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Introduction générale

The problem of locating an obstacle to the fundamental intrinsic value is to locate
the position of the setting up barriers or wells to maximize or minimize the �rst
eigenvalue of the operator considered.
In [22] , the authors studied this problem by considering the Laplace operator or
Schrodinger
In [32] Long-Jiang Gua, Xiaoyu Zengb, and Huan-Song Zhoub have studied the ex-
istence of asymptotic behavior of the base states for the eigenvalue problem of the
p-laplacian .
In [31] Leandro , Del Pezzo and Julio Studied the �rst eigenvalue for the p-Laplacian
operator with the boundary conditions of Dirichlet and Neumann (mixed boundary
conditions).
In [14] Daniele Valtorta gave the estimate of the �rst non-trivial eigenvalue of the
p-Laplacian on a compact Riemannian manifold with a non-negative Ricci curvature
and characterize the case of equality. He studied the following problem:

{
∆p(u) = λ1,p|u|α−2u on Ω
〈∇u n〉 = 0 on ∂Ω

(1)

Daniele Valtorta has proved the following strong estimate:

λ1,p

p− 1
>

Πp
p

dp

With

Πp =

∫ 1

−1

ds

(1− |s|p)
1
p

=
2π

p sin(π
p
)
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In the �rst chapter we will study the variation of the fundamental eigenvalue
according to the position of obstacl
The problem of locating an obstacle to the fundamental intrinsic value is to locate
the position of the setting up barriers or wells to maximize or minimize the �rst
eigenvalue of the operator considered.
In [22] , the authors studied this problem by considering the Laplace operator or
Schrodinger
In this article we will study the variation of the fundamental value following the
clean obstacl position.
Let D is open bounded in RN and B is obstacle moving at inside D.
We will study the variation of λ1. the �rst eigenvalue of the operator −∆ if the
obstacle B moves inside D.
The approach to the study of problems is as follows:
We will pose the problem. So we study the derivation and the variation in λ the
�rst eigenvalue of the Laplace operator.
The variation of Ω is explained by the fact that B moves in D without going
out. If B is hard obstacle,the movement of B in D is done either by translation
or by rotation or combining these two types of movement. If B is considered a
Soft obstacle, B can be transformed by dilation.
We gave the derivative of the �rst eigenvalue of the Laplace operator for a hard
obstacle and in the case of a soft obstacle or a well.
We will study the variation of the �rst eigenvalue of the Laplace operator λ. and we
also state a theorem on the variation of λ, that will give us the obstacle position for
λ is minimal

In the second chapter In the second chapter of this book, we will study the
same problem studied in the �rst chapter by using the same techniques used in our
paper [2] .
In [22], the authors studied this problem by considering the Laplace or Schrodinger
operator de�ned within a �xed, bounded, open domain D with zero Dirichlet bound-
ary conditions. Inside this domain, they placed a ball which represents an obstacle
or a well , the position of which is under their control, and their goal was to locate
the optimal position of the piece under their control. And in their works (cf [22]),
one can �nd some interesting partial answers assuming convexity and/or symmetry
properties for D. They also gave illustrative examples.
In this part of our work, considering an obstacle or a well not necessarily a ball, we
study su�cient conditions to obtain the minimum or maximum value for the �rst
eigenvalue of the Laplace or Schrodinger operator.
In the third chapter of this book, we will study the obstacle positron problem for
the p-Laplacian operator.
In [32] Long-Jiang Gua, Xiaoyu Zengb, and Huan-Song Zhoub have studied the ex-
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istence of asymptotic behavior of the base states for the eigenvalue problem of the
following p-laplacian equation:

∆pu = V (x)|u|p−2u = µ|u|p−2u+ a|u|s−2u, x ∈ RN

with p ∈ (1, n) , s = p + p2

n
, a > 0 and µ ∈ R Is a parameter and V (x) Is a �eld of

vectors satisfying certain assumptions.
In [31] Leandro , Del Pezzo and Julio Studied the �rst eigenvalue for the p-Laplacian
operator with the boundary conditions of Dirichlet and Neumann (mixed boundary
conditions). They considered the following problem:

{
∆pu = λα|u|α−2u|v|β on Ω
∆qu = λβ|u|αu|v|β−2v on Ω

(2)

with α
p

+ β
q

= 1 and Next mixed boundary conditions:

u = 0, |∇v|q−2 ∂v

∂ν
sur ∂Ω

In [33] idrissa ly studied the behavior of the �rst eigenvalue of the p-Laplacian op-
erator λp1(Ωn) avec la condition du Dirichlet homogène au bord du domaine variable
(Ωn) ,où (Ωn) est une famille séquentielles des perturbations géométrie.
In [14] Daniele Valtorta gave the estimate of the �rst non-trivial eigenvalue of the
p-Laplacian on a compact Riemannian manifold with a non-negative Ricci curvature
and characterize the case of equality. He studied the following problem:

{
∆p(u) = λ1,p|u|α−2u on Ω
〈∇u n〉 = 0 on ∂Ω

(3)

Daniele Valtorta has proved the following strong estimate:

λ1,p

p− 1
>

Πp
p

dp

With

Πp =

∫ 1

−1

ds

(1− |s|p)
1
p

=
2π

p sin(π
p
)

In this article we will study the obstacle position problem for the p-Laplacian oper-
ator.
The obstacle locating problem for the fundamental eigenvalue is to locate the posi-
tion of the obstacle placement so as to maximize or minimize the eigenvalue of the
p-Laplacian operator. We were interested in the following problems:
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Let Ω be a bounded open set of RN and K An obstacle that moves The interior
of D. We consider the problem :

{
∆p(u) = λ1,p|u|α−2u in D\K

u = 0 on ∂Ω
(4)

Let λ1,p The �rst eigenvalue of the p-Laplacian operator with certain hypotheses
we want to give the necessary and su�cient conditions so that the �rst eigenvalue
of the p-Laplacian operator is minimal or we want to determine the position of K
in Ω so that λ1,p Is minimal where λ1,p Represents the �rst eigenvalue of the
p-Laplacian operator
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Chapter 1

The variation of the �rst eigenvalue

of the Laplace operator and The

problem of locating an obstacle

The problem of locating an obstacle to the fundamental intrinsic value is to locate
the position of the setting up barriers or wells to maximize or minimize the �rst
eigenvalue of the operator considered.
In [22] , the authors studied this problem by considering the Laplace operator or
Schrodinger
In this article we will study the variation of the fundamental value following the
clean obstacl position.
Let D is open bounded in RN and B is obstacle moving at inside D.
We will study the variation of λ1. the �rst eigenvalue of the operator −∆ if the
obstacle B moves inside D.
The approach to the study of problems is as follows:
We will pose the problem. So we study the derivation and the variation in λ the
�rst eigenvalue of the Laplace operator.
The variation of Ω is explained by the fact that B moves in D without going
out. If B is hard obstacle,the movement of B in D is done either by translation
or by rotation or combining these two types of movement. If B is considered a
Soft obstacle, B can be transformed by dilation.
We gave the derivative of the �rst eigenvalue of the Laplace operator for a hard
obstacle and in the case of a soft obstacle or a well.
We will study the variation of the �rst eigenvalue of the Laplace operator λ. and we
also state a theorem on the variation of λ, that will give us the obstacle position for
λ is minimal
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1.1 presentation of di�erent obstacle and �rst eigen-

value of the Laplace operator

Let D is open �xed in RN and B is obstacle moving at inside D.
In this work we study the minimization of the �rst eigenvalue of the operator Laplace
Dirichlet.
Speci�cally, placing B to inside D with boundary conditions of Dirichlet zero on
the border of Ω = D/B
we want to determine the position of B in D for λ1 is minimal{

−∆u = λ1u in D\B = Ω
u = 0 on ∂(D\B) = ∂Ω

(1.1)

De�ne a vector �eld

V : RN 7−→ RN

x 7−→ (V1(x), V2(x), V3(x)..., VN(x))

for every real t small enough, it identi�es areas disturbed:

Ωt = (Id+ tV )(Ω) = {x+ tV (x), x ∈ Ω}.

