to the approach described in [15]

and define a new Alert Correlation Graph (ACG) to map alerts in ACG to

their respective nodes in SAG. To keep track of attack progress, we track the

source and destination IP addresses for attack activities.

Definition 2 (ACG). An ACG is a three tuple ACG =(A, E, P), where

1. A is a set of aggregated alerts. An alert a 2 A is a data structure (src, dst, cls, ts)

representing source IP address, destination IP address, type of the alert, and

time stamp of the alert respectively.

2 . Each alert a maps to a pair of vertices 𝑣𝑐, 𝑣𝑑 in SAG using map(a) function, i.e.,

 𝑚𝑎𝑝 𝑎 : 𝑎 ↦ 𝑣𝑐, 𝑣𝑑 𝑎. 𝑠𝑟𝑐 𝜖 𝑣𝑐. 𝐻𝑜𝑠𝑡𝑠 ˄ 𝑎. 𝑑𝑠𝑡 𝜖 𝑣𝑑. 𝐻𝑜𝑠𝑡𝑠 ˄ (𝑎. 𝑐𝑙𝑠 =
𝑣𝑐. 𝑣𝑢𝑙)}

3. E is a set of directed edges representing correlation between two alerts (a, a') if

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 479

criteria below satisfied:

 a. 𝑎. 𝑡𝑠 < 𝑎′. 𝑡𝑠 ˄ 𝑎′. 𝑡𝑠 − 𝑎. 𝑡𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 .
 b. ∃ 𝑣𝑑, 𝑣𝑐 ∈ 𝐸𝑝𝑟𝑒: 𝑎. 𝑑𝑠𝑡 ∈ 𝑣𝑑. 𝐻𝑜𝑠𝑡𝑠 ∧ 𝑎′. 𝑠𝑟𝑐 𝜖 𝑣𝑐. 𝐻𝑜𝑠𝑡𝑠 .

4. P is set of paths in ACG. A path 𝑆𝑖 ⊂ 𝑃 is a set of
 related alerts in chronological order.

We assume that A contains aggregated alerts rather than raw alerts. Raw

alerts having same source and destination IP addresses, attack type, and time

stamp within a specified window are aggregated as Meta Alerts. Each

ordered pair (a, a') in ACG maps to two neighbor vertices in SAG with time

stamp difference of two alerts within a predefined threshold. ACG shows

dependency of alerts in chronological order and we can find related alerts in

the same attack scenario by searching the alert path in ACG. A set P is used to

store all paths from root alert to the target alert in the SAG, and each path

Si P represents alerts that belong to the same attack scenario.

Algorithm 1. Alert_Correlation

Require: alert ac , SAG, ACG

1: if (ac is a new alert) then

2: create node ac in ACG

3: n1 ←vc ϵ map (ac)

4: for all n2 ϵ parent(n1) do

5: create edge (n2 .alert,ac)

6: for all Si containing a do

7: if a is the last element in Si then

8: append ac to Si

9: else

 10: create path 𝑆𝑖 + 1 = {𝑠𝑢𝑏𝑠𝑒𝑡 𝑆𝑖, 𝑎 , 𝑎𝑐}

 11: end if

 12: end for

 13: add ac to n1.alert

 14: end for

 15: end if

 16: return S

 2.3 VM Protection Model

The VM protection model of ICE consists of a VM profiler, a security

indexer, and a state monitor. We specify security index for all the VMs in the

network depending upon various factors like connectivity, the number of

vulnerabilities present and their impact scores. The impact score of a

vulnerability, as defined by the CVSS guide [16], helps to judge the

confidentiality, integrity, and availability impact of the vulnerability being

exploited. Connectivity metric of a VM is decided by evaluating incoming

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 480

and outgoing connections.

 Definition 3 (VM State). Based on the information gathered from the network

controller, VM states can be defined as following:

1. Stable.

2. Vulnerable.

3. Exploited.

4. Zombie.

3 ICE SYSTEM DESIGN

In this section, we first present the system design overview of ICE and then

detailed descriptions of its components.

3.1 System Design Overview

The proposed ICE framework is illustrated in Fig. 1. It shows the

ICE framework within one cloud server cluster. Major components in

this framework are distributed and light-weighted ICE-A on each

physical cloud server, a network controller, a VM profiling server, and an

attack analyzer. The latter three components are located

in a centralized control center connected to software switches on

each cloud server (i.e., virtual switches built on one or multiple Linux

software bridges). ICE-A is a software agent implemented in each cloud

server connected to the control center through a dedicated and isolated secure

channel, which is separated from the normal data packets using OpenFlow

tunneling or VLAN approaches. The network controller is responsible for

deploying attack countermeasures based on decisions made by the attack

analyzer.

