Text-Independent Speaker Recognition Using Gaussian Mixture Model & UBM

Mamta Saraswat Tiwari, Piyush Lotia

Abstract— In this paper presents an overview of a state-of-the-art text-independent speaker verification system. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization used in speaker verification, namely, cepstral analysis, is detailed. Gaussian mixture modeling, which is the speaker modeling technique used in most systems, is then explained. The Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple but effective GMMs for likelihood functions, a universal background model (UBM) for alternative speaker representation, and a form of Bayesian adaptation to derive speaker models from the UBM. The development and use of a handset detector and score normalization to greatly improve verification performance is also described and discussed.

Keywords— speaker recognition; Gaussian mixture models; likelihood ratio detector; universal background model; handset normalization; NIST evaluation.

I. INTRODUCTION

Over the past several years, Gaussian mixture models (GMMs) have become the dominant approach for modeling in text-independent speaker recognition applications. This is evidenced by the numerous papers from various research sites published in major speech conferences such as the International Conference on Acoustics Speech and Signal Processing (ICASSP), the European Conference on Speech Communication and Technology (Eurospeech), and the International Conference on Spoken Language Processing (ICSLP), as well as articles in ESCA Transactions on Speech Communications and IEEE Transactions on Speech and Audio Processing. A GMM is used in speaker recognition applications as a generic probabilistic model for multivariate densities capable of representing arbitrary densities, which makes it well suited for unconstrained text-independent applications. In more recent years, GMM-based systems have been applied to the annual NIST Speaker Recognition Evaluations (SRE).

These systems, fielded by different sites, have consistently produced state-of-the-art performance. In particular, a GMM-based system developed by MIT Lincoln Laboratory, employing Bayesian adaptation of speaker models from a universal background model and handset-based score normalization, has been the basis of the top performing systems in the NIST SREs since 1996. The system is referred to as the Gaussian Mixture Model-Universal Background Model (GMM-UBM) speaker verification/detection system. In this paper we describe the development and evaluation of the GMM-UBM system. The remainder of this paper is organized as follows. Section 2 describes the basic speaker verification/detection task and the likelihood ratio detector approach used to address it. In Section 3 the main components of the GMM-UBM system are described. This section also presents the use of a handset detector and score normalization technique known as HNORM which greatly improves performance when training and testing with different microphones. Section 4 presents experiments and results of the GMM-UBM system using the NIST SRE corpora. Finally, conclusions and future directions are given in Section 5.

The speech signal conveys several levels of information. Primarily the speech signal conveys the words or message being spoken but on a secondary level, the signal also conveys information about the identity of the talker. While the area of speech recognition is concerned with extracting underlying linguistic message in an utterance, the area of speech recognition is concerned with extracting the identity of the person speaking the utterance. As speech interaction with computer become more pervasive in activities such as telephone financial transactions and information retrieval from speech databases, the utility of automatically recognizing a speaker based solely on vocal characteristics increases.

Depending upon the application, the general area of speaker recognition is divided into two specific tasks: verification and identification. In verification, the goal is to determine from a voice sample if a person is
whom he or she claims. In speaker identification, the goal is to determine which one of a group of known-voices best matches the input voice sample.

Furthermore, in either task the speech can be constrained to be a known phrase (text-dependent) or totally unconstrained (text-independent). Success in both tasks depends on extracting and modeling the speaker-dependent characteristics of speech signal which can effectively distinguish one talker from another.

In this paper a new speaker model based on Gaussian mixture models (GMM) is introduced and evaluated for text independent speaker recognition. The use of Gaussian mixture models for modeling speaker identity is motivated by the interpretation the Gaussian components represent some general speaker-dependent spectral shapes and the capability the Gaussian mixtures to model arbitrary densities. The Gaussian mixture speaker model is experimentally evaluated on 49 speaker conversational speech database containing both clean and telephone speech. The experiments examine algorithmic issues such as model initialization, variance limiting and model order selection. To compensate for spectral variability introduced by the telephone channel and handsets, robustness techniques such as long-term mean removal, difference coefficients, in frequency warping are applied and compared. The experiments also examine the GMM speaker recognition performance with respect to an increasing speaker population. The techniques for speaker recognition can be categorized into three major approaches. The first and earliest approach is to use long-term averages of acoustic features, such as spectrum representations or pitch. The idea is to average out the other factors influencing the acoustic features, such as phonetic variations, leaving only the speaker dependent component. For spectral features, the long-term average represents a speaker’s average vocal tract shape.