The variation of Ω is explained by the fact that B moves in D without going
out. If B is hard obstacle,the movement of B in D is done either by translation
or by rotation or combining these two types of movement.
If B is considered a Soft obstacle, B can be transformed by dilation.
After the disturbance problem (1.1) becomes:{

−∆ut = λ ut in Ωt

ut = 0 on ∂Ωt

With Ωt = (Id+ tV )(Ω) = {x+ tV (x), x ∈ Ω.}
The derivative of is given by −∆u′ = λku

′ + λ′ku in Ω

u′ = −∂u
∂n
V.n on Γ :

∫
Ω

uu′dx = 0
(1.2)

with n(�) external unit normal to ∂Ω.
We will give the de�nition of spectrum and the �rst eigenvalue of the operator
Laplace Dirichlet.

De�nition 1.1.1 Let A square symmetric matrix of order N of M(α, β,Ω).
constant λ is a eigenvalue of the operator

                                                                               DOI : https://dx.doi.org/10.26808/rs.eb.01
                                                                      Available online on http://rspublication.com/ebook.htm
                                                                                                    September 2019

©2019 RS Publication, rspublicationhouse@gmail.com                                                                            Page 8



A = −div(A∇) with Dirichlet boundary conditions Ω if u 6= 0 is the solution of
problem {

Au = λu dans Ω
u = 0 sur ∂Ω

(1.3)

The function u is called proper function of A Associated with the eigenvalue λ.
The set of eigenvalue is called the spectrum of A. Let

∑
(A) this set.

De�nition 1.1.2 Let α, β ∈ R such as 0 < α < β. We denote by M(α, β,Ω) all
square matrices of order N as

A = (aij)1≤i,j≤n ∈ (L∞(Ω))N×N

satisfying
(i) A(x)ξ � ξ ≥ α|ξ|2 ∀ξ ∈ RN in Ω (1.4)

(ii) |A(x)ξ| ≤ β|ξ| (1.5)

Proposition 1.1.1 the Problem of minimization following :

λ1 = min
{∫

Ω

A∇u∇u, u ∈ H1
o (Ω) \{0}

∫
Ω

u2dx = 1
}
.

has a solution.
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Proof of proposition 1.1.1
The set of eigenvalues of A is the set

G =
{
a ∈ R such as a =

∫
Ω

A∇u∇u avec uo ∈ H1
o (Ω) \{0} et ||u||L2(Ω) = 1

}
let

J(u) =

∫
Ω

A∇u∇u dx.

We show that the function J(u) admits a lower bound K with

K =
{
u ∈ H1

o (Ω), ||u||L2(Ω) = 1
}

A ∈M(α, β,Ω) =⇒ (A ∇u �∇u) ≥ α|∇u|2 ≥ 0

=⇒
∫
A∇u �∇u) ≥ 0 ∀u ∈ H1

o (Ω)

(i) J(u) admits a lower bound. so G admits a lower bound.
Let

α = inf G = inf
uε∈H1

o (Ω)

||u||L2(Ω) 6=0

J(u) = inf
u∈K

J(u)

(ii) λ1 ∈ G =⇒ α ≤ λ1

Using the de�nition of lower bound ∃un ∈ H1
o (Ω)/{0} such as

J(un) −→ α.

J(un) =

∫
(AE∇u �∇u) convex, continuous weakly sequentially s.c.i.

un admits a lower bound H1
o (Ω), moreover H1

o (Ω) is re�exive =⇒ ∃uεn a
subsequence of un such as uεn −→ u or K closed J weakly sequentially s.c.i.

=⇒ J(uεn) ≤ lim J(uεn) = α

uεn ∈ K =⇒ J(uεn) ≥ inf
uεn∈K

J(u) = α

J(uεn) = inf
uεn∈K

J(u) = min
uεn∈K

J(uεn)

then J(uεn) = α = min G

α = min G = J(uεn) =

∫
Ω

A∇u ∇u∫
Ω

(uo)
2 du
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thus α is a eigenvalue of A. λ1 this is the smallest eigenvalue A.
(iii) =⇒ λ1 ≤ α Using (i), (ii) and (iii)

λ1 = α = min
u∈H1

o (Ω)

u6=0

J(u)

thus

λ1 = min
u∈H1

o (Ω)

u6=0

(∫
Ω

A∇u ∇u dx∫
Ω

u2 dx

)

We will give some de�nitions before formulating more precisely the problem.

De�nition 1.1.3 It said that the obstacle B is Soft,if the operator we are going to
consider is of the following form
- ∆ + αχB ou α > 0 and χB is the indicator function of the region B.
A hard obstacle corresponds to α = +∞ and they say B is well if α is negative.

In the case of a hard obstacle:
De�ne for any real t pretty small Tt(B) as translation, rotation or a face.

ask J2(Ωt) =

∫
Ωt

dx− vo with vo > 0 and

Θε =
{

Ωt = D\Tt(B), ouvert de RN and verifying ownership ε

cone and

∫
Ωt

dx = vo

}
So the problem becomes determining the position of B

such than

min
Ω1∈Θε

λ1(Ωt) is reached

or λ1(Ωt) = min
u∈H1

o (Ω)

{∫
Ωt

|∇u|2dx :

∫
Ωt

u2dx = 1,
}

In the case of a Soft obstacle is removed the constraint on the volume of all eligible

Θε. Let Vε =
{

Ωt = D\Tt(B) open from RN verifying ownership

ε − cone
}

or Tt may be a dilation where a composition of a translation and

a dilation then the problem is to determine position Ωt so that min
Ωt∈Vε

λ1(Ωt) is

reached

or λ1(Ωt) = min
u∈H1

o (Ω)

{∫
D

|∇u|2 + α

∫
D

χBu
2 ,

∫
D

u2 = 1 or α ∈ R
}
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1.2 The variation of the �rst eigenvalue and locat-

ing of obstacle

We gave the derivative of the �rst eigenvalue of the Laplace operator for a hard
obstacle and in the case of a soft obstacle or a well.
We will study the variation of the �rst eigenvalue of the Laplace operator λ. and we
also state a theorem on the variation of λ.

De�nition 1.2.1 Let J a functional set to Ω. Called derivative (Gateaux) of J
on point Ω, the direction of deformation V the limit denoted dJ(Ω, V ), if it exists

dJ(Ω, V ) = lim
t7−→0

J(Ωt)− J(Ω)

t

De�nition 1.2.2 Called derivative form λ the limit denoted λ′ if it exists

λ′ = lim
t−→0

λ(Ωt)− λ(Ω)

t

This de�nition can be found in [24].