In the following description, our terminologies are based on the XEN

virtualization technology. ICE-A is a network intrusion detection engine that

can be installed in either Dom0 or DomU of a XEN cloud server to capture and

filter malicious traffic. Intrusion detection alerts are sent to control center

when suspicious or anomalous traffic is detected. After receiving an alert,

attack analyzer evaluates the severity of the alert based on the attack graph,

decides what countermeasure strategies to take, and then initiates it through the

network controller. An attack graph is established according to the

vulnerability information derived from both offline and real-time vulnerability

scans. Offline scanning can be done by running penetration tests and online

real-time vulnerability scanning can be triggered by the network controller

(e.g., when new ports are opened and identified by OFSs) or when new alerts

are generated by the ICE-A. Once new vulnerabilities are discovered or

countermeasures are deployed, the attack graph will be reconstructed.

Countermeasures are initiated by the attack analyzer based on the evaluation

results from the cost- benefit analysis of the effectiveness of

countermeasures. Then, the network controller initiates countermeasure

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 481

actions by reconfiguring virtual or physical OFSs.

Fig. 1. ICE architecture within one cloud server cluster.

 3.2.1 ICE-A

The ICE-A is a Network-based Intrusion Detection System (NIDS) agent

installed in either Dom0 or DomU in each cloud server. It scans the traffic

going through Linux bridges that control all the traffic among VMs and

in/out from the physical cloud servers. In our experiment, Snort is used to

implement ICE-A in Dom0. It will sniff a mirroring port on each virtual

bridge in the Open vSwitch (OVS). Each bridge forms an isolated subnet in

the virtual network and connects to all related VMs. The traffic

generated from the VMs on the mirrored software bridge will be mirrored to

a specific port on a specific bridge using SPAN, RSPAN, or ERSPAN methods.

The ICE-A sniffing rules have been custom defined to suite our needs. Dom0 in

the Xen environment is a privilege domain, that includes a virtual switch for

traffic switching among VMs and network drivers for physical network

interface of the cloud server. It is more efficient to scan the traffic in Dom0

because all traffic in the cloud server needs go through it; however, our design

is independent to the installed VM.

 The individual alert detection’s false alarm rate does not change. However,

the false alarm rate could be reduced through our architecture design. We will

discuss more about this issue in the later section.

 3.2.2 VM Profiling

Virtual machines in the cloud can be profiled to get precise information about

their state, services running, open ports, and so on. One major factor that counts

toward a VM profile is its connectivity with other VMs. Any VM that

is connected to more number of machines is more crucia than the one

connected to fewer VMs because the effect of compromise of a highly

connected VM can cause more damage. Also required is the knowledge of

services running on a VM so as to verify the authenticity of alerts pertaining to

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 482

that VM. An attacker can use port-scanning program to perform an intense

examination of the network to look for open ports on any VM. So information

about any open ports on a VM and the history of opened ports plays a

significant role in determining how vulnerable the VM is. All these actors

combined will form the VM profile.VM profiles are maintained in a

database and contain comprehensive information about vulnerabilities, alert,

and traffic. The data comes from:

 Attack graph generator. While generating the

attack graph, every detected vulnerability is added to its corresponding

VM entry in the database.

 ICE-A. The alert involving the VM will be recorded in the VM profile

database.

 Network controller. The traffic patterns involving the VM are based on

five tuples (source MAC address, destination MAC address, source IP

address, desti- nation IP address, protocol).

3.2.3 Attack Analyzer

The major functions of ICE system are performed by attack analyzer,

which includes procedures such as attack graph construction and update,

alert correlation, and countermeasure selection.

The process of constructing and utilizing the SAG consists of

three phases: Information gathering, attack graph construction, and

potential exploit path analysis. With this information, attack paths can be

modeled using SAG. Each node in the attack graph represents an exploit by the

attacker. Each path from an initial node to a goal node represents a successful

attack.

In summary, ICE attack graph is constructed based on the following

information:

 Cloud system information is collected f r o m the node controller (i.e., Dom0

in XenServer). The information includes the number of VMs in the cloud

server, running services on each V M , and VM’s Virtual Interface (VIF)

information.

 Virtual network topology and configuration information is collected from the

network controller, which includes virtual network topology, host

connectivity, VM connectivity, every VM’s IP address, MAC address, port

information, and traffic flow information.