This approach is equivalent to Gaussian classifier and has been used successfully for several difficult, text-independent speaker recognition tasks.

The second approach is to model the speaker-dependent acoustic features within the individual phonetic sounds that comprise the utterance. By comparing acoustic features from phonetic sounds in a test utterance with speaker dependent acoustic features from similar phonetic sounds, the comparison measures speaker differences rather than textual differences. This approach can be accomplished using explicit or implicit segmentation of the speech into phonetic sound classes prior to speaker model recognition.

The third and most recent approach to speaker recognition is the use of discriminative neural networks (NN). Rather than train individual models to represent particular speakers, discriminative NN’s are trained to model the decision function which best discriminate speakers within a known set. Several different networks such as multilayer perceptrons, time-delay NN’s, and radial basis functions, have recently been applied to various speaker recognition tasks. Generally NN’s require a small number of parameters than independent speaker models and have produced good speaker recognition performance, comparable to that of VQ systems. The major drawback of the many NN techniques is that the complete network must be retrained when a new speaker is added to the system.

2. LIKELIHOOD RATIO DETECTOR

Given a segment of speech, Y, and a hypothesized speaker, S, the task of speaker detection, also referred to as verification, is to determine if Y was spoken by S. An implicit assumption often used is that Y contains speech from only one speaker. Thus, the task is better termed single-speaker detection. If there is no prior information that Y contains speech from a single speaker, the task becomes multi-speaker detection. In this paper we will focus on the core single-speaker detection task.

The single-speaker detection task can be restated as a basic hypothesis test between

$$H_0 : Y \text{ is from the hypothesized speaker } S$$

and

$$H_1 : Y \text{ is not from the hypothesized speaker } S.$$

The optimum test 3 to decide between these two hypotheses is a likelihood ratio test given by

$$\frac{p(Y | H_0)}{p(Y | H_1)} \begin{cases} \geq \theta & \text{accept } H_0 \\ < \theta & \text{reject } H_0 \end{cases}$$

![Fig1- Likelihood Ratio Detector](image-url)
Where \(p(Y|H_i), i=0,1 \) is the probability density function for the hypothesis \(H_i \) evaluated for the observed speech segment \(Y \), also referred to as the likelihood of the hypothesis \(H_i \). The decision threshold for accepting or rejecting \(H_0 \) is \(\theta \). The basic goal of a speaker detection system is to determine techniques to compute values for the two likelihoods.

Figure 1 shows the basic components found in speaker detection systems \(p(Y|H_0) \) and \(p(Y|H_1) \) based on likelihood ratios. The role of the front-end processing is to extract from the speech signal features that convey speaker-dependent information. In addition, techniques to minimize confounding effects from these features, such as linear filtering or noise, may be employed in the front-end processing. The output of this stage is typically a sequence of feature vectors representing the test segment, \(X = \{x_1, x_2, \ldots, x_T\} \), where \(x_t \) is a feature vector indexed at discrete time \(t \in \{1, 2, \ldots, T\} \). There is no inherent constraint that features extracted at synchronous time instants be used; as an example, the overall speaking rate of an utterance could be invoked as a feature. These feature vectors are then used to compute the likelihoods of \(H_0 \) and \(H_1 \). Mathematically, \(H_0 \) is represented by a model denoted \(\lambda_{hyp} \) that characterizes the hypothesized speaker \(S \) in the feature space of \(x \).

For example, one could assume that a Gaussian distribution best represents the distribution of feature vectors for \(H_0 \) so that \(\lambda_{hyp} \) would be denoting the mean vector and covariance matrix parameters of the Gaussian distribution. The alternative hypothesis, \(H \), is represented by the model \(\lambda_{hyp} \). The logarithm of this statistic is used giving the log-likelihood ratio

\[
\Lambda(X) = \log p(X | \lambda_{hyp}) - \log p(X | \lambda_{hyp}^0).
\]

While the model for \(H_0 \) is well defined and can be estimated using training speech from \(S \), the model for \(\lambda_{hyp} \) is less well defined since it potentially must represent the entire space of possible alternatives to the hypothesized speaker. Two main approaches have been taken for this alternative hypothesis modeling. The first approach is to use a set of other speaker models to cover the space of the alternative hypothesis. In various contexts, this set of other speakers has been called likelihood ratio sets, cohorts, and background speakers. Given a set of \(N \) background speaker models \(\{\lambda_1, \ldots, \lambda_N\} \), the alternative hypothesis model is represented by \(p(X | \lambda_{hyp}) = F(p(X | \lambda_1), \ldots, p(X | \lambda_N)) \),

where \(F() \) is some function, such as average or maximum, of the likelihood values from the background speaker set. The selection, size, and combination of the background speakers has been the subject of much research. In general, it has been found that to obtain the best performance with this approach requires the use of speaker-specific background speaker sets.