Proposition 1.2.1 Let Ω a open bounded of class C2 , we suppose that λk(t) is
eigenvalue simple. So functions

t 7−→ λk(t) et t 7−→ ut ∈ L2(RN)

are di�erentiable in t = 0 et u′ ∈ H1(Ω) is the only solution to (1.2) with

λ′k(0) = −
∫
∂Ω

(∂u
∂n

)2

V.n (1.6)

Proof
We are going to give a sketch of proof by giving some hints giving the desired result.
To prove this we use in part the implicit functions theorem. We also use the shape
derivative techniques see for instance pionner works of M. Schi�er [37] or [24], [36].
Let us give now some hints for the proof:
Let us consider the problem{

−∆uΩ = λΩuΩ in Ω
u = 0 on ∂Ω

(1.7)

Using the shape derivative, we get{
−∆u′ = λ′u+ λu′ in D(Ω)

u′ = −∂u
∂n
V (0).n on ∂Ω

(1.8)

Multiplying by u the �rst equation of the above system, using the Green formula
and �nally replacing u′ by its value on the boundary of Ω, we get:

λ′k(Ω, V ) = −
∫
∂K

(
∂u

∂n
)2V (0).ndσ
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We gave the derivative of the �rst eigenvalue of the Laplace operator for a hard
obstacle and in the case of a soft obstacle or a well. We shall study in the following
proposition:

Proposition 1.2.2 Consider the case of obstacle soft or a well so using [?] we have
the following problems {

−∆u+ αχB(x)u = λu in D
u = 0 on ∂D

With α ∈ R and χB is the indicator function of the region B. with border B is
smooth by piece.
Suppose that B can be displaced by a distance in the direction of a vector �eld V
So we:

dλ

dV
= α

∫
∂B

|u|2n.V ds (1.9)

proof : see [22]

We will study the variation of the eigenvalue λ. We recall a useful de�nition which
will allow us to make constructions on the domain Ω , and we enunciate a theorem
on the variation of λ.

De�nition 1.2.3 Let P a hyperplane of dimension N − 1 which intersects Ω.
For any connexe set S didn't intersects P ,
We call SP symmetrical with respect to P.
They say the domain Ω is possessed the property the inner re�ection compared to
P if there is a connexe component ΩS of Ω\P such as ΩP

S is a sub - set own
another connexe component Ωb of Ω\P. such P will be called hyperplane of inner
re�ection for Ω , with, ΩS will be called the small side for Ω (and Ωb will be
called the big side for Ω).

we enunciate a theorem on the variation of the �rst eigenvalue of the Laplace oper-
ator in the di�erent cases of obstacle
This theory was demonstrated in [22] we'll show ca using other technical

Theorem 1.2.1 suppose that Ω is possessed the property the inner re�ection com-
pared to P with B a ball.
suppose that B moves with a translational movement following a �eld vector V
in particular P in the same direction with V and pointing of the small side to
big side.
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Let λ1 is the �rst eigenvalue of the Laplace Dirichlet:{
−∆u = λ1u in D\B = Ω

u = 0 on ∂(D\B) = ∂Ω
(1.10)

So in the case of a hard or soft obstacle

dλ1(Ω, V ) > 0

in the case of a well
dλ1(Ω, V ) < 0

before giving the proof of this theorem, we will give some useful results for the
di�erent stages of proof

Proposition 1.2.3 : [Maximum principle for self-adjoint operators]
Let Ω domain open , regular of RN . Consider an elliptic operator of second order
in Ω

L = ∂i (aij(xi ∂j) + c(x)

such as
co|ξ|2 ≤ aij(x) ξiξj ≤ Co|ξ|2 co, Co > 0 , ∀ξ ∈ RN

with aij(x) ∈ C(Ω), c(x) ∈ L∞(Ω).
Then we have the maximum principle by :

(PM)′ :


u ∈ H1(Ω)
Lu ≤ 0
u|∂Ω ≥ 0

is veri�e =⇒ u ≥ 0 pp in Ω

Proposition 1.2.4 Let λ1 the �rst eigenvalue of the operator −L
So (PM)′ is checked if and if λ1 > 0 .

Proof of Theorem 1.2.1
There are three cases to consider an obstacle on a soft obstacle and a well.We
consider the obstacle hard to the last Position,for the other two cases we explain
that for any point x of ∂B which is on the small Ω = D|K such as u(x) < u(xp)
and for the case of an obstacle hard we consider on the formula of Hadamard see
[22] Su�ce it to prove that |∇u(x)| < |∇u(xp)|.
Ω has the property of re�ection following a hyperplane Tλ of the equation (xN = λ)
in the direction of the axis xN suppose B = K.

• D admits an axis of symmetry of equation (xN = 0).

• K+
λ the part of K located further above of Tλ.
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• σλ(K+
λ ) the symmetrical of K+

λ by compared to T and Kλ = K|K+
λ

• D+
λ the part of Ω completely located above of Tλ

• σλ(D+
λ ) the symmetrical of D+

λ compared to Tλ
and D−λ = Ω \ {D+

λ ∪ σλ(D
+
λ )}

one may encounter the following two cases of �gures : the �gure that explains the
notation

• (i) σ(K+
λ ) is inner tangent to ∂Ω at a point yo, with yo /∈ Tλ

• (ii) T is orthogonal to ∂Ω at a point xo that is to say ∃λ such as
σλ(Ω

+
λ ) ⊂ Ω.

• Let the case (i) is present .

• Let the case (ii) is present.

Suppose λ ≤ 0 to �x ideas Σλ = K+
λ ∪ σ(K+

λ ). Let v the function de�ned on Σλ by
∀x ∈ Σλ

v(x) = u(xp) with xp = σλo(x). so on Σλ we have
−∆u = λ1u in K+

λ ∪ σ(K+
λ )

u = 0 on ∂Kλ \ Tλo
u(x) = u(xp) on Tλo
u(x) = 0 on ∂σ(K+

λ ) \ Tλo
−∆(u(x)− v(x) = λ(u(x)− v(x)) in K+

λ ∪ σ(K+
λ )

u(x)− v(x) = −u(xp) on ∂K+
λ / Tλo

u(x)− v(x) = 0 on Tλo
u(x)− v(x) = −u(xp) on ∂σ(K+

λ ) \ Tλo

(1.11)

determining of sign u in Ω we will determine the sign of u using the maximum
principle (PM) and the proposition (1.2.4)

Let aij(x) = I c(x) = 0
aij elliptical aij ∈ C(Ω) c(x) ∈ L∞(Ω).
Let L = ∂i (aij(x) ∂j) + c(x).

so L(u) = ∆u. consequently the �rst eigenvalue of −L is equal to λ1 or λ1 > 0. So
using to the proposal( 1.2.4) (PM)′ is satisfying =⇒ u ≥ 0 pp in Ω.

consequently the equation (1.11) becomes
∆(v(x)− u(x)) + λ(v(x)− u(x)) = 0 in Σλ

v(x)− u(x) = u(xp) ≥ 0 sur ∂K+
λ \ Tλo

v(x)− u(x) = 0 sur Tλo
v(x)− u(x) = u(xp) ≥ 0 sur ∂σ(K+

λ ) \ Tλo

.
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Let ω = v(x)− u(x).
So Using to the maximum principle if we pose

c(x) = λ
Lω = ∆ω + λω our aij = I
L = ∂i(aij(x) ∂j) + λ
I elliptical c(x) ∈ L∞(Ω)

=⇒
{
Lω = 0 on Σλ

ω ≥ 0 on ∂Σλ
.

Using (PM) =⇒ ω ≥ 0 pp in
∑

λ =⇒ ω(x) = u(xp)−u(x) ≥ 0 pp in
∑

λ we will
show that

ω(x) 6= 0 ∀x ∈ ∂K+
λ \Tλ.

if x ∈ K+
λ \Tλ. we pose u(x) = u(xp) =⇒ ω(x) = 0.

so

{
Lω = 0 in Σλ

ω = 0 on ∂Σλ
=⇒ using (PM)′ ω ≥ 0 in Σλ.

we pose h = −ω{
L(h) = 0 in Σλ

h = 0 on ∂Σλ
=⇒ using (PM)′ h ≥ 0 on ∂Σλ =⇒ −ω ≥ 0.