 Vulnerability information is generated by both on demand vulnerability

scanning (i.e., initiated by the network controller and ICE-A) and regular

penetration testing using the well-known vulnerability databases, such as

Open Source Vulnerability Data- base (OSVDB) [17], Common

Vulnerabilities and Exposures List (CVE) [15], and NIST National

Vulnerability Database (NVD) [18].

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 483

Fig. 2. Workflow of attack analyzer.

The attack analyzer also handles alert correlation and analysis operations.

This component has two major functions: 1) constructs ACG, and 2) provides

threat information and appropriate countermeasures to network controller for

virtual network reconfiguration. Fig. 2 shows the workflow in the attack

analyzer component. After receiving an alert from ICE-A, alert analyzer

matches the alert in the ACG. If the alert already exists in the graph and it is

a known attack (i.e., matching the attack signature), the attack analyzer

performs counter- measure selection procedure according to the algorithm

described in Section 5.3. and then notifies network controller immediately

to deploy countermeasure or mitigation actions. If the alert is new, attack

analyzer will perform alert correlation and analysis according to Algorithm 1,

and updates ACG and SAG.

This algorithm correlates each new alert to a matching alert correlation

set (i.e., in the same attack scenario). A selected countermeasure is applied

by the network controller based on the severity of evaluation results. If the

alert is a new vulnerability and is not present in the ICE attack graph, the

attack analyzer adds it to attack graph and then reconstructs it.

3.2.4 Network Controller

The network controller is a key component to support the programmable

networking capability to realize the virtual network reconfiguration feature

based on OpenFlow protocol [20]. In ICE, within each cloud server there is a

software switch, for example, OVS [5], which is used as the edge switch for VMs

to handle traffic in and out from VMs. The communication between cloud

servers (i.e., physical servers) is handled by physical OpenFlow-capable

Switch (OFS). In ICE, we integrated the control functions for both OVS and OFS

into the network controller that allows the cloud system to set

security/filtering rules in an integrated and comprehensive manner.

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 484

 The network controller is responsible for collecting network

information of current OpenFlow network and provides input to the attack

analyzer to construct attack graphs. Through the cloud internal discovery

modules that use DNS, DHCP, LLDP, and flow initiations [19], network

controller is able to discover the network connectivity information from OVS

and OFS. This information includes current data paths on each switch and

detailed flow information associated with these paths, such as TCP/IP and

MAC header.

The network flow and topology change informat ion will be automatically

sent to the controller and then delivered to attack analyzer to reconstruct attack

graphs. Another important function of the network controller is to assist the

attack analyzer module. According to the OpenFlow protocol [12], when the

controller receives the first packet of a flow, it holds the packet and checks the flow

table for complying traffic policies. In ICE, the network control also consults

with the attack analyzer for the flow access control by setting up the filtering

rules on the corresponding OVS and OFS. Once a traffic flow is admitted,

the following packets of the flow are not handled by the network controller, but

monitored by the ICE-A.

Network controller is also responsible for applying the countermeasure

from attack analyzer. Based on VM Security Index (VSI) and severity of an alert,

countermeasures are selected by ICE and executed by the network controller. If

a severe alert is triggered and identifies some known attacks, or a VM is

detected as a zombie, the network controller will block the VM

immediately. An alert with medium threat level is triggered by a suspicious

compromised VM.

 Countermeasure in such case is to put the suspicious VM with

exploited state into quarantine mode and redirect all its flows to ICE-A DPI

mode. An alert with a minor threat level can be generated due to the

presence of a vulnerable VM. For this case, to intercept the VM’s normal traffic,

suspicious traffic to/from the VM will be put into inspection mode, in which

actions such as restricting its flow bandwidth and changing network

configurations will be taken to force attack exploration behavior to stand out.

4 ICE SECURITY MEASUREMENT ATTACK MITIGATION, AND

COUNTERMEASURES

In this section, we present the methods for selecting the countermeasures

for a given attack scenario. When vulnerabilities are discovered or some

VMs are identified as suspicious, several countermeasures can be taken to

restrict attackers’ capabilities and it is important to differentiate between

compromised and suspicious VMs. The countermeasure serves the purpose

of: 1) protecting the target VMs from being compromised, and 2) making

attack behavior stand prominent so that the attackers’ actions can be

identified.

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 485

4.1 Security Measurement Metrics

The issue of security metrics has attracted much attention and there has been

significant effort in the development of quantitative security metrics in

recent years. Among different approaches, using attack graph as the

security metric model for the evaluation of security risks [20] is a good choice.