This can be a drawback in applications using a large number of hypothesized speakers, each requiring their own background speaker set. The second major approach to alternative hypothesis modeling is to pool speech from several speakers and train a single model. Various terms for this single model are a general model, a world model, and a universal background model. Given a collection of speech samples from a large number of speakers representative of the population of speakers expected during recognition, a single model, \(\lambda_{bkg} \), is trained to represent the alternative hypothesis. Research on this approach has focused on selection and composition of the speakers and speech used to train the single model. The main advantage of this approach is that a single speaker-independent model can be trained once for a particular task and then used for all hypothesized speakers in that task. It is also possible to use multiple background models tailored to specific sets of speakers. In this paper we will use a single background model for all hypothesized speakers and we refer to this as the universal background model (UBM).

3. GMM-UBM VERIFICATION SYSTEM

Given the canonical framework for the likelihood ratio speaker detection system, we next describe the specific components of the GMM-UBM system.

3.1. Gaussian Mixture Models

An important step in the implementation of the above likelihood ratio detector is selection of the actual likelihood function, \(p(X | \lambda) \). The choice of this function is largely dependent on the features being used as well as specifics of the application. For text-independent speaker recognition, where there is no prior knowledge of what the speaker will say, the most successful likelihood function has been Gaussian mixture models. In text-dependent applications, where there is strong prior knowledge of the spoken text, additional temporal knowledge can be incorporated by using hidden Markov models (HMMs) as the basis for the likelihood.
function. To date, however, use of more complicated likelihood functions, such as those based on HMMs, has shown no advantage over GMMs for text-independent speaker detection tasks as in the NIST SREs For a D-dimensional feature vector, x, the mixture density used for the likelihood function is defined as

\[p(x \mid \lambda) = \sum_{i=1}^{M} w_i p_i(x). \]

The density is a weighted linear combination of M unimodal Gaussian densities, \(p_i(x) \) each parameterized by a mean \(D \times 1 \) vector, \(\mu_i \), and a \(D \times D \) covariance matrix, \(\Sigma_i \):

\[p_i(x) = \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right\}. \]

The mixture weights, \(w_i \), furthermore satisfy the constraint

\[\sum_{i=1}^{M} w_i = 1. \]

Collectively, the parameters of the density model are denoted as \(\lambda = \{ w_i, \mu_i, \Sigma_i \} \), where \(i = 1, \ldots, M \).

While the general model form supports full covariance matrices, i.e., a covariance matrix with all its elements, we use only diagonal covariance matrices in this paper. This is done for three reasons. First, the density modeling of an Mth order full covariance GMM can equally well be achieved using a larger order diagonal covariance GMM. Second, diagonal-matrix GMMs are more computationally efficient than full covariance GMMs for training since repeated inversions of a \(D \times D \) matrix are not required. Third, empirically we have observed that diagonal matrix GMMs outperform full matrix GMMs.

Given a collection of training vectors, maximum likelihood model parameters are estimated using the iterative expectation–maximization (EM) algorithm. The EM algorithm iteratively refines the GMM parameters to monotonically increase the likelihood of the estimated model for the observed feature vectors, i.e., for iterations \(k \) and \(k+1 \).

\[p(X \mid \lambda^{(k+1)}) > p(X \mid \lambda^{(k)}) \]

Generally, five iterations are sufficient for parameter convergence. The EM equations for training a GMM can be found in [3, 18]. As discussed later, parameters for the UBM are trained using the EM algorithm, but a form of Bayesian adaptation is used for training speaker models.