=⇒ ω ≤ 0 =⇒ ω = 0 pp in Σλ let x ∈ Σλ

or
∂ω(x)

∂n
= lim

h→0

ω(x− nh)− ω(x)

h
= 0.

so
∂ω(x)

∂n
= 0

or u(x)− v(x) = 0 we apply Lemma (1) page (308) [36].

we have
∂ω(x)

∂n
> 0 which is contradictory.

So if x ∈ ∂K+
λ \ Tλo u(xp)− u(x) > 0

=⇒ u(xp) > u(x).
In the case of an hard obstacle we use the formula of Hadamard this time we consider
the function ω(x) = u(x) − u(xp) according to the (PM)′ on a ω(x) < 0 inside of
K+
λ to complete the proof in this case we use the lemma (1) page (308) [36]. So

the derivative normal of ω(x) is positive or if the second derivative of ω(x) in that
direction, the second is impossible considering the equation of eigenvalue from where
|∇u(x)| < |∇u(xp)| for any x ∈ ∂ K+

λ \ Tλo

Conclusion

Using the property of re�ection, concepts of small and big side of the domain Ω and
the variation of λ1 .
we �nd that λ1 is strictly increasing when the obstacle B is placed in contact with
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the border towards the large side. Thus λ1 is minimal when the obstacle touches
the boundary of the domain Ω.
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Chapter 2

The problem of obstacle for the

fundamental eigenvalue

Studying problems of Analysis of Stability of the Exterior and Interior Bernoulli's
Free Boundary Problems form in [2] leads us to get interesting information about
obstacle problem for the principal eigenvalue (the �rst eingenvalue of the Laplace
operator with Dirichlet boundary conditions). So what is the obstacle problem?
The problem of locating an obstacle to the fundamental eigenvalue value is to locate
the setting up position of the barriers or wells in order to maximize or minimize the
�rst eigenvalue of the considered operator .
In [22], the authors studied this problem by considering the Laplace or Schrodinger
operator de�ned within a �xed, bounded, open domain D with zero Dirichlet bound-
ary conditions. Inside this domain, they placed a ball which represents an obstacle
or a well , the position of which is under their control, and their goal was to locate
the optimal position of the piece under their control. And in their works (cf [22]),
one can �nd some interesting partial answers assuming convexity and/or symmetry
properties for D. They also gave illustrative examples.
In this part of our work, considering an obstacle or a well not necessarily a ball, we
study su�cient conditions to obtain the minimum or maximum value for the �rst
eigenvalue of the Laplace or Schrodinger operator. The beginning of this study is
that, we suppose we have critical position of the obstacle in the domain. This means
that the shape derivative of the fundamental eigenvalue which we shall explain in
this paper, equals a constant on the boundary of the considered domain.
In the following , we focus our e�orts on the minimization problem because the
maximization one uses the same techniques. The problem of the optimal placement
of the obstacle is stated as follows: We assume that Ω = D\K, where K ⊂ D,
represents an obstacle or well which is a C2-regular domain. The shape of K is �xed
a priori and only its position changes by rigid motions (translaions and rotations,
but in this study we are going to focus on motions by translations). Let us suppose
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that Ω is a critical point, i.e we have a position of K such that the derivative with
respect to the domain of the �rst eigenvalue is equal to a constant on the boundary
of K or D.
Our aim is to give su�cient conditions to characterize the shape of the obstacle K,
so that the fundamental eigenvalue of the Laplace or Schrodinger operator on Ω
with Dirichlet condition on the boundary of the domain is minimum. The obstacles
we shall consider may be hard, i.e. the zero Dirichlet conditions are additionally
imposed on the boundary of K, or they may be soft, that is the operator we are
going to consider is of the following form:

−∆ + αχKI.

where α ∈ R, and χK is the indicator function of the region K de�ned by:

χK(x) =

{
1 if x ∈ K
0 if x /∈ K (2.1)

A hard obstacle corresponds to α = +∞. The term of well refers to the case
where the constant α is negative. These types of operators are de�ned in standard
ways, and our sign convention of the fundamental eigenvalue with a hard obstacle is
positive and in the case of well it may be negative. For more information on these
operators, see for instance [17].
Notation
In this paper, we are going to use the following notation

V (x, 0) = V (0) = V.

The placement obstacle problem for the fundamental

eigenvalue

In this paper, we mention that the same techniques are used in our paper [2]. We
will study the obstacles positions problem using �ndings from [2] on the functional
J introduced by H. Alt W and L. Ca�arelli in [1].
We o�er the following details. Suppose we have a critical point for the �rst eigenvalue
of the Laplace operator, we will give the quadratic form associated with the �rst
eigenvalue of the Laplace operator and we will conclude by giving the placement
obstacle problem.

2.1 Critical point

Let us de�ne:

Oε = {w ⊂ D, w open set verifying the uniform cone property and vol(w) = m0}
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We assume that ω = D\K, where K ⊂ D represents an obstacle which is a C2-
domain. The shape of D and the obstacle K are �xed a priori and only the position
of K changes .

Proposition 2.1.1 (Hard obstacle case)
Let us consider the following problem:{

−∆uΩ = λΩuΩ in Ω
u = 0 on ∂Ω

(2.2)

where Ω = D\K and K is a C2 domain.
The �rst eigenvalue is de�ned by:

λΩ = inf{
∫

Ω

|∇u|2dx : u ∈ W 1,2
0 (Ω)/

∫
Ω

u2dx = 1}.

.
Assuming that there is Ω ∈ Oε., we have

λ′(Ω, V ) = −
∫
∂K

(
∂u

∂n
)2 V (0).n dσ .

And if Ω is a critical point for λΩ, then there is a Lagrange multiplier βΩ such that
:

−(
∂u

∂n
)2 = βΩ on ∂K

n being the exterior unit normal vector to Ω = D\K (n is the interior unit normal
vector to K).

Proof
We are going to give a sketch of the proof through some hints giving the desired
result. The proof uses in part the implicit functions theorem. We also use shape
derivative techniques, see for instance pionner works of M. Schi�er [37] or [24], [36].
Let us give some hints for the proof:
Consider the problem {

−∆uΩ = λΩuΩ in Ω
u = 0 on ∂Ω

(2.3)

Using the shape derivative, we get{
−∆u′ = λ′u+ λu′ in D(Ω)

u′ = −∂u
∂n
V (0).n on ∂Ω

(2.4)

Multiplying the �rst equation of the above system by u, using the Green formula
and �nally replacing u′ by its value on the boundary of Ω, we get:

λ′(Ω, V ) = −
∫
∂K

(
∂u

∂n
)2V (0).ndσ

The Lagrange multiplier appears because of the constraint required on the volume
of Ω.
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Proposition 2.1.2 (Well case)
Consider the following problem:{

−∆uΩ + αχKuΩ = λΩuΩ in D
u = 0 on D

(2.5)

where Ω = D\K and K is a C2 domain .
The �rst eigenvalue is de�ned by:

λΩ = inf{
∫
D

|∇u|2dx+ α

∫
D

χKu
2dx : u ∈ W 1,2

0 (Ω)

∫
D

u2dx = 1}.

Then, we have:

λ′(Ω, V ) = α

∫
∂K

u2V (0).ndσ, where n is the exterior unit normal to K.

And if

Ω ∈ O =

{
ω ⊂ D,K ⊂ ω w open set verifying the ε− cone property and

∫
ω

χKdx = vol(K) = m0

}
(m0 being a �xed positive real number) is a critical point for λΩ, then there exists a
Lagrange multiplier γΩ such that :

αu2 = γΩ on ∂K

If Ω is a critical point for λΩ and if, moreover, the volume of K may change then
u = 0 on ∂K.