To assess the network security risk condition for the current network

configuration, security metrics are needed in the attack graph to measure risk

likelihood. After an attack graph is constructed, vulnerability information is

included in the graph. For the initial node or external node (i.e., the root of the

graph,), the priori probability is assigned on the likelihood of a

threat source becoming active and the difficulty of the vulnerability to be

exploited. We use GV to denote the priori risk probability for the root node of

the graph and usually the value of GV is assigned to a high probability, e.g.,

from 0.7 to 1.

For the internal exploitation node, each attack-step node e ϵ NC will have

a probability of vulnerability exploitation denoted as GM
[e]

 . GM [e] is

assigned according to the Base Score (BS) from Common Vulnerability Scoring

System (CVSS). The BS as shown in (1) [16] is calculated by the impact and

exploitability factor of the vulnerability. BS can be directly obtained from

National Vulnerability Database [18] by searching for the vulnerability CVE

id

BS= (0:6×IV+0.4×E-1.5× f (IV), (1)

Where

IV=10.41× (1 - (1 -C) ×(1-I)×(1-A)),

E= 20×AC×AU×AV,

and

f (IV) = { 0 if IV = 0, 1.176 otherwise. The impact value (IV) is

computed from three basic parameters of security namely confidentiality

(C), integrity (I), and availability (A). The exploitability (E) score consists of

access vector (AV), access complexity (AC), and authentication

instances (AU). The value of BS ranges from 0 to 10. In our attack graph, we

assign each internal node with its BS value divided by 10, as shown in

𝐺𝑀 𝑒 = Pr 𝑒 = 𝑇 =
𝐵𝑆 𝑒

10
, ∀𝑒 𝜖 𝑁𝑐

In the attack graph, the relations between exploits can be disjunctive or

conjunctive according to how they are related through their dependency

conditions [21]. Such relationships can be represented as conditional

probability, where the risk probability of current node is determined by the

relationship with its predecessors and their risk probabilities. We propose the

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 486

following probability derivation relations:

. for any attack-step node n ϵ NC with immediate

 predecessors set W = parent(n),

 P r(n|W) = GM [n] × ∏

P r(s|W); (3)

 sϵW

 . for any privilege node n ϵ ND with immediate predecessors set W

= parent(n), and then

 P r(n|W) = 1-

∏ (1-Pr(s|W)). (4)

 sϵW

Once conditional probabilities have been assigned to all internal nodes in

SAG, we can merge risk values from all predecessors to obtain the

cumulative risk probability or absolute risk probability for each node according to

(5) and (6). Based on derived conditional probability assignments on each

node, we can then derive an effective security hardening plan or a

mitigation strategy:

. for any attack-step node n ϵ NC with immediate predecessor set W

= parent(n),

 P r(n) = P r(n|W) ×∏ P r(s); (5)

 sϵW

. for any privilege node n ϵ ND with immediate predecessor set W

= parent(n),

 P r(n) = 1- ∏ (1- P r(s)). (6)

 sϵW

4.2 Mitigation Strategies

Based on the security metrics defined in the previous subsection, ICE is able

to construct the mitigation strategies in response to detected alerts. First,

we define the term countermeasure pool as follows:

Definition 4 (Countermeasure Pool). A countermeasure pool CM ={ cm1 , cm2 ,

. . . , cmn } is a set of countermeasures.

Each cm ϵ CM is a tuple cm = (cost, intrusiveness, condition, effectiveness),

where

1. cost is the unit that describes the expenses required to apply the

countermeasure in terms of resources and operational complexity, and it is

defined in a range from 1 to 5, and higher metric means higher cost;

2. intrusiveness is the negative effect that a countermeasure brings to the SLA

and its value ranges from the least intrusive (1) to the most intrusive (5),

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 487

and the value of intrusiveness is 0 if the countermeasure has no impacts on the

SLA;

3. condition is the requirement for the corresponding countermeasure;

4. effectiveness is the percentage of probability changes of the node, for which

this countermeasure is applied.

In general, there are many countermeasures that can be applied to the cloud

virtual networking system depending on available countermeasure

techniques that can be applied. Without losing the generality, several

common virtual-networking-based countermeasures are listed in Table 1.

The optimal countermeasure selection is a multi- objective optimization

problem, to calculate MIN(impact, cost) and MAX(benefit).