Usually, the feature vectors of \(X \) are assumed independent, so the log-likelihood of a model \(\lambda \) for a sequence of feature vectors, \(X = \{ x_1, \ldots, x_T \} \), is computed as

\[\log p(X \mid \lambda) = \sum_{t=1}^{T} \log p(x_t \mid \lambda). \]

This is done to normalize out duration effects from the log-likelihood value. Since the incorrect assumption of independence is underestimating the actual likelihood value with dependencies, this scaling factor can also be considered a rough compensation factor to the likelihood value in above equation.

The GMM can be viewed as a hybrid between a parametric and nonparametric density model. Like a parametric model it has structure and parameters that control the behavior of the density in known ways, but without constraints that the data must be of a specific distribution type, such as Gaussian or Laplacian. Like a nonparametric model, the GMM has many degrees of freedom to allow arbitrary density modeling, without undue computation and storage demands. It can also be thought of as a single-state HMM with a Gaussian mixture.

Observation density or an ergodic Gaussian observation HMM with fixed, equal transition probabilities. Here, the Gaussian components can be considered to be modeling the underlying broad phonetic sounds that characterize a person’s voice.

The advantages of using a GMM as the likelihood function are that it is computationally inexpensive, is based on a well-understood statistical model and, for text-independent tasks, is insensitive to the temporal aspects of the speech, modeling only the underlying distribution of acoustic observations from a speaker. The latter is also a disadvantage in that higher levels of information about the speaker conveyed in the temporal speech signal are not used. The modeling and exploitation of these higher-levels of information may be where approaches based on speech recognition produce benefits in the future. To date, however, these approaches (e.g., large vocabulary or phoneme recognizers) have basically been used only as means to compute likelihood values, without explicit use of any higher-level information such as speaker-dependent word usage or speaking style.
3.2. Front-End Processing
Several processing steps occur in the front-end analysis. First, the speech is segmented into frames by a 20-ms window progressing at a 10-ms frame rate. A speech activity detector is then used to discard silence–noise frames. The speech activity detector is a self-normalizing, energy based detector that tracks the noise floor of the signal and can adapt to changing noise conditions. The speech detector discards 20–25% of the signal from conversational telephone recordings such as that in the Switchboard databases from which the NIST SRE corpora are derived.

Next, mel-scale cepstral feature vectors are extracted from the speech frames. The mel-scale cepstrum is the discrete cosine transform of the log-spectral energies of the speech segment Y. The spectral energies are calculated over logarithmically spaced filters with increasing bandwidths (mel-filters). For bandlimited telephone speech, cepstral analysis is performed only over the melfilters in the telephone passband (300–3400 Hz). All cepstral coefficients except its zeroth value (the DC level of the log-spectral energies) are retained in the processing. Finally, delta cepstra are computed using a first order orthogonal polynomial temporal fit over ±2 feature vectors (two to the left and two to the right over time) from the current vector. The choice of features is based on previous good performance and results in. comparing several standard speech features for speaker identification. Finally, the feature vectors are channel normalized to remove linear channel convolutional effects. Since we are using cepstral features, linear convolutional effects appear as additive biases. Both cepstral mean subtraction (CMS) and RASTA filtering have been used successfully and, in general, both methods have comparable performance for single speaker detection tasks. When training and recognition speech are collected from different microphones or channels (e.g., different telephone handsets and/or lines), this is a crucial step for achieving good recognition accuracy. However, as seen in several NIST SRE results and reported in this linear compensation does not completely eliminate the performance loss under mismatched microphone conditions. In this paper, we describe one approach to address this remaining mismatch using a normalization of log-likelihood ratio scores. An alternative approach to account specifically for differences in microphone nonlinearities across train and test data is to operate on the waveform with nonlinear transformations, rather than adjusting the log-likelihood ratio scores.

3.3. Universal Background Model
In the GMM-UBM system we use a single, speaker-independent background model to represent \(p(X \mid \lambda_{\text{hyp}}) \). The UBM is a large GMM trained to represent the speaker-independent distribution of features. Specifically, we want to select speech that is reflective of the expected alternative speech to be encountered during recognition. This applies to both the type and the quality of speech, as well as the composition of speakers. For example, in the NIST SRE single speaker detection tests, it is known a priori that the speech comes from local and long-distance telephone calls and that male hypthesized speakers will only be tested against male speech. In this case, we would train the UBM used for male tests using only male telephone speech. In the case where there is no prior knowledge of the gender composition of the alternative speakers, we would train using gender-independent speech. Other than these general guidelines and experimentation, there is no objective measure to determine the right number of speakers or amount of speech to use in training a UBM. Empirically, from the NIST SRE we have observed no performance loss using a UBM trained with one hour of speech compared to one trained using six hours of speech. In both cases, the training speech was extracted from the same speaker population. Careful experiments controlling the number of speakers present in the UBM training data have not been conducted.