To prove this proposition, one uses the same techniques and the same steps in the
proof for the hard obstacle the case. However, the equation satis�ed by the shape
derivative changes as follows:{

−∆u′ + αχKu
′ + αχKuV (0).ne = λ′u+ λu′ in D(D)

u′ = 0 on ∂D
(2.6)

2.2 Quadratic form associated with the obstacle place-

ment problem

The quadratic shape is obtained by calculating the second derivative of λ′(Ω, V )

against the domain. Let us take V given by V (x; t) = v(x)n(x), v ∈ H
1
2 (∂Ω)

and n(x) is the exterior normal de�ned on ∂Ω.
So before going on, we need some hypotheses , let us assume that:

(i) - Ω is a C2− regular open domain.
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(ii) -(
∂u

∂n
) = c > 0 ( a positive constant).

Proposition 2.2.1 (Hard obstacle case)
Suppose that Ω is a critical point, then

Q(v) = d2λ(Ω;V ;V )

= d2J(Ω;V ;V )

= −2βΩ

∫
∂K

(N − 1)Hv2ds− 2βΩ

∫
Ω

|∇Λ|2dx

= −2βΩ

∫
∂K

(N − 1)Hv2ds− 2βΩ

∫
∂K

vLvds

Where βΩ is the Lagrange multiplier, here it is negative and Λ is the solution of the
following boundary value problem

−∆Λ = 0 in D\K
Λ = v on ∂K
Λ = 0 on ∂D.

(2.7)

H is the mean curvature of ∂K and L is a pseudo di�erential operator known as the
Steklov-Poincaré or capacity or Dirichlet to Neumann(see e.g [16]) operator, de�ned

by Lv =
∂Λ

∂n
and n is the unit exterior normal of K. In fact Λ is the harmonic

extension of v in Ω.

Proof of the Proposition (3.3.1)
We use the de�nition of the derivative with respect to the domain and we apply it
to λ

′
(Ω, V ). Then we get

Q(v) = d2λ(Ω, V, V )

=

∫
Ω\K

(div((−|∇u|2)V (x, 0)))
′
dx+

∫
Ω\K

div(V (x, 0)div(−|∇u|2)V (x, 0))dx

Q(v) = −[

∫
∂K

2∇u∇u′
V (x, 0).n+ div((|∇u|2)V (x, 0)V (x, 0).n]ds.

As

−∂u
∂n

= c a.e on ∂K.

Recall, u = 0 on ∂K, and : ∇u =
∂u

∂n
n = −cn. So

Q(v) = −[

∫
∂K

−2cn.∇u′
V (x, 0).n+ div(|∇u|2V (x, 0))V (x, 0).n]ds.
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We have u
′
= −∂u

∂n
V.n = cV.n on ∂K. And since −∂u

∂n
= c a.e on ∂K

and V.n = v , we get u
′
= cv on ∂K and n.∇u′

=
∂u

′

∂n
= c

∂v

∂n
= cLv,

where L is a pseudo di�erential operator, de�ned by Lv =
∂Λ

∂n
such that

−∆Λ = 0 in Ω\K
Λ = 0 on ∂K
Λ = v on ∂Ω,

(2.8)

Λ is the extension of v in Ω\K.
Thus

Q(v) =

∫
∂K

(2c2vLv − div((|∇u|2)vn)v)ds

Note that
div(|∇u|2vn) = v∇(|∇u|2).n = 2v|∇u|∇(|∇u|).n

Sine we assumed that Ω is C2,so using the formula of the level motion set related
to the mean curvature.
In fact ∂K = {x ∈ RN ; u(x) = 0} and we have

−(N − 1)H = div(
∇u
|∇u|

) =
∆u

|∇u|
− ∇u.∇(|∇u|)

|∇u|2
.

where H is the mean curvature of ∂Ω. Furthermore, since u = 0 on ∂K, we have
∆u = 0 on ∂K.
Finally we get

(N − 1)H =
−cn
|∇u|2

.∇(|∇u|) i.e

−(N − 1)H|∇u|2 = cn.∇(|∇u|)
c∇(|∇u|2) = −(N − 1)H|∇u|2n

∇(|∇u|2).n =
−(N − 1)

c
H|∇u|2 , hence

div(|∇u|2vn) = v(
−2(N − 1)

c
H)|∇u|3 then

Q(v) =

∫
∂K

(2c2vLv + 2c2(N − 1)Hv2ds

=

∫
∂K

(−2βΩvLv − 2βΩ(N − 1)Hv2ds
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And by the Green's formula we get∫
∂K

vLvds =

∫
Ω\K
|∇Λ|2dx.

Remark 2.2.1 Let us note that since the Lagrange multiplier βΩ is negative, we
have to take into account this information in the search for local strict minimum.
In fact Q1 = −βΩQ(v) where Q(v) is the quadratic form computed in the free bound-
ary part of this paper.
For the quadratic form Q1 to be positive, we only need Q to be positive, on cane
conclude easily as follows:
if Q > 0 then Q1 > 0.
su�cient conditions for the strict local minimum are the same as in the case of free
boundary problem obtained in [2].

Proposition 2.2.2 (Well case)

Let's suppose that Ω is a critical point , then for any v ∈ H
1
2 (∂Ω), we have

Q(v) = d2λ(Ω;V ;V )

= 2α

∫
∂K

(v2u
∂u

∂n
+ u′uv)dσ = 0

Proof of the Proposition (2.2.2)
Using the same techniques in the previous proof (3.3.1)we get the demonstration.

Remark 2.2.1 In fact u′ = ∂u
∂n

v on ∂K.
No information can be obtained from only the calculation of the second derivative.
We have a degenerate situation. We think that it would be a good challenge to study
this situation.

2.3 Su�cient conditions for the minimum

To give su�cient conditions for a local minimum of basic worth, we �rst present the
results we obtained in our paper [2].
Let A be an operator de�ned in the following sense :

A : H
1
2 (∂Ω) −→ H−

1
2 (∂Ω)

A = L+ (N − 1)(||H−||∞ +H)I,

where I is the identity operator? L is the pseudo di�erential operator as de�ned in
the proposition (3.3.1), and H− = max(0,−H).
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Remark 2.3.1
As assumed ∂Ω is of class C2, then the mean curvature H is a continuous function
on ∂Ω.
Let us set α(x) = (N − 1)(||H−||∞ +H(x)), ∀ x ∈ ∂Ω. We note that
α is continous and ∀ x ∈ ∂Ω, α(x) ≥ 0 (moreover α(x) > 0 on a su�ciently
large set).

Lemma 2.3.1

1 - The operator A is a bijection from H
1
2 (∂Ω) into H−

1
2 (∂Ω) and it is continous.

2 - The inverse operator A−1 is compact and self adjoint from H−
1
2 (∂Ω) into

H
1
2 (∂Ω).

Proof
For proof see [2]

Remark 2.3.2 Since the inverse operator : (αI + L)−1 is compact, self adjoint,

then there exists a Hilbert basis (φn)(n ∈ N) ⊂ H
1
2 (∂Ω) and a decreasing sequence of

eigenvalues µn which goes to 0.