In ICE, the network reconfiguration strategies mainly involve two levels of

action: Layer-2 and layer-3. At layer-2, virtual bridges (including tunnels that

can be established between two bridges) and VLANs are main component in

cloud’s virtual networking system to connect two VMs directly. A virtual

bridge is an entity that attaches VIFs. Virtual machines on different bridges are

isolated at layer 2. VIFs on the same virtual bridge but with different VLAN

tags cannot communicate to each other directly. Based on this l a y e r -2

isolation, ICE can deploy layer-2 network reconfiguration to isolate

suspicious VMs. For example, vulnerabilities due to Arpspoofing [22] attacks

are not possible when the suspicious VM is isolated to a different bridge. As

a result, this countermeasure disconnects an attack path in the attack

graph causing the attacker to explore an alternate attack path. Layer-3

reconfiguration is another way to disconnect an attack path. Through the

network controller, the flow table on each OVS or OFS can be modified to

change the network topology.

We must note that using the virtual network reconfiguration approach at

lower layer has the advantage in that upper layer applications will experience

minimal impact. Especially, this approach is only possible when using

software-switching approach to automate the reconfiguration in a highly

dynamic networking environment. Countermeasures such as traffic isolation

can be implemented by utilizing the traffic engineering capabilities of OVS and

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 488

OFS to restrict the capacity and reconfigure the virtual network for a

suspicious flow. When a suspicious activity such as network and port

scanning is detected in the cloud system, it is important to determine whether

the detected activity is indeed malicious or not. For example, attackers can

purposely hide their scanning behavior to prevent the NIDS from

identifying their actions. In such situation, changing the network

configuration will force the attacker to perform more explorations, and in turn

will make their attacking behavior stand Update_SAG and Update_ACG out.

4.3 Countermeasure Selection

 counter- measure for a given attack scenario. Input to the algorithm is an alert,

attack graph G, and a pool of countermeasures CM .

Algorithm 2. Countermeasure_Selection

Require: Alert, G(E, V), CM

1: Let vAlert = Source node of the Alert

2: if Distance to Target(vAlert) > threshold then

3: Update ACG

4: return

5: end if

6: Let T = Descendant(vAlert) vAlert

7: Set P r(vAlert) = 1

8: Calculate_Risk_Prob(T)

9: Let benef it [|T|,| CM|] =

10: for each t ϵ T do

11: for each cm ϵ CM do

12: if cm.condition(t) then

13: P r(t) = P r(t) *(1-cm.ef f ectiveness)

14: Calculate_Risk_Prob(Descendant(t))

15: benef it[t, cm] = P r(target node). (7)

16: end if

17: end for

18: end for

19: Let ROI[|T|,|CM|] =

20: for each t ϵ T do

21: for each cm ϵ CM do

22: 𝑅𝑂𝐼 𝑡, 𝑐𝑚 =
 𝑏𝑒𝑛𝑓𝑖𝑡 𝑡,𝑐𝑚

𝑐𝑜𝑠𝑡
. 𝑐𝑚 + 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑣𝑒𝑛𝑒𝑠𝑠. 𝑐𝑚

(8)

23: end for

24: end for

25: Update_SAG and Update_ACG

26: returne Select_ Optimal _CM(ROI)

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 489

5 CONCLUSION

The technique of ICE, is proposed to detect and mitigate collaborative attacks in the

cloud virtual networking environment. ICE utilizes the attack graph model to

conduct attack detection and prediction. The proposed solution investigates how to

use the program- mobility of software switches-based solutions to improve the

detection accuracy and defeat victim exploitation phases of collaborative attacks. The

system performance evaluation demonstrates the feasibility of ICE and shows that

the proposed solution can significantly reduce the risk of the cloud system from

being exploited and abused by internal and external attackers. ICE only investigates

the network IDS approach to counter zombie explorative attacks. To improve the

detection accuracy, host-based IDS solutions are needed to be incorporated and to

cover the whole spectrum of IDS in the cloud system.

REFERENCES

[1] Coud Sercurity Alliance, “Top Threats to Cloud Computing v1.0,”

https://cloudsecurityalliance.org/topthreats/csathreats. v1.0.pdf, Mar. 2010.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G.

Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View of Cloud

Computing,” ACM Comm., vol. 53, no. 4, pp. 50-58, Apr. 2010.

[3] B. Joshi, A. Vijayan, and B. Joshi, “Securing Cloud Computing Environment

Against DDoS Attacks,” Proc. IEEE Int’l Conf. Computer Comm. and Informatics

(ICCCI ’12), Jan. 2012.