Given the data to train a UBM, there are many approaches that can be used to obtain the final model. The simplest is to merely pool all the data to train the UBM via the EM algorithm (Fig. 2a). One should be careful that the pooled data are balanced over the subpopulations within the data. For example, in using gender-independent data, one should be sure there is a balance of male and female speech. Otherwise, the final model will be biased toward the dominant subpopulation. The same argument can be made for other subpopulations such as speech from different microphones. Another approach is to train individual UBMs over the subpopulations in the data, such as one for male and one for female speech, and then pool the subpopulation models together (Fig. 2b). This approach has the advantages that one can effectively use unbalanced data and can carefully control the composition of the final UBM. Over the past several SREs, our approach has been to train UBMs over subpopulations in the data and then pool the models to create the final UBM (Fig. 2b). For the 1999 NIST SRE we created a gender-independent UBM by training two 1024 mixture GMMs, one for male speech and one for female speech, and then pooling the two models to create our 2048 mixture UBM. We trained these using one hour of speech per gender which was extracted from the 1997 SRE 30-s test files. The speech was equally
distributed over carbon-button and electret handset types (using handset labels provided by NIST). The models were pooled simply by agglomerating the Gaussians and renormalizing the mixture weights.

3.4. Adaptation of Speaker Model
In the GMM-UBM system, we derive the hypothesized speaker model by adapting the parameters of the UBM using the speaker's training speech and a form of Bayesian adaptation. Unlike the standard approach of maximum likelihood training of a model for the speaker independently of the UBM, the basic idea in the adaptation approach is to derive the speaker’s model by updating the well-trained parameters in the UBM via adaptation. This provides a tighter coupling between the speaker’s model and UBM which not only produces better performance than decoupled models, but, as discussed later in this section, also allows for a fast-scoring technique. Like the EM algorithm, the adaption is a two step estimation process. The first step is identical to the expectation step of the EM algorithm, where estimates of the sufficient statistics of the speaker’s training data are computed for each mixture in the UBM. Unlike the second step of the EM algorithm, for adaptation these new sufficient statistic estimates are then combined with the old sufficient statistics from the UBM mixture parameters using a data-dependent mixing coefficient. The data-dependent mixing coefficient is designed so that mixtures with high counts of data from the speaker rely more on the new sufficient statistics for final parameter estimation and mixtures with low counts of data from the speaker rely more on the old sufficient statistics for final parameter estimation.

The specifics of the adaptation are as follows. Given a UBM and training vectors from the hypothesized speaker, $X = \{x_1, \ldots, x_T\}$ we first determine the probabilistic alignment of the training vectors into the UBM mixture components (Fig. 3a). That is, for mixture i in the UBM, we compute

$$\Pr(i \mid x_t) = \frac{w_i p_i(x_t)}{\sum_{j=1}^{M} w_j p_j(x_t)}.$$

We then use $\Pr(i \mid x_t)$ and x_t to compute the sufficient statistics for the weight, mean, and variance parameters

$$n_i = \sum_{t=1}^{T} \Pr(i \mid x_t)$$

$$E_i(x) = \frac{1}{n_i} \sum_{t=1}^{T} \Pr(i \mid x_t) x_t$$
Fig(c)

FIG. 2. Pictorial example of two steps in adapting a hypothesized speaker model. (a) The training vectors (x’s) are probabilistically mapped into the UBM mixtures. (b) The adapted mixture parameters are derived using the statistics of the new data and the UBM mixture parameters. The adaptation is data dependent, so UBM mixture parameters are adapted by different amounts.

\[E_{i}(x^2) = \frac{1}{n_i} \sum_{t=1}^{T} \Pr(i \mid x_t) x_t^2. \]

This is the same as the expectation step in the EM algorithm.