Proposition 2.3.1
Let Ω0 the critical shape for λΩt ( The �rst eigenvalue of the Laplace operator with
Dirichlet boundary conditions ).is given by

λΩt = min
u∈W 1,2

0 (Ω),u6=0

∫
Ω
|∇u|2∫

Ω
|u|2

With Ωt solution of the following problem:{
−∆uΩ = λΩuΩ in Ωt

u = 0 on ∂Ωt
(2.9)

Ω0 is a local strict minimum of λΩt if and only if

(N − 1)||H−||∞ <
1

µ0

Proof
Since v ∈ H

1
2 (∂Ω) ,then

v =
∞∑
n=0

vnφn

(L+ (N − 1)(H + ||H−||∞)I)−1φn = µnφn then

(L+ (N − 1)H)I)φn = (
1

µn
− (N − 1)||H−||∞)φn

                                                                               DOI : https://dx.doi.org/10.26808/rs.eb.01
                                                                      Available online on http://rspublication.com/ebook.htm
                                                                                                    September 2019

©2019 RS Publication, rspublicationhouse@gmail.com                                                                            Page 25



Let us set λn =
1

µn
− (N − 1)||H−||∞.

So (λn) is an increasing sequence going to in�nity. Then we have

Q(v)

−2βΩ

= < (L+ (N − 1)HI)v, v > (2.10)

=
∞∑
n=0

λn|vn|2. (2.11)

Suppose that

(N − 1)||H−||∞ <
1

µ0

So

λ0 =
1

µ0

− (N − 1)||H−||∞ > 0

As λ0 > 0 then as a result of λn increasing we get

Q(v) ≥ c2λ0||v||2
H

1
2 (∂Ω)

with c2 = −2βΩ

We are now in the case where it is possible to use the main result in [13],which can
be formulated as follows: there is a positive constant C and a positive function w
and lim

η−→0
w(η) = 0 such that

|j′′(t)− j′′(0)| ≤ Cw(η) (2.12)

where j′′(t) = d2λ(Ωt, V, V ), j(t) = λ(Ωt) and j′′(0) = d2λ(Ω, V, V ) = Q(v) , j(0) =
λ(Ω).
We replace in (2.12) we give

|d2λ(Ωt, V, V )− d2λ(Ω, V, V )| ≤ Cw(η) (2.13)

Using Taylor formula with integral residual we get: λ(Ωt) = λ(Ω)+

∫ 1

0

(1−t)d2λ(Ωt, V, V )dt.

Using inequality (2.13) :
if λ0 > 0, Ω is a local strict minimum for the functional λΩ.

If Ω is a convex domain, then λ0 =
1

µ0

> 0 . Hence Ω is a local strict minimum for

the functional λΩ.
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conclusion

Let Ω be a critical form of the �rst eigenvalue of the Laplace operator with Dirichlet
boundary conditions,
from proposition (3.4.1), we conclude that:

• if (N − 1)||H−||∞ <
1

µ0

, Ω is a local strict minimum for the �rst eigenvalue

λΩ of the Laplace operator .

• if Ω is a convex domain, then
1

µ0

> 0 . Hence Ω is a local strict minimum for

the �rst eigenvalue λΩ of the Laplace operator .
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Chapter 3

The problem of obstacle for the �rst

eigenvalue for the p-laplacian

operator

In [32] Long-Jiang Gua, Xiaoyu Zengb, and Huan-Song Zhoub have studied the ex-
istence of asymptotic behavior of the base states for the eigenvalue problem of the
following p-laplacian equation:

∆pu = V (x)|u|p−2u = µ|u|p−2u+ a|u|s−2u, x ∈ RN

with p ∈ (1, n) , s = p + p2

n
, a > 0 and µ ∈ R Is a parameter and V (x) Is a �eld of

vectors satisfying certain assumptions.
In [31] Leandro , Del Pezzo and Julio Studied the �rst eigenvalue for the p-Laplacian
operator with the boundary conditions of Dirichlet and Neumann (mixed boundary
conditions). They considered the following problem:

{
∆pu = λα|u|α−2u|v|β on Ω
∆qu = λβ|u|αu|v|β−2v on Ω

(3.1)

with α
p

+ β
q

= 1 and Next mixed boundary conditions:

u = 0, |∇v|q−2 ∂v

∂ν
sur ∂Ω

In [33] idrissa ly studied the behavior of the �rst eigenvalue of the p-Laplacian op-
erator λp1(Ωn) avec la condition du Dirichlet homogène au bord du domaine variable
(Ωn) ,où (Ωn) est une famille séquentielles des perturbations géométrie.
In [14] Daniele Valtorta gave the estimate of the �rst non-trivial eigenvalue of the
p-Laplacian on a compact Riemannian manifold with a non-negative Ricci curvature
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and characterize the case of equality. He studied the following problem:

{
∆p(u) = λ1,p|u|α−2u on Ω
〈∇u n〉 = 0 on ∂Ω

(3.2)

Daniele Valtorta has proved the following strong estimate:

λ1,p

p− 1
>

Πp
p

dp

With

Πp =

∫ 1

−1

ds

(1− |s|p)
1
p

=
2π

p sin(π
p
)

In this article we will study the obstacle position problem for the p-Laplacian oper-
ator.
The obstacle locating problem for the fundamental eigenvalue is to locate the posi-
tion of the obstacle placement so as to maximize or minimize the eigenvalue of the
p-Laplacian operator. We were interested in the following problems:
Let Ω be a bounded open set of RN and K An obstacle that moves The interior
of D. We consider the problem :

{
∆p(u) = λ1,p|u|α−2u in D\K

u = 0 on ∂Ω
(3.3)

Let λ1,p The �rst eigenvalue of the p-Laplacian operator with certain hypotheses
we want to give the necessary and su�cient conditions so that the �rst eigenvalue
of the p-Laplacian operator is minimal or we want to determine the position of K
in Ω so that λ1,p Is minimal where λ1,p Represents the �rst eigenvalue of the
p-Laplacian operator

3.1 Position of the problem

Let D A �xed open set of RN and K An obstacle that is a subset of D. In this
work we study the minimization of the �rst eigenvalue of the operator P-Laplacian
with conditions at the edges of Dirichlet null on the border of Ω = D/K. . More
speci�cally� we place K at The interior of D With conditions at the edges of
Dirichlet null on the border of Ω = D/K.
The question is: : We want to determine the position of K in D so that λ1,p

minimal where λ1,p Represents the �rst eigenvalue of the p-Laplacian Dirichlet

{
∆p(u) = λ1,p|u|α−2u in Ω

u = 0 on ∂Ω
(3.4)
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With the p-laplacian operator de�ned by the following relation:

∆p : W 1,p
0 (Ω) −→ W−1,q(Ω)

∆p u −→ div(|∇u|P−2∇u)

W−1,q(Ω) la dual de W 1,p
0 (Ω)

De�ne a vector �eld

V : RN 7−→ RN

x 7−→ (V1(x), V2(x), V3(x)..., VN(x))

For all real t Small, we de�ne the domains Disturbed:

Ωt = (Id+ tV )(Ω) = {x+ tV (x), x ∈ Ω}.

The variation of Ω Is explained by the fact that K Moves into Ω Without going
out. if K Is a hard obstacle, the movement of K dans Ω Is done either by
translation or by rotation, or one combines these two Types of motion.
If K Is considered a soft obstacle, K May undergo a transformation by homothety.
After perturbation of the problem (3.4) becomes :{

∆p(ut) = λ1,p|ut|α−2ut in Ωt

ut = 0 on ∂Ωt
(3.5)

By using the variational formulation the �rst eigenvalue of the operator P-Laplacian
is de�ned by the following Rayleigh nonlinear quotient

λ1(Ωt) = min
u∈W 1,p

0 (Ω),u 6=0

∫
Ω
|∇u|p∫

Ω
|u|p

W 1,p
0 The adherence of all functions C∞ Has compact media contained in W 1,p, with

W 1,p(Ω) = {u ∈ Lp(Ω); ∂u
∂xi
∈ Lp(Ω), (i = 1, ...., N)}

We will give some de�nitions before we formulate more precisely the problem

De�nition 3.1.1 Let ξ A unit vector of RN , ε A strictly real number Positive
and y belonging to RN , The summit cone y And direction ξ, Of angle at the top
and height ε. The set de�ned by

C(y, ξ, ε, ε) = {x ∈ RN : |x− y| ≤ ε et |(x− y) � ξ| ≥ |x− y|cos ε}

De�nition 3.1.2 Let Ω An open set of RN ,
Ω Has the property of ε - Cone if for any
x ∈ ∂Ω, There is a direction ξ And a strictly positive number ε such as

C(y, ξ, ε, ε) ⊂ Ω pour tout y ∈ B(x, ε) ∩ Ω
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In the case of a hard obstacle:
De�ne for any real t pretty small Tt(B) Such as a translation, rotation, or face.