[4] H. Takabi, J.B. Joshi, and G. Ahn, “Security and Privacy Challenges in

Cloud Computing Environments,” IEEE Security and Privacy, vol. 8, no. 6, pp. 24-

31, Dec. 2010.

[5] “Open vSwitch Project,” http://openvswitch.org, May 2012.

[6] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting Botnet Command

and Control Channels in Network Traffic,” Proc. 15th Ann. Network and Distributed

Sytem Security Symp. (NDSS ’08), Feb.2008.

[7] P. Ammann, D. Wijesekera, and S. Kaushik, “Scalable, graph- based network

vulnerability analysis,” Proc. 9th ACM Conf. Computer and Comm. Security (CCS

’02), pp. 217-224, 2002.

[8] X. Ou, S. Govindavajhala, and A.W. Appel, “MulVAL: A Logic- Based

Network Security Analyzer,” Proc. 14th USENIX Security Symp., pp. 113-128, 2005.

[9] R. Sadoddin and A. Ghorbani, “Alert Correlation Survey: Frame- work and

Techniques,” Proc. ACM Int’l Conf. Privacy, Security and Trust: Bridge the Gap

between PST Technologies and Business Services (PST ’06), pp. 37:1-37:10, 2006.

[10] L. Wang, A. Liu, and S. Jajodia, “Using Attack Graphs for Correlating,

Hypothesizing, and Predicting Intrusion Alerts,” Computer Comm., vol. 29, no. 15, pp.

2917-2933, Sept. 2006.

International Journal of Advanced Scientific and Technical Research Issue 4 volume 4, July-August 2014

Available online on http://www.rspublication.com/ijst/index.html ISSN 2249-9954

R S. Publication, rspublicationhouse@gmail.com Page 490

[11] S. Roschke, F. Cheng, and C. Meinel, “A New Alert Correlation Algorithm

Based on Attack Graph,” Proc. Fourth Int’l Conf. Computational Intelligence in

Security for Information Systems, pp. 58-67, 2011.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation in Campus

Networks,” SIGCOMM Computer Comm. Rev., vol. 38, no. 2, pp. 69-74, Mar. 2008.

[13] E. Keller, J. Szefer, J. Rexford, and R.B. Lee, “NoHype: Virtualized

Cloud Infrastructure without the Virtualization,” Proc. 37th ACM Ann. Int’l

Symp. Computer Architecture (ISCA’10), pp. 350-361, June 2010.

[14] X. Ou, W.F. Boyer, and M.A. McQueen, “ A Scalable Approach to Attack

Graph Generation,” Proc. 13th ACM Conf. Computer and Comm. Security (CCS ’06),

pp. 336-345, 2006.

[15] Mitre Corporation, “Common Vulnerabilities and Exposures, CVE,”

http://cve.mitre.org/, 2012.

[16] P. Mell, K. Scarfone, and S. Romanosky, “Common Vulnerability Scoring

System (CVSS),” http://www.first.org/cvss/cvss-guide. html, May 2010.

[17] O. Database, “Open Source Vulnerability Database (OVSDB),”

http://osvdb.org/, 2012.

[18] National Institute of Standards and Technology, “National Vulnerability

Database, NVD,” http://nvd.nist. gov, 2012.

[19] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S.

Shenker, “NOX: Towards an Operating System for Networks,” SIGCOMM

Computer Comm. Rev., vol. 38, no. 3,pp. 105-110, July 2008.

[20] X. Ou and A. Singhal, Quantitative Security Risk Assessment Of

Enterprise Networks. Springer, Nov. 2011.

[21] M. Frigault and L. Wang, “Measuring Network Security Using Bayesian

Network-Based Attack Graphs,” Proc. IEEE 32nd Ann. Int’l Conf. Computer

Software and Applications (COMPSAC ’08),pp. 698-703, Aug. 2008.

[22] K. Kwon, S. Ahn, and J. Chung, “Network Security Management Using ARP

Spoofing,” Proc. Int’l Conf. Computational Science and Its Applications (ICCSA ’04),

pp. 142-149, 2004.

[23] “Metasploit,” http://www.metasploit.com,2012.

[24] “Armitage,” http://www.fastandeasyhacking.com,2012.

[25] M. Tupper and A. Zincir-Heywood, “VEA-bility Security Metric: A Network

Security Analysis Tool,” Proc. IEEE Third Int’l Conf.Availability, Reliability and

Security (ARES ’08), pp.950-957, Mar.2008.