Finally, these new sufficient statistics from the training data are used to update the old UBM sufficient statistics for mixture \(i \) to create the adapted parameters for mixture \(i \) (Fig. 3b) with the equations:

\[
\begin{align*}
\hat{w}_i &= [\alpha_{i^w}^w n_i / T + (1 - \alpha_{i^w}^w) w_i] \gamma \\
\hat{\mu}_i &= \alpha_{i^m}^m E_i(x) + (1 - \alpha_{i^m}^m) \mu_i \\
\hat{\sigma}_i^2 &= \alpha_{i^v}^v E_i(x^2) + (1 - \alpha_{i^v}^v)(\alpha_i^2 + \mu_i^2) - \hat{\mu}_i^2
\end{align*}
\]

The adaptation coefficients controlling the balance between old and new estimates are \(\{\alpha_{i^w}, \alpha_{i^m}, \alpha_{i^v}\} \) weights, means and variances, respectively. The scale factor \(\gamma \) is computed over all adapted mixture weights to ensure they sum to unity. Note that the sufficient statistics, not the derived parameters, such as the variance, are being adapted.

For each mixture and each parameter, a data-dependent adaptation coefficient \(\alpha_{i^\rho}^\rho, \rho \in \{w, m, v\} \), is used in the above equations. This is defined as

\[\alpha_{i^\rho} = \frac{n_i}{n_i + r^\rho}, \]

where \(r^\rho \) is a fixed relevance factor for parameter \(\rho \).

3.5. Log-Likelihood Ratio Computation

The log-likelihood ratio for a test sequence of feature vectors \(X \) is computed as

\[\Lambda(X) = \log p(X \mid \lambda_{hyp}) - \log p(X \mid \lambda_{ubm}). \]

The fact that the hypothesized speaker model was adapted from the UBM, however, allows a faster scoring method than merely evaluating the two GMMs as in Eq. (6). This fast scoring approach is based on two observed effects. The first is that when a large GMM is evaluated for a feature vector, only a few of the mixtures contribute significantly to the likelihood value. This is because the GMM represents a distribution over a large space but a single vector will be near only a few components of the GMM. Thus, likelihood values can be approximated very well using only the top \(C \) best scoring mixture components.

The second observed effect is that the components of the adapted GMM retain a correspondence with the mixtures of the UBM, so that vectors close to a particular mixture in the UBM will also be close to the corresponding mixture in the speaker model. Using these two effects, a fast scoring procedure operates as follows: For each feature vector, determine the top \(C \) scoring mixtures in the UBM and compute UBM likelihood using only these top \(C \) mixtures. Next, score the vector against only the corresponding \(C \) components in the adapted speaker model to evaluate the speaker’s likelihood. For a UBM with \(M \) mixtures, this requires only \(M + C \) Gaussian computations per feature vector compared to \(2M \) Gaussian computations for normal
likelihood ratio evaluation. When there are multiple hypothesized speaker models for each test segment, the savings become even greater. In the GMM-UBM system, we use a value of $C = 5$.

3.6. Handset Score Normalization

It has been widely observed in the literature that handset variability causes significant performance degradation in speaker recognition systems. Channel compensation in the front-end processing addresses linear channel effects, but there is evidence that handset transducer effects are nonlinear in nature and are thus difficult to remove from the features prior to training and recognition. Because the handset effects remain in the features, the speaker’s model will represent the speaker’s acoustic characteristics coupled with the distortions caused by the handset from which the training speech was collected. Speaker same likelihood the same speaker. The effect is that log-likelihood ratio scores produced from different speaker models can have handset-dependent biases and scales. This is especially problematic when trying to use speaker-independent thresholds in a system, as is the case for the NIST SREs. To develop and apply a handset-dependent score normalization, we first created a handset detector to label a speech segment as being either from a carbon-button microphone handset (CARB) or an electret microphone handset (ELEC). The handset detector is a simple maximum likelihood classifier in which handset dependent GMMs were trained using the Lincoln Laboratory Handset Database (LLHDB). A 1024 mixture GMM was trained using speech from 40 speakers spoken over two carbon-button microphone handsets and another 1024 mixture GMM was trained using speech from the same 40 speakers spoken over two electret microphone handsets.