Let J2(Ωt) =

∫
Ωt

dx− vo with vo > 0 and

Θε =
{

Ωt = D\Tt(B), open of RN And verifying ownership of the ε

Cone and

∫
Ωt

dx = vo

}
So the problem becomes: determine the position of B such than

min
Ω1∈Θε

λ1, p(Ωt) Is reached

or λ1, p(Ωt) = min
u∈W 1,p(Ω)

{∫
Ωt

|∇u|pdx :

∫
Ωt

|u|pdx = 1,
}

3.2 The shape Critical of the �rst eigenvalue for the

p-Laplace operator (λ1,p(Ωt))

Now we will start by studying the shape critical of the functional λ1, p(Ωt) (the �rst
eigenvalue for the p-laplacian operator) above. Indeed, the solution domain of the
free boundary problem is not automatically a minimum for the function λ1,p(Ωt).
this justi�es the study of the shape critical of λ1,p(Ωt), followed by l The study of
the quadratic form. The functional λ1,p(Ωt) is given by the following relation:

λ1,p(Ωt) =

∫
Ωt

|∇u|pdx

With u solution of the following problem:

{
∆p(ut) = λ1,p|ut|α−2ut in Ωt

ut = 0 on ∂Ωt
(3.6)

Using the hadamard formula we get

λ
′

1,p(Ωt) =

∫
Ωt

(|∇u|p)′
dx+

∫
Ωt

div(|∇u|pV (0))dx

λ
′

1,p(Ωt) =

∫
Ωt

∇u∇u′|∇u|P−2dx+

∫
∂K

|∇u|pV (0).ndx

With n is the unit exterior normal of K
with u

′
Is the derivative of the form of u , and u

′
Satisfying the following equation:
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 −div(∇u′|∇u|p−2)− (p− 2)div(|∇u|p−4(∇u.∇u′)∇u) = λ
′
1,p|ut|α−2u

+(p− 1)λ1,p|ut|p−2u′ in Ω\K
u′ = −∂u

∂n
V.n on ∂Ωt

(3.7)

We multiply the equation (3.7) by u and using Green formula we get

−(p− 1)

∫
Ωt

−div(∇u′|∇u|p−2)udx = λ
′

1,p(Ω, V ) +

∫
Ωt

(p− 1)λ1,p|ut|p−2u′udx

Using the Green's formula then we get

−(p− 1)

∫
Ωt

−div(∇u|∇u|p−2)u′dx+−(p− 1)

∫
∂K

|∇u|p−2∇u.nu′dx =

λ
′

1,p(Ω, V ) +

∫
Ωt

(p− 1)λ1,p|ut|p−2u′udx (3.8)

We are getting

−(p−1)

∫
Ωt

(−div(∇u|∇u|p−2)−λ1,p|ut|p−2u)u′dx+−(p−1)

∫
∂K

|∇u|p−2∇u.nu′dx = λ
′

1,p(Ω, V )

(3.9)
What gives after the simpli�cation

λ
′

1,p(Ω, V ) = −(p− 1)

∫
∂K

|∇u|p−2∇u.nu′dσ

since

u′ = −∂u
∂n
V.n = on ∂K

and

∇u.n =
∂u

∂n
= −|∇u|

So we get

λ
′

1,p(Ω, V ) = −(p− 1)

∫
∂K

|∇u|pV (0).ndσ

Since we have an optimization problem with equality constraint

J2(Ω) =

∫
Ω

dx− vo = 0
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So there is a Lagrange multiplier β < 0 Depending on the domain Ωt and verifying

λ
′

(1,p)(Ω, V ) = βdJ2(Ω, V ) (3.10)

The derivative of J2(Ω, V ) Is given by

dJ2(Ω, V ) =

∫
∂K

V � n dσ (3.11)

By replacing in (3.10)

−(p− 1)

∫
∂K

|∇u|pV (0) � ndσ = β

∫
∂K

V (0) � n dσ (3.12)

Which give

−(p− 1)|∇u|p = β on ∂K (3.13)

So we get the following relation:

|∇u| = (
−β
p− 1

)
1
P on ∂K (3.14)

Let Ωt = Ω\K with K An obstacle that moves inside of Ω So Ω0 = Ω\K Is a shape
critical of functional λ1,p(Ω) If and if there exists a multiplier of lagrange β < 0
Depends on domain Ωt Verifying the following relation:

|∇u| = (
−β
p− 1

)
1
P on ∂K (3.15)

3.3 Quadratic form associated with the �rst eigen-

value of the p-Laplace operator (λ1,p(Ωt))

We have just proved that Ωt = Ω\K Is a shape critical of the functional λ1,p(Ω). And
our goal is to know if Ωt can be the minimum of λ1,p(Ω) under certain assumptions.
This leads us to the study of the positivity of a quadratic form that we will denote
by Q. This quadratic form is obtained by calculating the second derivative of λ1,p(Ω)
with respect to the domain. So before we go on, we need some assumptions. Suppose
that:

(i) Ω Is open of class C2− regular.

(ii) V (x; t) = v(x)n(x), v ∈ H
1
2 (∂Ω), ∀ t in [0, ε[.
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Proposition 3.3.1 (Hard obstacle case)
Suppose that Ω0 is a shape critical, then quadratic form associated with the �rst
eigenvalue of the p-Laplace operator is given by:

Q(v) = d2λ(1,p)(Ω;V ;V )

= −pβΩt

∫
∂K

(N − 1)Hv2ds− pβΩt

∫
Ωt

|∇Λ|2dx

= −pβΩt

∫
∂K

vLvdσ − pβΩt(N − 1)

∫
∂K

Hv2dσ

Where βΩ is the Lagrange multiplier ,here it is negative and p is allowed to range
over 1 < p <∞, and Λ is the solution of the following boundary value problem

−∆Λ = 0 in Ωt = D/K
Λ = 0 on ∂D
Λ = v on ∂K

(3.16)

H is the mean curvature of ∂K and L is a pseudo di�erential operator known as the
Steklov-Poincaré or capacity or Dirichlet to Neumann(see e.g [16]) operator, de�ned

by Lv =
∂Λ

∂n
and n is the unit exterior normal of K. In fact Λ is the harmonic

extension of v in Ω.