Standard linear filtering compensation (cepstral mean subtraction and RASTA filtering) was applied to the features prior to model training. Since the models were trained with speech from the same speakers and had linear filtering effects removed, differences between the models should mainly be attributable to uncompensated transducer effects. A speech segment is then labeled by selecting the most likely model (CARB or ELEC) based on the models’ likelihood values. This handset detector has been used by NIST to supply handset information to SRE participants as well as for analysis of results. Using the handset labels, we then developed the handset score normalization known as HNORM. Since it is often problematic to obtain adequate speaker data for both training and development testing, an approach was sought to use only non-speaker (or imposter) data to estimate normalization parameters. The basic approach is to estimate development data handset-dependent biases and scales in the log-likelihood ratio scores and then removes these from scores during operation. First, we compute the log-likelihood ratio scores for a hypothesized speaker–UBM model pair from a set of imposter test segments coming from both CARB and ELEC handsets. We assume these scores have a Gaussian distribution and we estimate the handset-dependent means and standard deviations for these scores. To avoid bimodal distributions, the non-speaker data should be of the same gender as the hypothesized speaker. The hypothesized speaker now has two sets of parameters describing his or her model’s response to CARB and ELEC type speech:

$$\{\mu (\text{CARB}), \sigma (\text{CARB}), \mu (\text{ELEC}), \sigma (\text{ELEC})\}$$

For the 1999 NIST SRE we used 200 30-s speech segments per handset type, per gender derived from the 1998 SRE test corpus. In general, the duration of the speech segments used to estimate HNORM parameters should match the expected duration of the test speech segments. During recognition, the handset detector supplies the handset type of the test segment, X, and HNORM is applied to the log-likelihood ratio score as

$$\Lambda^{\text{HNORM}}(X) = \frac{\Lambda(X) - \mu(HS(X))}{\sigma(HS(X))}$$

Where $HS(X)$ is the handset label for X.

The desired effect of HNORM is illustrated in Fig. 4. This figure shows log-likelihood ratio score distributions for two speakers before (left column) and after (right column) HNORM has been applied. The effect of removing the handset-dependent biases and scales is to normalize the non-speaker score distributions such that they have zero mean and unit standard deviation for speech from both handset types. This results in better performance when using a single threshold for detection. In addition to removing handset bias and scales, HNORM also helps normalize log-likelihood scores across different speaker models, again resulting in better performance when using speaker-independent thresholds as in the NIST SREs. HNORM is in effect estimating speaker and handset specific thresholds and mapping them into the log-likelihood score domain rather than using them directly. HNORM is a handset compensation technique that operates in the score domain. Other approaches to handset compensation operate in the signal domain or in the model domain. Since these techniques operate in different domains it is possible to combine them to potentially achieve even better compensation.
FIG. 3. Surface view of GMM UBM MODEL train data set

FIG. 4 GUI of the Speech Reorganization project

FIG. 5 Speaker reorganization Output
5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have described the major elements of the GMM-UBM system used for high-accuracy speaker recognition. The GMM-UBM system is built around the optimal likelihood ratio test for detection, using simple but effective Gaussian mixture models for likelihood functions, a universal background model for representing the competing alternative speakers, and a form of Bayesian adaptation to derive hypothesized speaker models. The use of a handset detector and score normalization to greatly improve detection performance, independent of the actual detection system, was also described and discussed. Finally, representative performance benchmarks and system behavior experiments on the 1998 summer-development and 1999 NIST SRE corpora were presented. While the GMM-UBM system has proven to be very effective for speaker recognition tasks, there are several open areas where future research can improve or build on from the current approach. The first area is dealing better with mismatched conditions. The GMM-UBM system, and all current speaker state-of-the-art recognition systems, rely on low-level acoustic information. Unfortunately, speaker and channel information are bound together in an unknown way in the current spectral-based features and the performance of these systems degrades when the microphone or acoustic environment changes between training data and recognition data. Progress has been made in minimizing this frailty both in addressing linear channel distortion with cepstral mean subtraction and RASTA filtering and in addressing nonlinear effects by normalizing log-likelihood scores (HNORM) and by waveform compensation, but there still remains a tremendous performance gap to be bridged between matched and mismatched conditions.

The second area is incorporating higher levels of information, such as speaking style supra-segmental features, or word usage, into the decision making process.

Humans use several levels of information to recognize speakers from speech alone, but automatic systems are still dependent on the low-level acoustic information. The challenges in this area are to find, reliably extract, and effectively use these higher levels of information from the speech signal. It is likely that these higher levels of information will not provide good performance on their own and may need to be fused with more traditional acoustic-based systems. Techniques to fuse and apply high-level asynchronous, or event-based, information with low-level synchronous acoustic features need to be developed in a way that makes the two feature classes work synergistically.

REFERENCES