Proof
The �rst derivative of the functional λ1,p(Ω) Is given by the following equation

λ
′

1,p(Ω, V ) = −(p− 1)

∫
∂K

|∇u|pV (0).ndσ

λ
′

1,p(Ω, V ) = −(p− 1)

∫
Ωt

div(|∇u|pV (0))dx

Using the hadamard formula we get

d2λ1,p(Ω, V, V ) = −(p−1)

∫
Ωt

div(|∇u|pV (0))′dx+−(p−1)

∫
Ωt

div(div(|∇u|pV (0))V (0))dx

What gives after the simpli�cation

−1

(p− 1)
d2λ1,p(Ω, V, V ) =

∫
Ωt

div(p|∇u|p−2∇u∇u′V (0))dx+

∫
Ωt

div(div(|∇u|pV (0))V (0))dx

                                                                               DOI : https://dx.doi.org/10.26808/rs.eb.01
                                                                      Available online on http://rspublication.com/ebook.htm
                                                                                                    September 2019

©2019 RS Publication, rspublicationhouse@gmail.com                                                                            Page 34



−1

(p− 1)
d2λ1,p(Ω, V, V ) =

∫
∂K

p|∇u|p−2∇u∇u′V (0).ndσ+

∫
∂K

div(|∇u|pV (0))V (0).ndσ

−1

(p− 1)
d2λ1,p(Ω, V, V ) =

∫
∂K

p|∇u|p−2∇u∇u′V (0).ndσ+

∫
∂K

∇(|∇u|p)V (0)V (0).ndσ

Since |∇u| = ( −β
p−1

)
1
P on ∂K and ∇u = −|∇u|.n on ∂K

and u′ = −∂u
∂n
V.n = |∇u|v on ∂K

What gives after the simpli�cation

d2λ1,p(Ω, V, V )

(p− 1)
=

∫
∂K

[p|∇u|p−1n.∇u′V (0).n−∇(|∇u|p)V (0)V (0).n]dσ (3.17)

Since u′ = −∂u
∂n
V.n = ( −β

p−1
)

1
P v on ∂K So n.∇u′ = ( −β

p−1
)

1
P
∂v
∂n

on ∂K

Replacing in (3.17) We obtain the following relation :

d2λ1,p(Ω, V, V )

(p− 1)
=

∫
∂K

[p(
−β
p− 1

)
∂v

∂n
v −∇(|∇u|p)V (0)V (0).n]dσ (3.18)

Replacing in (3.18) Which give:

d2λ1,p(Ω, V, V )

(p− 1)
= p(

−β
p− 1

)

∫
∂K

vLvdσ −
∫
∂K

v2∇(|∇u|p).ndσ (3.19)

So we get the following relation:

d2λ1,p(Ω, V, V ) = −pβ
∫
∂K

vLvdσ − (p− 1)

∫
∂K

v2∇(|∇u|p).ndσ (3.20)

Sine we assumed that Ω is C2,so using the formula of the level motion set related
to the mean curvature.
In fact ∂K = {x ∈ RN ; u(x) = 0} and we have

−(N − 1)H = div(
∇u
|∇u|

) =
∆u

|∇u|
− ∇u.∇(|∇u|)

|∇u|2
.

where H is the mean curvature of ∂K. Furthermore, since u = 0 on ∂K, we have
∆pu = 0 on ∂K.
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Finally we get

(N − 1)H =
−|∇u|n
|∇u|2

.∇(|∇u|) i.e

−(N − 1)H|∇u| = n.∇(|∇u|)
∇(|∇u|) = −(N − 1)H|∇u|.n

By miltipliating by |∇u|P−1 we are getting:

|∇u|P−1∇(|∇u|) = −(N − 1)H|∇u|p.n

Finally we get

∇(|∇u|p) = −p(N − 1)H|∇u|p.n

This gives the following relation:

∇(|∇u|p).n =
Hp(N − 1)β

(p− 1)

Replacing in (3.20) We obtain the following relation :

d2λ1,p(Ω, V, V ) = −pβ
∫
∂K

vLvdσ − pβ(N − 1)

∫
∂K

Hv2dσ (3.21)

Therefore the quadratic form of the functional λ1,p(Ωt) Is given by the following
equation:

Q(v) = d2λ(1,p)(Ω;V ;V )

= −pβΩt

∫
∂K

(N − 1)Hv2ds− pβΩt

∫
Ωt

|∇Λ|2dx

= −pβΩt

∫
∂K

vLvdσ − pβΩt(N − 1)

∫
∂K

Hv2dσ

3.4 Su�cient conditions for the minimum of the

�rst eigenvalue of the p-Laplace operator

In [13], Michel Pierre and Marc Dambrine ((See as well [10],[11]) Have shown that
it is not enough to prove that the quadratic form is positive to say that a critical
form is a minimum.
For t ∈ [0, ε[, λ(1,p)(Ωt) = λ(1,p)(Ω) + λ

′

(1,p)(Ωt, V )t+ d2λ(1,p)(Ωt;V ;V )t2 + o(t2).
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The amount o(t2) Is expressed in terms of the norm of C2. It appears in the expres-

sion d2J(Ω, V, V ) norm of H
1
2 (∂Ω). And these two norm are not equivalent. The

amount o(t2) Is not lower than ||V ||2
H

1
2 (∂Ω)

see [13],[19].

next, such an argument does not guarantee that the critical point is A strict local
minimum. For this we will use the main result [13] and The Taylor formula with
With integral rest to see if Ω is a strict local minimum or not.
To give su�cient conditions for a local minimum of basic worth, we �rst present the
results we obtained in our paper [2].
Let A be an operator de�ned in the following sense :

A : H
1
2 (∂Ω) −→ H−

1
2 (∂Ω)

A = L+ (N − 1)(||H−||∞ +H)I,

where I is the identity operator L is the pseudo di�erential operator as de�ned in
the proposition (3.3.1), and H− = max(0,−H).

Remark 3.4.1
As assumed ∂Ω is of class C2, then the mean curvature H is a continuous function
on ∂K.
Let us set α(x) = (N − 1)(||H−||∞ +H(x)), ∀ x ∈ ∂Ω. We note that
α is continous and ∀ x ∈ ∂Ω, α(x) ≥ 0 (moreover α(x) > 0 on a su�ciently
large set).

Lemma 3.4.1

1 - The operator A is a bijection from H
1
2 (∂Ω) into H−

1
2 (∂Ω) and it is continous.

2 - The inverse operator A−1 is compact and self adjoint from H−
1
2 (∂Ω) into

H
1
2 (∂Ω).

Proof
For proof see [2]

Remark 3.4.2 Since the inverse operator : (αI + L)−1 is compact, self adjoint,

then there exists a Hilbert basis (φn)(n ∈ N) ⊂ H
1
2 (∂Ω) and a decreasing sequence of

eigenvalues µn which goes to 0.

Proposition 3.4.1
Let Ω0 the critical shape for λ1,p(Ωt) ( The �rst eigenvalue of the p-Laplace operator
) is given by

λ1,p(Ωt) = min
u∈W 1,p

0 (Ω),u6=0

∫
Ω
|∇u|p∫

Ω
|u|p
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With Ωt solution of the following problem:

{
∆p(ut) = λ1,p|ut|α−2ut in Ωt

ut = 0 on ∂Ωt
(3.22)

Ω0 is a local strict minimum of λ1,p(Ωt) if and only if

(N − 1)||H−||∞ <
1

µ0

Proof
The proof is a direct consequence of the remarks(3.4.1) ,(3.4.2) and The results of [?]

conclusion

Let Ωt = Ω\K with K An obstacle that moves Inside of Ω So Ω0 = Ω\K Is a
critical shape of the functional λ1,p(Ω) If and if there is a lagrange multiplier β < 0
Depends on the domain Ω0 verifying the following relation:

|∇u| = (
−β
p− 1

)
1
P on ∂K (3.23)

Let Ω0 be a critical form of the �rst eigenvalue (λ1,p(Ω)) of the P-Laplace operator
with Dirichlet boundary conditions, from proposition (3.4.1), we conclude that:

if (N − 1)||H−||∞ <
1

µ0

, Ω is a local strict minimum for the �rst eigenvalue

(λ1,p(Ω)) of the P-Laplace operator .
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